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Abstract. Anonymous communication networks (ACNs) aim to thwart
an adversary, who controls or observes chunks of the communication net-
work, from determining the respective identities of two communicating
parties. We focus on low-latency ACNs such as Tor, which target a prac-
tical level of anonymity without incurring an unacceptable transmission
delay.

While several definitions have been proposed to quantify the level of
anonymity provided by high-latency, message-centric ACNs (such as mix-
nets and DC-nets), this approach is less relevant to Tor, where user—
destination pairs communicate over secure overlay circuits. Moreover,
existing evaluation methods of traffic analysis attacks on Tor appear
somewhat ad hoc and fragmented. We propose a fair evaluation frame-
work for such attacks against onion routing systems by identifying and
discussing the crucial components for evaluation, including how to con-
sider various adversarial goals, how to factor in the adversarial ability
to collect information relevant to the attack, and how these components
combine to suitable metrics to quantify the adversary’s success.
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1 Introduction

Anonymous communication networks (ACNs) enable users to communicate with
each other while hiding as much as possible who said what to whom from an
adversary. The focus of anonymity varies depending on what should remain
hidden: for instance, who sent to whom versus who sent what. This variation
is reflected in a plethora of precise formalizations of anonymity in the context
of communication [2,|7,127,|44], culminating in the recent ‘race-car’ hierarchy
by Kuhn et al. [34] Fig. 3]. Two of the main concepts are unlinkability and
unobservability, for instance sender-receiver unlinkability (an adversary cannot
tell whether Anna is communicating with Bob or Dad) or sender unobservability
(an adversary cannot tell whether Anna is communicating at all).

Of course, not all ACNs will, or even intend to, satisfy all possible notions.
In fact, most ACNs belong to one of three main classes: DC nets (after Chaum’s
dining cryptographers [12]), mix-nets [11], and onion routing [29]. These classes



differ in their overhead, both in terms of bandwidth and latency. Typically,
the less overhead and hence the more performant the ACN, the less formal
guarantees one can hope to obtain [15]. Arguably, onion routing introduces the
least inevitable overhead. It involves a user selecting a number of relays and
encrypting a message in such a way that each of the relays peels of a layer of
encryption until the final message is retrieved at the destination. Onion routing
can be defined both in a public-key setting where each message can take its own
route [9], or in a symmetric-key setting where a circuit is established on which
a secure channel is overlayed [28]/46].

Tor [19] is an ACN of the latter type. It aims to improve online anonymity
such that even someone monitoring parts of the network cannot easily tell which
user is visiting which website, or, more generally, who is connected to whom. As
mentioned above, users relay their data over multi-hop circuits, using encryption
to hide routing data and thwart easy, content-based correlation of traffic going
in and out of any given router. However, to keep overall network latency low, the
timing of incoming and outgoing traffic is certainly correlated. Indeed, when Tor
was conceived, it was accepted that ingress traffic traces collected at the guard
can be linked with the corresponding egress traffic traces collected at the exit
node. Thus, an adversary controlling both the guard node and the exit node of
a circuit can use traffic analysis to deanonymize such a circuit, thereby linking
its user to their destinations.

Yet, in reality the compromise is neither automatic nor complete, and dif-
ferent methods have been proposed to correlate ingress and egress traces [5]. A
completely different kind of traffic analysis arises when an adversary fingerprints
a list of websites and, with only access to a user’s ingress trace, tries to determine
which website the user is visiting [42]. In parallel, several defence mechanisms
have been suggested to reduce the potency of these attacks (see e.g. [33] for an
overview of both attacks and defences).

A natural question is how well these attacks, respectively defences, work: in
other words, how to evaluate these attacks and defences. In addition to the two
distinct threat models mentioned above, there are various goals that have been
considered in the past, for instance determining whether a user is accessing a
monitored or unknown website (the ‘open’ world) versus deciding which of a
number of known websites a user is accessing (the ‘closed’ world). Moreover,
different metrics are used to evaluate, depending on the scenario; for the open
world’s decisional problem one often sees precision and recall, whereas for the
closed world’s classification problem, accuracy is more common. In some cases,
information-theoretic metrics have been used and advocated [4}/16,49L[51].

What is lacking, though, is a common methodology or perhaps even language
how best to evaluate and interpret attacks against and defences for Tor. The
attacks themselves can often be regarded considerably less scenario-dependent
than their evaluation indicates and for defences there is the legitimate question
to what extent their evaluation should depend on current state-of-the-art of
attacks. Finally, it is unclear how the attacks and their evaluations relate to the
fine-grained formal definitions of anonymity mentioned above.
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Fig. 1. View of the game and the random variables involved in it: The secret S underlies
the game’s state G of which an adversary can only observe V. Auxiliary information
Z from earlier training is used to extract from V an answer O to the query q.

Our contribution. We propose a framework for the evaluation of the anonymity
offered by low-latency onion routing schemes such as the current Tor design. Our
aim is to enable a fair comparison of various traffic analysis methods and related
defences, by clarifying the possible threat models and providing a taxonomy of
relevant security goals and appropriate metrics.

In |Section 2| we cast the interplay between Tor and an adversary as a cryp-
tographic game, identifying relevant random variables to express success of an
adversary as a population parameter. gives a very high level overview.
Even when we cannot hope to ever fully learn the real-life distribution of said
variables, for evaluation, one can still set a suitable, hopefully representative
distribution and run partially simulated experiments, substituting the true pop-
ulation parameter for a sample statistic on an approximate distribution.

As Tor is used by real people with legitimate privacy concerns, ethical evalu-
ation invariably uses a partially simulated and scaled down version. In a simula-
tion, the evaluator can run multiple experiments, each time knowing the ground
truth of who is connected to whom. That sets evaluation apart from an actual
adversary trying to learn what is happening during a single snapshot of Tor.

Of course, a real-life adversary will operate against real world Tor and thus
the threat models, and possible goals an adversary may have, derive directly from
considering the real world. Specifically, an attacker against Tor typically will be
able to observe some of the traffic flowing through the network and possibly
to manipulate said traffic. Exactly which traffic can be observed depends on
the threat model, as we elaborate upon in For instance, there is a
difference between an adversary only observing traffic flowing through the proxy
versus an adversary who has corrupted multiple guard and exit nodes.



Table 1. List of random variables in the framework.

Random

variable Description
S The game’s ‘secret’ mapping of users with destinations
G The game’s full view of the interaction
Vv The adversary’s limited view of the interaction
Z Auxiliary information given to or obtained by the adversary
O The adversary’s output, expressing belief about part of the secret

An adversary will use its observations to deduce information about who is
connected to whom. There are various ways one can formalize this question in
the real world, and some additional ones when considering a simplified simulated
setting. We discuss the most common and meaningful scenarios in

Basic metrics are known in the machine learning community (and beyond) to
pose problems; we investigate in where we also address metrics based
on information theory, such as mutual information.

Related work. Several security definitions have been proposed to quantify the
level of anonymity provided by ACNs. While those definitions are suitable to
argue about high latency, message-based ACNs (such as mix-nets and DC-nets),
as we argue in those definitions are less relevant to low latency,
circuit-based onion routing like Tor.

Wagner and Eckhoff [57] provide an overview of possible metrics related to
anonymity, including ACNs (see also . Some parallels exist between
evaluating ACNs and side-channel attacks (SCA) [53], where a distinguisher
wants to recover a subkey given a number of power traces: key recovery is essen-
tially a classification problem and, as for traffic traces, the exact distribution of
power traces is typically unknown, yet can be sampled from using real devices.

2 High-level Framework/Execution Environment

Setup. We apply a perspective of modern cryptology by describing the inter-
action between an adversary A and the ACN as a game, where our focus is on
identifying the relevant random variables, as summarized in For real-
life ACNs, the distribution of these random variables might be unknown and
difficult to estimate precisely; as we will see, an evaluator typically has far more
control over the underlying distributions by using a semi-simulated experimental
setting.

Central to our modelling are users who wish to connect to various destina-
tions. We use disjoint sets ¢/ and D to describe, respectively, users and destina-
tions. In the real-world, users and destinations are typically identified using IP
addresses or URLs, possibly even names; abstractly any label suffices.



The choice of the users which destinations to connect to, is modelled by the
random variable S, whose sample space is the set of directed bipartite graphs
between U and D. Nodes represent the users and destinations, whereas edges
map connections between users and destinations.

The random variable S captures users’ behaviour by selecting a single graph
from the pool of possible ones, but this abstraction does have some shortcomings
when compared to practice. Firstly, our model is static, in the sense that all
users simultaneously decide on their destinations. In reality, users come and go
and their destinations change over time. Such a dynamic setting seems to have
received relatively little attention so far, hence our restriction to static appears
standard. Secondly, an evaluator needs to choose a suitable distribution of S
that is representative of real usage.

When evaluating, one often considers only simplified distributions for S. For
instance, it is common that each user only connects to exactly one destination, so
all user nodes have degree one. Additionally, either for all users the destination
they connect to is independent and identically distributed (uniformly or based
on website popularity metrics) or, in the special case where |U/| = |D|, the graph
S might correspond to a permutation, drawn uniformly at random.

For each user u € U, the destinations they are actually connecting to are
denoted by random variable D,,. For some specific users there might be restric-
tions on the possible destinations, that is the support D,, of possible destinations
is a proper subset of D. Finally, destinations are said to be active if they have
non-zero degree.

The state and all the possible observables of the anonymity network are
modelled by G . In the case of Tor, G could capture the internal states of routers
(identities, cryptographic keys, circuit IDs), traffic traces consisting of vectors
of packet sizes and timings, and any other information that may be collected by
any party involved (internal or external). Giving an exhaustive, formal definition
of G is neither convenient nor necessary, though G should fully determine S.

Adversaries. Most adversaries will only have limited knowledge of G. Their
view V of G depends on the specific threat model. For example, a user’s ISP will
be able to see that user’s traffic patterns, but not much more. In contrast, the
user’s guard node will see that traffic pattern, but additionally know the middle
router for that user’s circuit. We will discuss threat models in more detail in

An actual adversary often runs in two stages. During the first ‘training’
stage, it tries to learn general information about the behaviour of the network.
For instance, how traffic traces captured at a proxy depend on the destination,
or how traffic traces captured at a proxy differ from the corresponding ones
captured at the exit node. This auxiliary information is captured by the random
variable Z. Although Z could include an estimation of the distribution of S, it
is independent of the random variable S itself. Only in the subsequent second
‘challenge’ stage the adversary observes V', which it combines with the auxiliary
information Z to try and learn something useful about S.



What the adversary tries to learn corresponds to the goal of the adversary,
which we capture by a query q that may depend on a target T C U x D. Given a
query q, the target T and the random variable S, there is often a unique answer
to this query, which we will denote S|, (with implicit dependency on T). For
instance, if q asks which website(s) a user u is connected to, then the target can
be encoded as T = {u} x D and the correct, complete answer Sq is a subset of
D. Note that unicity of the answer in the example above is a property of the
query, irrespective of either target or instantiation of S.

When discussing possible goals in we will refer to the users (resp.
destinations) component of the target T as Ty (resp. Tp ), so in the small example
above Ty; = {u} is relevant, whereas Tp = D is just a formalization artefact (and
we may abuse the notation and consider either Ty, or Tp to be empty instead).

The adversary processes the information and returns output Oq as response
to the query q on target T. If q has unique answers, this output Oq could be the
adversary’s best guess for S|4, or it could be an approximation, a list of possible
answers, or a vector of likelihoods for select answers, etc.

Evaluation. When evaluating an attack, we specifically refer to the processing
from V into O, possibly in conjunction with how Z is attained and used. On the
other hand, when referring to a defence, we are primarily interested in how the
random variable G’s distribution can be made less susceptible to later attacks.

An evaluation should indicate how well an attack or defence works, which
can be done by means of an anonymity metric. In first instance, such a metric is
a parameter that summarizes the anonymity, or loss thereof, as indicated by the
random variables S and O, or S and V (possibly also including Z). In that sense,
a metric can be regarded as a population parameter (or as the difference between
two population parameters, cf. the deltas used by Pfitzmann and Hansen [43)).

Although the distribution of G and thus V is typically unknown, one can
sample from it, e.g. by connecting to the Internet using the ACN and taking mea-
surements (in an ethically responsible way) or by using a tool like Shadow [31].
Thus, the population parameters can be estimated using sample statistics.

As we will see in sometimes, metrics are simply expressed as sum-
mary statistics (e.g. accuracy), without reference to their potential underlying
population parameter. We believe one strength of our framework of making the
random variables explicit, is that it helps surface a number of otherwise hid-
den choices in the evaluation, such as the distribution of S used and how the
sampling experiment was set up.

To evaluate an attack, i.e. the processing of V' into Og4, one inevitably has
to take that output Oq4 into consideration. As the output is, or is related to, an
adversary’s best guess for S|4, such an output-dependent metric will depend on
the adversary’s goal. On the other hand, to evaluate a defence, changes in the
distribution of V' are more relevant, leading to metrics directly on V. Through
S|q, such input-dependent metrics can still take into account an adversary’s
goal q, yet without considering how the processing works. Thus, defences can
potentially be evaluated independently of the currently best-known attacks.



Traffic traces as contained in V' can contain a lot of unstructured data that is
computationally expensive to process directly. An adversary may pre-process V'
by extracting its most salient features prior to the actual core processing. This
core processing itself is often independent of any goal. For instance, for each
observed ingress trace and each observed egress trace, it outputs a score how
well they match, resulting in a matrix of scores. Subsequent post-processing
can take this matrix to return an output specific to a given query q, say by
turning the score into a true/false value (based on some threshold) or taking
an arg max. Intuitively, such post-processing potentially throws away a lot of
information, thus we might also want to consider metrics purely for the core-
processing without taking into account any post-processing.

Examples. To illustrate our framework, see [Example 1| (and [Fig. 2)) below.

Ezample 1 (Website Fingerprinting). Consider the open world scenario from
Deep Fingerprinting by Sirinam et al. [52]. The threat model consists of a local
passive adversary sniffing the traffic between a single user and their entry node.
Such an adversary wants to verify whether the user is accessing a website from
some pre-defined subset Tp C D or not. In our framework, this translates to:

S The website w accessed by the user, sampled from D according to a uniform
distribution. Using the graph notation, & = {u} and there is a single edge
going from u to w.

G The state of the single circuit in the network: identities of the user, nodes,
and destination, plus traffic flows from user to destination and vice versa.

V' The information in G accessible by the adversary, mainly user’s identity and
the traffic trace between user and guard node.

goal The query “Is the visited website w an item of Tp?”, where Tp is the
target.

Z The training data used by the adversary’s distinguisher. It is referred to as
open-world dataset.

O A binary random variable, answering directly the query q with yes or no.

This process is performed on a single traffic trace at a time, resulting in
the binary random variable O. The experiment is repeated in order to collect
more data and extrapolate statistical information. Precision and recall are used
to estimate the performance of the distinguisher; moreover, ROC curves are
provided to show the trade-off between TPR and FPR.

@: (in the appendix) looks at the traffic analysis scenario studied by
Nasr et al. [37]. There is a key difference between those two examples. In the first
one, the adversary attacks a single user at a time, in a way that allows them to
scale their approach to multiple users independently of each other. Consequently,
the influence on how well the attack performs against a specific user is largely
independent of what other users are doing, seemingly contradicting the intuition
that the anonymity in onion routing derives from ‘hiding among the masses’ [19].
In contrast, for the second example all users’ traffic traces are pooled together
and users may influence each other’s anonymity.
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Fig. 2. Bipartite and multipartite graphs representing settings and random variables

in Deep Fingerprinting (Example 1). Edges in the secret S are expanded, through
protocol specifications, to multiple edges in the multipartite graph G (representing

circuits in Tor) and the view of the adversary V.

Relevance. When we say that we focus on evaluation attacks and defences
against the anonymity of Tor, our scope is relatively narrow, as we primarily
concentrate on fingerprinting and traffic analysis in a scenario where the threat
model is fixed (see also|Section 5|). However, an adversary who controls all routers
in the Tor network can trivially de-anonymize all circuits, whereas an adversary
who controls no routers, proxies, or destinations and cannot observe any traffic,
essentially for whom V = (), cannot possibly learn anything useful.

A rational de-anonymization adversary might therefore invest its resources
in observing and controlling a chunk of the ACN as large as possible. For a
user worried about deanonymisation through ingress—egress traffic analysis, the
largest risk arguably lies in the adversary capturing both traffic traces, and less
in the adversary’s ability to link the traces (if both ends had been acquired
within a much larger collection of traces). On the opposite side, deployers of an
ACN would probably spend more of their resources in protecting their network
from control and widespread observation, rather than incorporating bandwidth-
consuming and latency-increasing countermeasures to reduce the damage if an
adversary sees both ingress and egress traces [55].

We acknowledge that, rather than minimizing the damage when a threat
occurs, it makes sense to minimize the threat happening in the first place and
the Tor designer’s assumption that all anonymity is lost if both guard and exit
node of a circuit are compromised is the correct conservative one. Similarly,
guard nodes were introduced in recognition that it is better to sacrifice a few
users more severely, than a lot of users a little. Yet that does not take away
that figuring out how to compromise in various scenarios, and how to limit
those compromises potentially, is an active research area. Whether to deploy a
potential defence in practice will be based on its return on investment, essentially
a trade-off between the protection offered versus the cost (in comparison with
other measures outside the scope of this work).



3 Security Goals and Notions

3.1 Interpreting Privacy Notions

Historical context. After Chaum [11] initiated the study of ACNs in the early
1980s, it quickly became apparent that a common language was lacking. Pfitz-
mann and Hansen [43,/44] attempted to consolidate terminology by providing
as precise as possible context-free descriptions of various relevant terms, such
as unlinkability and unobservability. For specific contexts, they recommend to
abstract away certain terms, such as ‘sender’, ‘recipient’, and ‘message’.

In the context of onion routing, the user establishes a circuit over which
bidirectional traffic will flow, making the concepts of sender, receiver, and es-
pecially message potentially misleading. Using the existing, default terminology
as is might encourage a mental model of a sender sending a single or vector
of messages to a receiver. Such a mental model could lead to mismatches in
context-specific formalizations, similar to a message-based mental model not
quite capturing TLS’s record layer security [24]. Thus we speak of users instead
of senders and destinations instead of receivers; furthermore, we drop the con-
cept of messages from our framework, arguably the closest analogy would be a
circuit.

The privacy notions of unlinkability and unobservability have been formalized
for ACNs in a number of works [2}/7,127]. In particular, Kuhn et al. [34] present
a thorough formalisation of a wide range of privacy notions, encompassing most
previous work. For high latency message-based ACNs, these indistinguishability-
based notions are very suitable as they allow expressing (and proving) the secu-
rity of protocols in a fine-grained manner. However, the notions show some short-
comings when it comes to their applicability to low latency ACNs, such as the
inherent dichotomy between success or failure of the attacker in terms of whether
a formal definition is satisfied or not. This approach is rarely encountered in the
literature concerning onion routing in the real world, which commonly rely on
measuring how well attacks and countermeasures perform. Moreover, they con-
sider asymptotic security as they employ adversaries as probabilistic polynomial
time (PPT) algorithms, instead of concrete real-world instantiations.

Our interpretation. Minding the above, we depart from the indistinguishability-
based formalizations and provide an interpretation, specific for onion routing,
of observability and linkability (O, L), usually in their negated forms unobserv-
ability (O) and unlinkability (L). Instead of sender and receiver, we maintain
our terminology of users (U) and destinations (D). Note that we abstract away
any particular onion routing specifications, so our notions are agnostic of, for
instance, the use of guard nodes, or the length of the circuits.

Tor’s ultimate goal is to avoid any party, different from the user themselves,
from learning both user and destination of observed traffic. The corresponding
privacy notion is then user—destination unlinkability ((UD)L). User unobserv-
ability (UO) refers to the inability, for the adversary, to observe whether a user

is accessing Tor or not. This notion is important, for example, in cases where



Table 2. Privacy notions. A node v of the graph S is active if and only if deg(v) > 0.

Notion Description

(UD)O 1. No edges can be noticed from either users or destinations; the number of
edges can be disclosed. This condition can be expressed as unknown degree
value for any of the nodes but known total degree of the graph (|Es|).

(UD)L 2. Degrees of nodes are revealed, but no element e of the edge set Eg is
known. In terms of S, no path is completely disclosed, but which users or
destinations are active can be revealed.

c
ol

3. Degree of destinations is known, but not for users’.

o
al

4. Which destinations are active is unknown; instead, users’ activity may
be disclosed.

Tor usage is being censored [20}21,60162]; the analogous notion (DO) can be
considered for destinations. These two notions could also be combined into user—

destination unobservability ((UD)O), in case neither the user nor the destination
can be observed as being connected to the Tor network.

Above, when referring to privacy notions, we only provided intuitive descrip-
tions rather than the formal definition approach mentioned previously. In[Table 2|
we interpret the privacy notions in terms of the bipartite graph representing S.
For example, observing a destination means knowing that the destination is
connected to the network, i.e. the corresponding node in the graph has non-zero
degree. We will refine further when discussing privacy goals in the next section.

Relationships. Ostensibly, unobservability is a stronger notion than unlinkability
(cf. [34,/43]). Yet, somewhat counterintuitively when we consider specific threat
models against onion routing, it appears that the seemingly stronger looking
abstraction (i.e. unobservability) can be the more appropriate. Let us elaborate.

Depending on the threat model (Section 5), (UD)L may collapse to either UO

or DO. For example, assume that the adversary observes the traffic between the
user and the guard node, either by corrupting the guard node or by observing
traffic in the user’s or the guard node’s ISP. These observations reveal the user’s
IP address as well as the traffic patterns from and to the user. Based on this
information alone, website fingerprinting may in some cases (with a well finger-
printed server) help the adversary to identify the server and hence the user and
destination are linkable. However, if in addition the adversary is able to observe
the traffic between the exit node and the destination, it is highly plausible that
linking the user and the destination is computationally feasible. Hence, in this
scenario, in order to achieve (UD)L, we need the adversary to be unable to ob-
serve the destination of the traffic (DO). Note that, as it is customary in the
literature, such terminology (O) does not take into account the computational
effort needed to infer the desired information (e.g. the end destination) from the
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available information (e.g. the traffic trace), instead of distinguishing between
the concepts of ‘unobservability’ and ‘computational uninferrability’.

3.2 A Taxonomy of Security Goals

Attacks on user—destination anonymity can have different goals, as captured
in our framework in terms of queries q on S, where q may furthermore have a
specific target T. Distinct goals may require different metrics, which are reflected
in the literature, where authors utilise various evaluation metrics to compare
their results with others. In order to understand the various metrics, we first need
to establish a taxonomy of different goals, which we will do in this section. We
divide the goals and the corresponding queries in four distinct categories. From
specific to the most general these are distinguishing, decisional, classification,

and finally computational. Examples in illustrate these goals.

Distinguishing goals. Inspired by the classic IND-CPA [6] notion for encryp-
tion, distinguishing goals arise in formal cryptologic models of anonymity (see
also [Section 3.1): an adversary is interacting with one of two worlds (say left or
right) and needs to figure out which world it is engaged with. A distinguishing
goal corresponds to a dichotomous classification problem with a uniform prior
and symmetry between the two classification options, with no meaningful dis-
tinction between positives and negatives (see . Assuming the output
is a single bit, the typical metric for a distinguishing goal is the distinguishing
advantage.

Decisional goals. Decisional goals are still dichotomous classification problems,
but here the prior might be non-uniform and meaning can be associated to
positives and negatives. The open world scenario belongs to this
category, since D can be partitioned in monitored /unmonitored destinations and
the adversary has to decide whether the observed traffic trace corresponds to a
monitored destination or not, without having to pinpoint the exact destination.

In our framework, a query q representing a decisional goal can be regarded
as a predicate on S that induces a partition of S’s sample space into two sub-
sets: the positive part contains all bipartite graphs satisfying the predicate (e.g.,
the targeted user connects to a monitored website), whereas for negatives the
predicate is false (the user is in the clear). As the concepts of true/false posi-
tives/negatives are meaningful, the standard metrics for binary classifiers apply,
which we will expand upon in

Decisional goals are often related to the open world scenarios in website
fingerprinting, introduced by Panchenko et al. [42]. They suggest it as it is closer
to a real world scenario (compared to closed world), and it quickly became one of
the two main instantiations of website fingerprinting [8l/10}/26,30./41}/4852,/581/59].

Classification goals. For a more general classification goal, we drop the re-
quirement of only two classes available, thus the query q induces a partition of
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the sample space of S in more than two subsets. A key difference compared to
decisional goals is that, from the adversary’s perspective, there is no longer any
preference among the possible classes and specifically all misclassifications are
treated the same (in sharp contrast to false positives versus false negatives for
decisional goals). In that sense, classification goals are closer to distinguishing
goals, however for classification goals the prior distribution need not be uniform
over the classes.

The closed-world scenario for website fingerprinting is an example of a classi-
fication goal; another example arises in traffic analysis attacks when an adversary
has to match a single target ingress trace to one of many possible egress traces,
or vice versa [54]. Accuracy, corresponding to the probability of classifying cor-
rectly, is the most common metric.

Computational goals. Finally, for computational goals an adversary tries to
learn something that perhaps cannot easily be classified and there might not be
a single correct answer. For instance, a greedy adversary trying to deanonymize
as many users simultaneously as possible. Often there is a notion of proximity
or similarity between answers, including not-quite-correct ones, rendering the
adversary’s job one of best-effort estimation.

A typical example of a computational goal is the matching of ingress traces to
egress traces [25[36137,/40,(5054]. Although there is a unique best bipartite graph
that correctly identifies all matches without any incorrect ones, an adversary
might prefer to only output the matches it is most confident in, or it might
even output an inconsistent set of matches in order not to miss any legitimate

matches. See also

Discussion. Some goals that are seemingly identical can be modelled in slightly
different ways when evaluating. For instance, when an evaluator is interested
how well a website fingerprinting algorithm works on ingress traces, one option
is to consider multiple users and target only one (so V is considerable smaller
than G), another is to only ever consider a single user (so V' contains more of
G). When the traces are acquired by live interaction with the ACN (including
many unknown users outside i), the two views V' might be sufficiently similar
to render the single-user simplification representative of the multi-user setting.
If, on the other hand, traces are simulated, simplifying away other users may
not be warranted.

Goals can also relate to each other in a black-box way, in the sense that an
adversary that decides whether an ingress trace and an egress trace are related,
might also be used to determine which ingress trace belongs to a given egress
trace by selecting one of the matching ingress traces (ideally, there would be
exactly one, but this cannot be guaranteed). However, such a black-box approach
is likely wasteful if the adversary really creates a score as its core processing and
only arrived at a yes/no decision through post-processing. In that case applying
a different post-processing instead makes more sense.

We list a number of possible goals in [Table 4] [Appendix C|
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4 Metrics

Syverson [55] argues that anonymity metrics should reflect the effort an adver-
sary has to expend in order to reach a goal, and also that to be useful, security
metrics should not depend on the values of variables for which we cannot make
adequate relevant determinations or predictions. We believe anonymity metrics
should be suitable for the security goal at hand, they should allow meaning-
ful comparison between different attacks and countermeasures, and efficient and
robust estimation should be feasible. In order to be sufficiently general to accom-
modate a wide range of goals and attacks, we use the term “metric” in a relaxed
manner, without imposing the usual mathematical properties of a metric. What
we will assume is that a metric  does not behave in a non-intuitive way.

Researchers on ACNs like Tor often have limited access to real world data,
due to intrinsic difficulties including legal and ethical considerations. Hence,
assumptions known to be artificial are regularly employed but seldom explicitly
stated. Furthermore, since metrics are used to represent the performance of an
attack, they depend on the input data collected by the adversary or by the
evaluator for the given attack and not only on the attack itself. The accuracy of
a classifier may be influenced by the probability distribution on the input data,
by the size of the data set, or by the number of classes. In consequence, metrics
used in the literature are often effectively estimates of the adversary’s success
rate in synthetic settings, while their real world relevance remains less clear [56].

For an attacker, the relevant metrics may be the computational cost and
accuracy of an attack, while researchers may be interested in the anonymity
level provided by Tor to the average user. Due to these substantial differences,
it is of fundamental importance to determine which metrics are pertinent rather
than defaulting to some generic ones.

We provide examples illuminating the concepts of this section in[Appendix D}

4.1 Input-dependent Metrics

Input-dependent metrics depend on S or S)q, G, and V, but not on O. The
leakage about the secret random variables S, S|4, and G obtained by observing V'
is naturally expressed in the form of information-theoretic concepts like entropy,
conditional entropy, and mutual information [35]. These concepts have already
been used to assess anonymity networks [4,/16,49,|51]. The Shannon entropy

H(S) = — 3 ps(s) loga p(s)
seS

by itself only expresses the a priori uncertainty about the secret S. In order to
evaluate an attack, it is necessary to study the conditional entropy

H(S|V)=— Z p(s,v)logy p(slv) = E[H(S |V =v)],cy, (1)
seSweV

which represents the remaining uncertainty about S after observing the random
variable V. Hence, the mutual information I(S; V) = H(S) — H(S |V) can
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be interpreted as the information leakage about S from observing V. Shannon
entropy is known to satisfy monotonicity, that is, H(S |V') < H(S), so that
information leakage defined as above is always non-negative.

Diaz et al. [17] remark that since the RHS of contains an expectation,
there may exist some sample view v that gives more leakage than average, and
hence one might be concerned about sample views of this type.

In our model, the view V is a random variable beyond the influence of the ad-
versary, and in a pure Shannon entropic perspective, only the average conditional
entropy H(S | V') would be important. However, concern about deanonymisation
probabilities suggests that more emphasis should be put on this type of sample
views (cf. [43} Footnote 34]). Hence, Claul and Schiffner [13] suggested the use of
Rényi entropy and quantiles to measure anonymity. Rényi entropy [1,23}47] is a
generalization of Shannon entropy (for convenience, we include a brief summary
of relevant concepts in [Appendix D)), which Claul and Schiffner argue is more
resilient (using different values of «) against the influence of outliers than Shan-
non entropy. They differentiate between network and application layers when
assessing anonymity, corresponding respectively to G and S in our framework.

In order to compare the performance of attacks in different settings with dif-
ferent sizes of the secret S, some authors [16,57] suggest normalizing information
metrics by dividing by the secret max entropy Hy (S) = log,|S]|.

4.2 Output-dependent Metrics

By definition, the adversary view V contains all of the information the adversary
obtains about the secret S, or about the parts S|4 of the secret pertinent to a
specific query q. However, V is typically complex and the appropriate response to
q may not be immediately obvious based on inspection of V. In order to provide
an illuminating response Oq that is aligned with the query q, the adversary needs
to apply a query-dependent processing of V. An evaluator with access to the
secret S (or S|q) should be able to compute an output-dependent metric function
tq(Ogq, S) that measures the quality of the (estimated) output Oq relative to S.

It follows by the data processing lemma of information theory |14} Section 2.8]
that I(S; Oq) < I(S; V) (and similar for Rényi information). Moreover, since
V is typically complex and machine learning may be part of the processing,
outputs may be unaccompanied by confidence/uncertainty estimates, and thus,
the price for the adversary of providing an output Oq in a convenient form is
often an information loss. The examples in illustrate this.

In the literature, authors have used various output-dependent metrics to
quantify the success of attacks. A general consensus on which of these are more
insightful for a given type of query still appears lacking. briefly describes
some metrics that have been used in the context of onion routing attacks.

Decisional goals. Queries leading to decisional goals can be considered analo-
gous to binary classifiers, for which the concepts of true/false positive/negative
are clear. Two common metrics used for such queries are Precision and Recall,
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Fig. 3. Example of Tor circuit. As discussed by Sun et al. |[54], the traffic path may be
asymmetric in the forward and backward directions.

defined in [Table 5| ROC (Receiver operating characteristic) curves [22] provide
a more comprehensive description of performance.

Caveat: A binary classifier with non-zero false positive rate which is applied
to a random variable with a very low prior probability of being positive suffers
from the so called Base Rate Fullacy, by which most positive outputs will be
incorrect. This scenario has been applied to Tor [32,/56], highlighting potential
disadvantages of these metrics and calling for more precise description of the
setup of experiments and presentation of the results.

Classification goals. Metrics for classification goals cannot rely on the differ-
ence between positive and negative guesses, but only on guesses being either cor-
rect or wrong. Thus, they are susceptible to biases in the data sets: for example, if
the prior distribution of the data set on three possible classes is {0.9,0.05,0.05},
a naive classifier with constant output ‘class 1’ has 90% accuracy.

Computational goals. Computational goals represent the most general case in
our framework and are characterised by the concept of “closeness” of the output
to the real answer to the query, i.e. guesses by the adversary may be partially
correct—in a similar way to fuzzy logic truth values.

5 Adversarial Threat Model

Threat modelling is a central part of the analysis of security and anonymity; we
consider the following general adversary characterisations [57] for onion routing:

— passive adversaries are only allowed to observe the protocol execution, and
as such they can be thought as honest-but-curious. Active adversaries, on
the other hand, can modify, delay, replay, stop the traffic. Semi-honest ad-
versaries are a relevant subset of the latter category: they tamper with the
traffic in a non-disruptive way only, e.g. by slightly delaying the cells;

— only internal adversaries have access to data inside onion nodes, while ezter-
nal ones are limited to non-onion nodes. We will refer to adversaries having
access to both onion nodes and external parties as hybrid;

— local adversaries control (observe) only some of the nodes of the network,
while global ones do not have this limitation. For example, a global internal
adversary controls all and only the Tor nodes and global external has access
to all and only the Internet infrastructure.
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Each of these characteristics is orthogonal to the others, and the terminology
reflects these degrees of freedom: passive adversaries tend to observe nodes, while
active ones control them.

According to this characterisation, an active global hybrid adversary is the
most powerful. Goldschlag et al. explicitly state that onion routing does not
aim to protect from global adversaries, regardless of the computational cost of
processing all the information or if they are internal or external. On the other
hand, local adversaries have a restricted view of the network and they should
not be able to link user and destination of the traffic.

While a local adversary is the standard in the literature, other characteristics
vary among the different works, with external and passive adversaries being the
most common . Some results require the adversary to be
not only internal but also semi-honest or even active [25].

Taking into consideration the Tor protocol specifications [18], it is worth
noting that even the same type of adversary may have a more or less granular
view of the traffic, depending on their position along the circuit. This is due to
the fact that Tor multiplexes traffic on two layers: a single onion circuit can carry
several streams (i.e. TCP connections) and nodes multiplex several circuits on
the same TLS tunnel .

In general, internal adversaries have access to more information compared
to externals (e.g. single cells, circ_ID), but they can be detected and removed
from the network . External adversaries observe only TLS-encrypted tunnels
but Tor tends, to the proxy, to stream single cells in TLS packets, so they can
be inferred by some ISP on the circuit (e.g. ISP in[Fig. 3).

Assuming for simplicity that the onion proxy creates a single circuit, this is
the path from the user to the end destination (cf. [Fig. 3):

1. ISPgp_.q and ISPg_,gp Observe a single TLS tunnel carrying the user’s circuit;

2. ISP; (and all the others in red in the figure) observe TLS tunnels, possibly
carrying multiple circuits;

3. the guard node G and the middle node M observe single cells, but not streams;
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4. ISPg is different, in that they observe also the non-Tor traffic directed to
the end destinations. In case of browsing, though, this traffic tends to be
encrypted as well [39];

5. exit node E is the only one to have visibility on the stream_ID as well,
distinguishing different TCP connections originating from OP.

Depending on the settings, this design will prevent many types of adversary
from reaching their goal. For example, assume that two users simultaneously
create a single circuit each, passing through the same nodes, to different des-
tinations: then, no external adversary can distinguish the streams between the
exit node and the end destinations.

6 Application of Our Framework

Our framework allows to clearly describe assumptions underlying attacks and
evaluation of anonymity in onion routing; we present a brief list of existing
literature expressed in terms of our framework in

First, S, G and V are defined taking into consideration the assumptions
about the environment. Both the supports of those random variables and their
probability distribution are needed to completely characterise the experiment.
Furthermore, the definition of V guarantees that also the adversarial model is
well specified and understood. The last step of the setup phase is the determina-
tion of the query q and optionally a target T. These, on the other hand, influence
which type of random variable O4 to employ.

Such process ensures all the game variables are well defined, allowing to estab-
lish which type of goal the adversary is trying to achieve. Finally, each case may
require different metrics to meaningfully and effectively illustrate the results,
while making sure that limitations are apparent and common misunderstanding
avoided.

7 Conclusion

We highlighted several of the challenges when evaluating onion routing and de-
scribed a framework that helps to benchmark different attacks and countermea-
sures. Although we did not explicitly mention all features of Tor, we expect that
for instance so-called leaky pipes and hidden services can be easily integrated
into our framework.

We leave open the dynamic situation, where users come and go, and an ad-
versary might actively try to influence the (re)establishment of circuits. Formally
making the various random variables time-dependent is easy enough, simply by
writing S(t) instead of S. However, one main challenge we see are determining
meaningful, possibly adversarially affected, evolutions of the secret S(t). A fixed
uniform distribution as often used for a static S somewhat defeats the purpose
of the dynamic setting, but could still serve a situation where an adversary can
trigger (as in Tor) circuit teardowns that are subsequently re-established, making
the overall view of the system G depend on the adversary.

17



Table 3. Attacks and their instantiation in our framework. Attacks’ names have been assigned by the authors of this work for convenience.

Adversaries are assumed to be local, for the other features the corresponding initial letter is used. We refer to[Table 4]for goals.

Ref. Attack Adv. M\ww Output Metric

7 Wavelet Multi-resolution E, P Computational ﬁ Pairs (ingress, egress) flows FP/FN
i Dropmarking I, S-H Classification (5)  Pairs (entry, exit) nodes TPR/TNR/FPR/FNR
7 DeepCorr E, P Computational ﬁ Pairs (ingress, egress) flows FPR/FNR, ROC curve
i RAPTOR E, P Classification _m Pairs (ingress, egress) flows

Accuracy

Cell counting

I, S-H Classification A_W_m Pairs (ingress, egress) flows

Accuracy, detection rate,
false positive rate

Tagging attack

I, A Decisional @ Pairs (ingress, egress) flows

Accuracy

Fingerprinting with website oracles

B, P Decisional ﬁ“

Classification Pairs (trace, website)

Precision, recall

Deep Fingerprinting

E, P Decisional ﬁ“

Classification ﬁ Pairs (trace, website)

Accuracy

Fingerprinting with Deep Learning

E P Decisional ﬁq

Classification ﬂ Pairs (trace, website)

Accuracy,
TPR/FRP,ROC curve

Correlation with DNS info

E, P Computational ﬁ Intersection of ASes’ sets

Precision, recall

Compressive Traffic Analysis

Pairs (flow, noisy flow),

E, P tational (7) . i
, Computationa .“ pairs (trace, website)

TP/FP, accuracy

Fingerprinting at Internet scale

B P Decisional ﬁ“

Classification ﬂ Pairs (trace, website)

Accuracy, precision

k-NN Website Fingerprinting

E P Decisional ﬁq

Classification Pairs (trace, website)

TPR/FPR, accuracy

Circuit clogging

I, S-H Classification (1)  Pairs (user, onion nodes)

TPR/FRP, ROC curve

SVM Fingerprinting

Decisional _m )
E, P O_mmmwmomﬁﬁm ﬁ

Pairs (trace, website)

Accuracy, TP/FP

LRACEJECEICEICE & el sl s ]S & ][=][<S[E]E]

Induced throttling

I, S-H Classification _E Pairs (user, onion nodes)

Percentile, degrees of
anonymity, client probability

DLSVM

E, P Decisional ﬁ Pairs (trace, website)

TPR/FPR, success rate

Website fingerprinting

Decisional _m ,
E, P O_mmmrmomiﬁm ﬂ

Pairs (trace, website)

Accuracy, TPR/FPR
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A Example Scenario in Our Framework

Ezample 2 (Traffic analysis). Another example is represented by traffic analy-
sis, in which a passive adversary captures ingress traffic (between the proxy and
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guard) and egress traffic (between the exit node and the destination) and wishes
to correlate the ingress traces with the egress traces. Such a threat model arises
when an adversary controls the ISPs of several users and exit nodes. DeepCorr
by Nasr et al. [37] is a good example of such an attack.

Our framework translates it to:

S A sample from the set of bipartite graphs having U, D as parts. [U| = |D|,
and the random variable S selects uniformly a permutation. The bipartite
graph is a graphical representation of such permutation.

G State of the network after the setup phase ended and the traffic generated.
It contains on all the circuits and the traffic traces they carried.

V' The adversary has information from two different parts of the network: the
links, respectively, between the user and the entry node and from the exit
node to the end destination. The first contains user’s identity and ingress
traffic, the latter destination’s identity and egress traces.

goal The query “Which egress traffic can be associated to each ingress trace?”

Z The training data used by the adversary’s classifier.

O A subset of U x D, containing pairs (u;,d;) as a result of post-processing of
the information returned by the classifier.

The DeepCorr classifier outputs a confusion matrix, where entry (¢, j) scores
how likely flows ¢ and j belong together. Possible post-processing is a simple
thresholding according to a parameter 7. Note that with this post-processing,
the output may end up inconsistent, as multiple egress traffic traces could be
associated to the same ingress trace. To compare their results with RAPTOR
by Sun et al. |54], they also considering an alternative post-processing, where
for each ingress flow, the egress flow with the highest score is selected.

As in the previous example, authors use TPR and FPR as metrics to estimate
the effectiveness of their attack, and accuracy in the comparison with RAPTOR.

B Examples of Security Goals

Ezample 3 (Distinguishing goal). The adversary selects two websites, e.g. BBC
or CCN, and the user picks one of them, without revealing it to the adversary.
Then, the latter aims to discover which destination the user is visiting, assuming
that each website is equally likely.

Formally, Y = {u},D = {d1,d2} and the sample space of S is U x D =
{(u,dy), (u,ds2)}, with a uniform probability. The adversary is presented with
one of the two possible bipartite graphs they have previously chosen, and they
are interested in identifying which one.

Ezample 4 (Decisional goal). Consider some state-controlled authority tasked
with surveillance over citizens accessing censored websites over Tor (i.e. mon-
itored websites), or a private company aiming to stop employees from using
forbidden services (cloud, online games). The goal of such actors is to decide
whether any observed traffic belongs to the censored category or not.
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Fig. 5. Bipartite and multipartite graphs representing settings and random variables
in DeepCorr . In this setting, the adversary accesses information in two
different parts of the network and their view V includes both ends of the circuits. Even
in this case, though, edges in the bipartite graph representing the secret S still expand
including more information such as the links guard-middle and middle-exit nodes.
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For concreteness, assume 10 users are each accessing 100 destinations over
Tor, the first 20 of which are monitored. SoUd = {uy,...,ujo} and D = {d1,...,d100}-
If we further assume the users are each independently at random connecting to
a single website in D then the distribution for S is fixed as well. The monitored
websites form the target for the query, so T=Tp = {d1,...,d2}.

Here, false positives correspond to guess that some user visited a monitored
website when, in fact, no user accessed any of them; conversely, false negatives
correspond to missing that a monitored website was accessed. Depending on the
setting, the adversary may want to minimise the probability of a specific type
of wrong guess (or, equivalently, maximise the probability of a specific type of
correct guess). As a consequence, they will process the information accordingly
and the metrics will consider such imbalance. If the adversary is some state-
authority, then we can assume they may be willing to have more false positives
to minimise the false negatives. If the adversary is a private company, we can
assume they may want to minimise the number of false positives instead.

Ezample 5 (Classification goal). The adversary targets a single user u and they
want to determine which websites, from Alexa Top 50(fT] the user is browsing
using Tor. They are aware of the prior probability for each website in the list,
previously estimated based on public available information.

Let U = {u},D = {ds,...,dso0} and the sample space of S be U x D, with
the estimated prior as probability distribution. The adversary is interested to
identify the edges of the bipartite graph.

"https://www.alexa.com/} a service collecting browsing statistics and offering lists
of most-visited websites.
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The lack of preferences among outcomes, in this example, means that the
adversary does not process the data in a way to minimise wrong guesses for a
particular destination; instead, they aim to achieve, e.g, a better overall accuracy,
while taking into consideration the estimated prior.

Ezample 6 (Computational goal). The adversary is interested in de-anonymising
as many users as possible from a pool of 100, and they know that each of them
visited a website from a pool of 100 different destinations (multiple users may
have accessed the same one). No additional information Z is available to the
adversary, so a uniform prior is assumed.

Let U = {uy,...,u100},D = {di,...,d1po} and the sample space of S be
U x D, with a uniform probability. The adversary is interested to know, for each
user, the destination of the corresponding edge in the bipartite graph.

Since the adversary aims to maximise the number of de-anonymised users,
the metric needs to consider outputs closer to the correct guess (i.e. a guess
identifying all actual connections) as better than others: for example, a guess
correctly identifying 90 destinations is preferred compared to an output with 60
correct user-destination edges.

C Selected Goals

contains a list of commonly encountered goals.

D Information-Theoretic Notions

Rényi entropy is a generalization of Shannon entropy, defined as

1
11—«

H, (X) = log Y Px(z)*. (2)

Selecting a “equal to” (apologies for sloppy notation) 0,1,2, and co we get,
respectively: the max entropy, the Shannon entropy, the collision entropy, and
the min entropy. Setting a > 1 increases the emphasis on higher than average
probability outcomes, which makes sense in the context of an adversary that can
exploit e.g. guessing outcomes that are more than average probable.

As remarked above, the notion of entropy in the context of evaluating attacks
makes sense only when combined with conditional entropy, mutual information,
and information leakage. Defining a conditional Rényi entropy [47] has proved to
be tricky. A conditional Rényi entropy should satisfy two inequalities that hold
for conditional Shannon entropy, the monotonicity condition

Ho (X |Y) < Hg (X)
and the chain rule

Hoz (X |Y) ZHa (XY)_HO (Y)7
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Table 4. List of goal examples.

. Target . . Privacy
Settings T Description notion [34 Goal type
deg(u) =1 Tp = D, 1. Single user visiting a single destination picked from a fixed set D.,, goal DO Classification
is to identify which destination: closed world website fingerprinting.
deg(u) > 1 Tp = D, 2. Single user visiting multiple destinations picked from a fixed set D, goal DO Computational
is to identify as many destinations as possible: multi-instance closed world
website fingerprinting.
U — deg(u) > 1 Tp C D, 3. Single user visiting one or more destinations, goal is to identify whether DO Decisional
= {u} any destination belongs to a fixed set Tp: open world website fingerprinting.
deg(u) >1 Tp C D, 4. Single user visiting one or more destinations, goal is to identify whether DO Classification
any of them belongs to a fixed set Tp and, in case, which destination: hybrid
website fingerprinting.
U T . C . . . . . = . .
deg(u;) =1 w.:w M @‘, 5. Multiple users, each of them visiting a single (possibly different) desti- (UD)L  Classification
P = 7% nation. User @ is known to access a destination from a set Da, goal is to
identify which destination: noisy closed world fingerprinting.
T . C . . . . . = .
Uls 1 deg(u;) =1 W\ Xﬂw 6. Multiple users, each of them visiting a single (possibly different) destina- (UD)L ~ Computational
Ul > b= tion, goal is to identify which users are accessing specific destinations from
a fixed set Tp.
D] > 1, U x D 7. Multiple users, each of them visiting a single (possibly different) destina-  (UD)L ~ Computational
deg(u;) = tion, goal is to identify the destination of as many users as possible: traffic

analysis.
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Table 5. Some output-dependent metrics for different types of goals.

Metric Definition Description
Decisional:
.. TP . -
Precision TP FP The ratio of correct positive guesses over
+ the total of positive outputs.
TP . -
Recall TP FN The ratio of correct positive guesses over
+ the total of positives.
Classification:
Zi:]’ Cij . . . .
Accuracy ~ C = (c45) is the confusion matrix. The ratio
2o of correct guesses over the total.
Computational:
Anonymity Set Size #AS(X):=|X| The number of users that can be linked to

the traffic.

where X and Y are arbitrary stochastic variables. Several definitions have been
proposed, but Fehr and Berens showed that, among these, only the Arimoto
definition satisfies both the monotonicity rule and the chain condition. By
this definition, Hy, (X |Y) = —log R, (X]Y) where

o
1 a—1
[e3

Ro (X [YV)= > (pry@,y)“)

Y

D.1 Input-dependent versus Output-dependent Metrics

The distinction we make between input-dependent and output-dependent met-
rics is one of convenience. Imagine a processing chain, starting with V' and pos-
sible Z, deriving successively simpler representations until arriving at some Oy
aligned to a specific query q. There may be intermediate outputs along this
chain: for example, the neural network used by DeepCorr outputs a confu-
sion matrix that is then transformed into a {0, 1}-valued matrix.

It can be hard to place metrics along this input-output axis. Anonymity set
size was proposed as a (computational) output-dependent metrics by Chaum ,
while Serjantov and Danezis proposed an entropic version, effective anonymity
set size. Actually, the latter is essentially equal to the conditional entropy of
This conditional aspect does not seem to be picked up on elsewhere
(cf. [57, ref [121] in Section 5.1.2]).

In some cases estimates of probability distributions are produced as outputs
for the adversary. This is a potential source of confusion in the calculation of
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entropy related functions. For example, Diaz et al. [16] write that “the attacker
assigns a probability p;”, indicating that the attacker’s output is a posterior
distribution. However, the posterior as output by an attacker need not be the
true posterior and it is certainly possible for an attacker to output vectors p;
(unrelated to the actual experiment) to result in almost any degree of anonymity.
See also |57, ref [39] in Section 5.1.4].

Comparison. We now show simple examples of how input- and output-dependent
metrics capture different aspects of the game and can change almost indepen-
dently.

The settings are picked to highlight this behaviour and represent the basic
cases: a single user picking one of two destinations di, ds, which can result in
two different traffic patterns t1,t2 and different probabilities associated to each
of the patterns. Based on the information gathered from their guard node, the
adversary outputs Dec(t) = argmax, (p(S = d|V =1t)).

In the ﬁrst scenario, destination d; causes t; with probability 2 3 and to with
probability 2 5; for destination da, the probabilities are, respectively, £ and 3
Let’s assume the destination is chosen with uniform probability (H(S) = 1), and
the adversary to observe the guard node, so their view contains information
on the traffic traces. Then the view V has two possible outcomes (¢, ) with
associated probabilities equal to, respectively, % and 1—75, hence H(S | V') = 0.948
and I(S; V) = 0.052. The adversary computes p(S = d1|V = ¢1) = 2 and

p(S = di|V = t9) = so Dec(t1) = dy and Dec(tz) = da, resulting in an
accuracy of 19 = 0.633.

Let’s assume a similar scenario, but p(S = di) = 2, p(S = d2) = 2. Now,
H(S) = 0.863, H(S | V') = 0.821 and I(S; V) = 0.042: even if the user’s prior
probability is quite skewed, there is little information shared by S and V. The
adversary computes p(S = di|V = t1) = 2,p(S = di|V = t2) = &, hence
Dec(t1) = Dec(tg) = dy. The adversary is correct if and only if S = ds, so the
accuracy is = = 0.714.

For the third scenario, let’s now assume a prior probability over di,ds —
H(S) =1, and p(V = t1]S = d1) = L,p(V = t;|S = d2) = L. Entropy and mu-
tual information are now H(S |V') = 0.637,1(S; V) = 0.363, while the accuracy
is equal to 5T = 0.838, due to p(S = di|V =t1) = 33 p(S = d1|V =t5) = 37

Lastly, if also the prior probability is not uniform, e.g. p(S = d;) = 2 and
p(S = ds) = %, hence H(S) = 0.650, we obtain H(S |V) = 0.432 and 1(S; V) =
0.218. The conditional probabilities are p(S =di|[V =t;) = %;g,p (S=d1|V =
ta) = 57, so the accuracy is then 22 = (.863.

This simple comparison on mput metrics and output metrics shows that
similar values of mutual information do not always correspond to similar values
of accuracy or vice versa: the first and second scenarios result, respectively, in
I(S; V)=0.052,1(S; V) = 0.042, but the accuracies of the adversary are 0.633
and 0.714. Similarly, in the last two scenarios, the accuracies are 0.838 and 0.863,
but the mutual information values equal to 0.363 and 0.218.
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