ECE 405/ECE 511 Error Control Coding

Aaron Gulliver

Dept. of Electrical and Computer Engineering

Syllabus

- Introduction; The channel coding problem [Chap. 1]
- Vector spaces; Linear block codes [Chap. 2]
- Groups, rings and fields; Primitive and irreducible polynomials [App. B]
- Polynomial rings and cyclic codes [Chap. 3]
- BCH and Reed-Solomon codes [Chaps. 4-5]
- Convolutional codes and the Viterbi algorithm [Chap. 6]

Errors in Information Transmission

Digital Communications:
Transporting information from one place to another using a sequence of symbols, e.g. bits.

Noise and interference:
The received sequence may differ from the transmitted one.

Errors in Information Storage

Magnetic recording

Bits can change during storage or reading from the disk

ECC Memory

Deep Space Communications

1971: Mariner 9

Mariner 9 used a $(32,6,16)$ Reed-Muller code to transmit its grey images of Mars.

1979+: Voyager I and II

Voyager I and II used a $(24,12,8)$ extended Golay code to send color images of Jupiter and Saturn.

Voyager II traveled further to Uranus and Neptune. Because of the higher error rate it switched to a more powerful Reed-Solomon code.

1989: Galileo

Concatenated Convolutional and Reed-Solomon codes were used to transmit images of Jupiter and its moons. Io, Jupiter, Ida and Europa

Mars Space Communications

1965 Mariner 4

Frequency: 2.3 GHz (S Band)
Data Rate: 8.33 bps
Repetition code (2 x)

2004 Mars Exploration Rover

Frequency: 8.4 GHz (X Band)
Data Rate: 168 kbps
RS/Convolutional Concatenated
Code

2006 Mars Reconnaissance Orbiter

Frequency: 8.4 GHz (X Band)
Data Rate: 12 Mbps
(8920,1/6) Turbo Code
Distance: $2.15 \times 10^{8} \mathrm{~km}$

2020 Mars Rover

- Frequency: 400 MHz (UHF)
- Data Rate: 2 Mbps
- (1784, 1/2) Turbo Code

Mars Rover 2021

ISBN Codes

Essentials of Error-Control Coding

Jorge Castiñeira Moreira, University of Mar del Plata, Argentina Patrick Guy Farrell, Lancaster University, UK

Rapid advances in electronic and optical technology have enabled the implementation of powerful error-control codes, which are now used in almost the entire range of information systerns with clos to optimal performance. These codes and decoding methods are required for the detection and orrection of the errors and erasures which inevitably occur in digital information during transmission d other imperfections.
Error-control coding is a complex, novel and unfamiliar area, not yet widely understood and appreciated This book sets out to provide a clear description of the essentials of the subject, with comprehensive and up-to-date coverage of the most useful codes and their decoding algorithms. A practical engineering and information technology emphasis, as well as relevant background material and fundamental heoretical aspects, provides an in-depth guide to the essentials of error-control coding.

O Provides extensive and detailed coverage of Block, Cyclic, BCH , Reed-Solomon, Convolutional, Turbo, and Low-Density Parity Check (LDPC) codes, together with relevant aspects of information Theory
O Presents EXIT chart performance analysis for iteratively decoded error-control techniques
O Heavily illustrated with tables, diagrams, graphs, worked examples, and exercises
Offering a complete overview of error-control coding, this book is an ind ispensable resource for students, engineers and researchers in the areas of telecommunications engineering, communication network electronic engineering, computer science, information systems and technology, digital signal processing and applied mathematics.

Companion website features slides of figures, algorith software, updates and detailed solutions to problems

Internet

Checksums are used by the standard Internet protocols IP, UDP, and TCP.

Raid Storage

Mobile Telephone Evolution

Bar Codes

```
553412 1988
Dr. T.A. Gulliver
Carleton University
Dept.of Systems & Computer Eng.
1125 Colonel By Dr.
OTTAWA
CANADA ON.K1S 5BG
```


Bar Code Errors

OVERSEAS POST ONLY: PRINTED PAPERS SURFACE

INLAND POST ONLY
SECOND CLASS

UNIVERSITY
OULEU

Cassini-Huygens

Storm on Saturn July 2011 (Turbo Code)

Communication Systems

- Allow the electronic exchange of voice, data, video, music, multimedia, email, web pages, Twitter, FaceTime, TikTok, ...
- Older communication systems include
- Radio and TV broadcasting, Public Switched Telephone Network (voice, fax, modem)
- Modern communication systems include
- Cellular telephone systems (4G, 5G, 6G)
- Computer networks (LANs, WANs, internet)
- Satellite systems (phones, voice/data, television)
- Bluetooth
- WiFi
- Sensor and vehicular networks

Digital Communication System

User A

Modulator/Transmitter

- Matches the data to the channel
- Modulation maps the data symbols to the amplitude, phase or frequency of the signal
- PSK, FSK, QAM, OFDM, PAM, PPM, ...

Receiver/Demodulator

- The receiver amplifies and filters the signal
- The ideal receiver output is a scaled, delayed version of the transmitted signal
- The demodulator extracts the data from the receiver output
- Converts the receiver output to data symbols (typically bits)

Channel

- Physical medium that the signal is transmitted through or stored on
- Examples: air, coaxial cables, fiber optic cables, space, water, CDs, DVDs, flash drives, ...
- Every channel introduces some amount of distortion, noise and interference
- The channel affects the
- Data rate
- Bit error rate (BER)
- Quality of service

Communications System Design Goals

- Maximize the data rate
- Minimize the bit error rate (BER)
- Minimize the required signal-to-noise ratio (SNR)
- Minimize the required bandwidth
- Minimize the system complexity and cost
- These are conflicting goals

System Constraints

- Available bandwidth
- Maximum error rate
- Power limitations
- Government regulations
- Technological limitations

Three Basic Forms of Signalling

 binary data 00 sequence
(c)

(d)

(a) binary data sequence; (b) amplitude shift keying; (c) phase shift keying; (d) frequency shift keying

Binary Modulation

- BPSK

$$
\begin{gathered}
\text { data } 0 \leftrightarrow s_{0}(t)=\sqrt{2 P} \cos \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T \\
\text { data } 1 \leftrightarrow s_{1}(t)=-\sqrt{2 P} \cos \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T \\
\text { or } \sqrt{2 P} \cos \left(2 \pi f_{c} t+\pi\right)
\end{gathered}
$$

- BFSK

$$
\begin{array}{ll}
\text { data } 0 \leftrightarrow s_{0}(t)=\sqrt{2 P} \cos \left(2 \pi f_{0} t\right) & 0 \leq t \leq T \\
\text { data } 1 \leftrightarrow s_{1}(t)=\sqrt{2 P} \cos \left(2 \pi f_{1} t\right) & 0 \leq t \leq T
\end{array}
$$

Binary Modulation

- Energy $=$ Power \times Time
- $P=E_{\mathrm{b}} / T_{\mathrm{b}}=E_{\mathrm{b}} R_{\mathrm{b}}$
- $R_{\mathrm{b}}=1 / T_{\mathrm{b}}$ bits $/ \mathrm{sec}$
- Power levels are generally expressed in decibels (dB)
$-P_{\mathrm{dB}}=10 \log _{10} P_{\text {watts }}$
- The most commonly assumed noise model is additive white Gaussian noise (AWGN)
- Noise power spectral density - N_{0}
- Signal-to-noise ratio (SNR) - E_{b} / N_{0}

Effect of Noise on a Signal

Performance of BPSK and BFSK in AWGN

M-ary Modulation

- A group of n bits is transmitted in each signaling interval $T=\log _{2}(M) T_{b}$
- In MASK a group of n bits is transmitted using $M=2^{n}$ different amplitudes
- In MPSK a group of n bits is transmitted using $M=2^{n}$ different phases
- In MFSK a group of n bits is transmitted using $M=2^{n}$ different frequencies
- Quadrature amplitude modulation (QAM) uses a
- combination of amplitude and phase modulation to
- convey information

BER versus E_{b} / N_{0} for Several Digital Modulation Techniques

Digital Communication System with Coding

Types of Codes

- Source codes are used to remove the redundancy that naturally occurs in information sources.
- Secrecy codes are used to encrypt information to protect it from unauthorized use.
- Error control codes are used to format the information so as to increase its immunity to channel impairments such as noise.

Claude Shannon (1916-2001)

A Mathematical Theory of Communications, BSTJ, July 1948

"The fundamental problem of communication is that of reproducing at one point exactly or approximately a message selected at another point. ...
If the channel is noisy it is not in general possible to reconstruct the original message or the transmitted signal with certainty by any operation on the received signal."

Channel Capacity

- An important question for a communication channel is the maximum rate at which it can transfer information.
- The channel capacity \boldsymbol{C} is a theoretical maximum rate below which information can be transmitted over the channel with an arbitrarily low probability of error.

Shannon's Noisy Channel Coding Theorem

- How to achieve capacity?
- There exist error control codes such that information can be transmitted through the channel at rates less than C with arbitrarily low bit error rate.
- There are only two factors that determine the capacity of a channel
- Bandwidth (W)
- Signal-to-noise ratio (SNR) E_{b} / N_{0}

AWGN Channel Capacity

$$
\begin{aligned}
& C=W \log _{2}\left(1+\frac{P}{N_{0} W}\right) \\
& E=P T \rightarrow P=E_{b} R_{b}
\end{aligned}
$$

$$
C=W \log _{2}\left(1+\frac{E_{b} R_{b}}{N_{0} W}\right)
$$

Let $R_{b}=C \quad \frac{R_{b}}{W}=\log _{2}\left(1+\frac{E_{b}}{N_{0}} \frac{R_{b}}{W}\right)$

$$
\frac{E_{b}}{N_{0}}=\frac{2^{R_{b} / W}-1}{R_{b} / W}
$$

Bandwidth Efficiency (R / W) versus SNR

Efficiency of Binary Codes

State-of-the-Art

- Approaching capacity
- Long, random-like codes with some structure
- Practical, near-optimal decoding algorithms
with reasonable computational complexity
- Examples
- Turbo codes (1993)
- Low-density parity-check (LDPC) codes (1960, 1999)
- Turbo codes and LDPC codes have brought the Shannon limit within reach on a wide range of channels.

ASCII Character Set

		Lea		ds													
		$\begin{aligned} & 0 \\ & 0000 \end{aligned}$	$\begin{aligned} & 1 \\ & 0001 \end{aligned}$	$\begin{aligned} & 2 \\ & 0010 \end{aligned}$	$\begin{aligned} & 3 \\ & 0011 \end{aligned}$	$\begin{aligned} & 4 \\ & 0100 \end{aligned}$	$\begin{aligned} & 5 \\ & 0101 \end{aligned}$	$\begin{aligned} & 6 \\ & 0110 \end{aligned}$	$\begin{aligned} & 7 \\ & 0111 \end{aligned}$	$\begin{aligned} & 8 \\ & 1000 \end{aligned}$	$\begin{aligned} & 9 \\ & 1001 \end{aligned}$	$\begin{aligned} & \text { A } \\ & 1010 \end{aligned}$	$\begin{aligned} & \text { B } \\ & 1011 \end{aligned}$	$\begin{aligned} & \text { C } \\ & 1100 \end{aligned}$	$\begin{aligned} & \text { D } \\ & 1101 \end{aligned}$	$\begin{aligned} & E \\ & 1110 \end{aligned}$	F 1111
M	0 000	$\begin{aligned} & \text { NUL } \\ & (0) \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{SOH} \\ & (1) \\ & 01 \end{aligned}$	STX (2) 02	$\begin{aligned} & \text { ETX } \\ & \text { (3) } \\ & 03 \end{aligned}$	$\begin{aligned} & \text { EOT } \\ & (4) \\ & 04 \end{aligned}$	ENQ (5) 05	ACK (6) 06	BEL (7) 07	BS (8) 08	HT (9) 09	LF (10) OA	VT (11) OB	FF (12) OC	CR (13) OD	SO (14) OE	SI (15) OF
d s t	1 001	DLE (16) 10	$\begin{aligned} & \text { DC1 } \\ & (17) \\ & 11 \end{aligned}$	$\begin{aligned} & \text { DC2 } \\ & \text { (18) } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { DC3 } \\ & \text { (19) } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { DC4 } \\ & (20) \\ & 14 \end{aligned}$	NAK (21) 15	$\begin{aligned} & \text { SYN } \\ & (22) \\ & 16 \end{aligned}$	$\begin{aligned} & \text { ETB } \\ & \text { (23) } \\ & 17 \end{aligned}$	$\begin{aligned} & \text { CAN } \\ & (24) \\ & 18 \end{aligned}$	$\begin{aligned} & \text { EM } \\ & (25) \\ & 19 \end{aligned}$	SUB (26) 1A	$\begin{aligned} & \text { ESC } \\ & \text { (27) } \\ & \text { 1B } \end{aligned}$	FS (28) 1C	GS (29) 1D	RS (30) 1E	US (31) 1F
S	2010	SP (32) 20	! (33) 21	(34) 22	$\begin{aligned} & \# \\ & (35) \\ & 23 \end{aligned}$	\$ (36) 24	\% (37) 25	 (38) 26	$\begin{aligned} & \text { (39) } \\ & 27 \end{aligned}$	$\begin{aligned} & \text { (} \\ & (40) \\ & 28 \end{aligned}$) (41) 29	(42) 2A	(43) 2B	$\begin{aligned} & \prime \\ & (44) \\ & 2 C \end{aligned}$	$\begin{aligned} & (45) \\ & 2 D \end{aligned}$	(46) $2 \mathrm{E}$	$\begin{aligned} & \text { / } 47 \text {) } \\ & 2 F \end{aligned}$
n	$\begin{aligned} & 3 \\ & 011 \end{aligned}$	0 (48) 30	1 (49) 31	$\begin{aligned} & \mathbf{2} \\ & (50) \\ & 32 \end{aligned}$	3 (51) 33	$\begin{aligned} & 4 \\ & (52) \\ & 34 \end{aligned}$	5 (53) 35	$\begin{aligned} & 6 \\ & (54) \\ & 36 \end{aligned}$	7 (55) 37	8 (56) 38	9 (57) 39	$\begin{aligned} & \text { (58) } \\ & 3 A \end{aligned}$	$\begin{aligned} & ; \\ & \text { (59) } \\ & 3 B \end{aligned}$	$\begin{aligned} & < \\ & (60) \\ & 3 C \end{aligned}$	$\begin{aligned} & = \\ & \text { (61) } \\ & 3 D \end{aligned}$	(62) 3E	$\begin{aligned} & ? \\ & (63) \\ & 3 F \end{aligned}$
i	$\begin{aligned} & 4 \\ & 100 \end{aligned}$	@ (64) 40	A (65) 41	B (66) 42	$\begin{aligned} & \text { C } \\ & (67) \\ & 43 \end{aligned}$	D (68) 44	E (69) 45	F (70) 46	G (71) 47	$\begin{aligned} & \mathrm{H} \\ & (72) \\ & 48 \end{aligned}$	1 (73) 49	(74) 4A	$\begin{aligned} & \mathbf{K} \\ & (75) \\ & 4 B \end{aligned}$	L (76) 4C	M (77) 4D	N (78) 4E	0 (79) 4F
n t	$\begin{aligned} & 5 \\ & 101 \end{aligned}$	P (80) 50	Q (81) 51	$\begin{aligned} & \mathbf{R} \\ & (82) \\ & 52 \end{aligned}$	\mathbf{S} (83) 53	T (84) 54	U (85) 55	v (86) 56	W (87) 57	$\begin{aligned} & \mathbf{x} \\ & (88) \\ & 58 \end{aligned}$	Y (89) 59	Z (90) 5A	[(91) 5B	$\begin{aligned} & \text { I } \\ & \text { (92) } \\ & 5 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text {] } \\ & \text { (93) } \\ & \text { 5D } \end{aligned}$	(94) $5 \mathrm{E}$	$\begin{aligned} & \overline{(95)} \\ & 5 F \end{aligned}$
B	$\begin{aligned} & 6 \\ & 110 \end{aligned}$	(96) 60	a (97) 61	b (98) 62	C (99) 63	d (100) 64	e (101) 65	$\begin{aligned} & f \\ & (102) \\ & 66 \end{aligned}$	$\begin{aligned} & \mathbf{g} \\ & (103) \\ & 67 \end{aligned}$	h (104) 68	$\begin{aligned} & \mathbf{i} \\ & (105) \\ & 69 \end{aligned}$	$\begin{aligned} & \mathbf{j} \\ & (106) \\ & 6 A \end{aligned}$	$\begin{aligned} & \mathbf{k} \\ & (107) \\ & 6 B \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { (108) } \\ & 6 C \end{aligned}$	m (109) 6D	(110) 6E	(111) 6F
s	$\begin{aligned} & 7 \\ & 111 \end{aligned}$	$\begin{aligned} & \mathbf{p} \\ & (112) \\ & 70 \end{aligned}$	$\begin{aligned} & \mathbf{q} \\ & (113) \\ & 71 \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & (114) \\ & 72 \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & (115) \\ & 73 \end{aligned}$	$\begin{aligned} & \mathbf{t} \\ & (116) \\ & 74 \end{aligned}$	$\begin{aligned} & (117) \\ & 75 \end{aligned}$	$\begin{aligned} & (118) \\ & 76 \end{aligned}$	$\begin{aligned} & \text { (119) } \\ & 77 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & (120) \\ & 78 \end{aligned}$	$\begin{aligned} & \mathbf{y} \\ & (121) \\ & 79 \end{aligned}$	$\begin{aligned} & \mathbf{z} \\ & (122) \\ & 7 A \end{aligned}$	$\begin{aligned} & \{ \\ & (123) \\ & 7 B \end{aligned}$	$\begin{aligned} & \text { I } \\ & (124) \\ & 7 C \end{aligned}$	$\begin{aligned} & \} \\ & (125) \\ & 7 D \end{aligned}$	$\begin{aligned} & \text { (126) } \\ & 7 E \end{aligned}$	$\begin{aligned} & \text { DEL } \\ & (127) \\ & 7 F \end{aligned}$

SPC Code - Example 1

ASCII symbols Codewords

$\mathrm{E}=1000101$
c = 10001011
$\mathrm{G}=1000111$
c $=10001110$

- Received word
$r=10001010$

Triple Repetition Code - Example 2

Codewords

$$
\begin{array}{ll}
\mathbf{m}=0 & \mathbf{c}=000 \\
\mathbf{m}=1 & \mathbf{c}=111
\end{array}
$$

Received word

$$
r=100
$$

Triple Repetition Code

Triple Repetition Code (Cont.)

Corrupted codeword

Decoding: Majority voting

Triple Repetition Code - Decoding

Received Word \mathbf{r}				Codeword \mathbf{c}				Error Pattern \mathbf{e}		
\mathbf{O}	\mathbf{O}	\mathbf{O}	\mathbf{O}	\mathbf{O}	0	0	0	0		
0	0	1	0	0	0	0	0	1		
0	1	0	0	0	0	0	1	0		
1	0	0	0	0	0	1	0	0		
1	1	1	1	1	1	0	0	0		
1	1	0	1	1	1	0	0	1		
1	0	1	1	1	1	0	1	0		
0	1	1	1	1	1	1	0	0		

Transmission Errors

A communication channel can be modeled as a Binary Symmetric Channel (BSC)

Each bit is flipped (in error) with probability p

Binary Symmetric Channel

- Transmitted symbols are binary
- Errors affect $0 s$ and 1 s with equal probability (symmetric)
- Errors occur randomly and are independent from bit to bit (memoryless)

Binary Symmetric Channel

- If n symbols are transmitted, the probability of an m error pattern is

$$
p^{m}(1-p)^{n-m}
$$

- The probability of exactly m errors is

$$
p^{m}(1-p)^{n-m}\binom{n}{m}
$$

- The probability of m or more errors is

$$
\sum_{i=m}^{n} p^{i}(1-p)^{n-i}\binom{n}{i}
$$

Triple Repetition Code Example

- The BSC bit error probability is $p<\frac{1}{2}$
- majority vote or nearest neighbor decoding

000, 001, 010, $100 \rightarrow 000$

$$
111,110,101,011 \rightarrow 111
$$

- the probability of a decoding error is

$$
P(E)=3 p^{2}(1-p)+p^{3}=3 p^{2}-2 p^{3}<p
$$

- If $p=0.01$, then $P(E)=0.000298$ and only one word in 3356 will be in error after decoding.
- A reduction by a factor of 33 .
- For the coded system

$$
\begin{aligned}
& \hat{T}_{b}=T_{b} R \\
& R=\frac{1}{3} \text { is called the CODE RATE } \\
& E_{b}=P T_{b} \\
& \hat{E}_{b}=P \hat{T}_{b}=P T_{b} R=E_{b} R=E_{b} \frac{1}{3}
\end{aligned}
$$

Example with BFSK

$$
\begin{aligned}
& p=\frac{1}{2} e^{-E_{b} / 2 N_{0}} \\
& \operatorname{SNR}=E_{b} / N_{0}=8.93 \mathrm{~dB} \Rightarrow p=10^{-2}
\end{aligned}
$$

code rate $R=\frac{1}{3}$

$$
\begin{aligned}
& \hat{E}_{b}=E_{b} R=E_{b} / 3=4.16 \mathrm{~dB} \\
& \hat{p}=.136 \\
& P(E)=3 \hat{p}^{2}(1-\hat{p})+\hat{p}^{3}=0.050
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
& p=10^{-5} \Rightarrow E_{b} / N_{0}=21.6 \mathrm{~W} \text { or } 13.35 \mathrm{~dB} \\
& \quad \hat{E}_{b} / N_{0}=13.35-4.77=8.58 \mathrm{~dB} \text { or } 7.21 \mathrm{~W} \\
& \hat{p}=.0136 \\
& \quad P(E)=5.5 \times 10^{-4}
\end{aligned}
$$

Bit Error Rate Approximation

- $P(E)$ is the probability of a codeword being in error
- For a t error correcting code, it can be assumed that $t+1$ errors have occurred
- The worst case is that decoding introduces t additional errors
- Thus there are $2 t+1$ errors in the codeword so the Bit Error Rate (BER) can be approximated as

$$
\frac{2 t+1}{n} P(E)
$$

Performance of BPSK and BFSK

Coding Gain with the $(15,11)$ Hamming Code and BPSK

The Fundamental Tradeoff

- Correct as many errors as possible while using as little redundancy as possible
- These are contradictory goals

Constructing Good Codes

- Ingredients of Shannon's proof:
- Random code construction
- Large block length
- Problem:
randomness + large block length + decoding computations
= COMPLEXITY
- Thus some structure is required

ETSI TS 136212 V8.4.0 (2008-11) Technical Specification

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);

 Multiplexing and channel codingRate 1/3 Convolutional Encoder

CCSDS $(255,223)$ Reed-Solomon Encoder

Rate 1/3 Turbo Encoder

3GPP LTE Turbo Reference Design

Figure 2. Structure of a Rate $1 / 3$ Turbo Encoder

Galileo

Cassini-Huygens

Rhea against the rings of Saturn March 28, 2010

Hubble Space Telescope

Ganymede from Galileo

