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Chapter 1

Measure of Information

1.1 Self-information and source entropy

Source model:

Consider a source of information that generates at each instant a message xi from a set X = {xi},
called the source alphabet:

{xi} = {x1, x2, . . . , xN}
where N is the alphabet size.

Example 1 (binary source):

xi ∈ {0, 1} =⇒ alphabet size N = 2

Example 2 (standard English alphabet):

xi ∈ {a, b, c, . . . , x, y, z} =⇒ alphabet size N = 26

These single letters are also called monograms.

Example 3 (digrams):

xi ∈ {aa, ab, ac, . . . , zx, zy, zz} =⇒ alphabet size N = 262

Example 4 (trigrams):

xi ∈ {aaa, aab, aac, . . . , zzx, zzy, zzz} =⇒ alphabet size N = 263

1



           

2 CHAPTER 1. MEASURE OF INFORMATION

Example 5 (US ASCII):

xi ∈ {(000 0000), (000 0001), . . . , (111 1111)} =⇒ alphabet size N = 128

USA Standard Code for Information Exchange (USASCII)

b7 b6 b5 b7 b6 b5 b7 b6 b5 b7 b6 b5 b7 b6 b5 b7 b6 b5 b7 b6 b5 b7 b6 b5

b4 b3 b2 b1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 0 NUL DLE SP 0 @ P ` p
0 0 0 1 SOH DC1 ! 1 A Q a q
0 0 1 0 STX DC2 ˝ 2 B R b r
0 0 1 1 ETX DC3 # 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t
0 1 0 1 ENQ NAK % 5 E U e u
0 1 1 0 ACK SYN & 6 F V f v
0 1 1 1 BEL ETB ´ 7 G W g w

1 0 0 0 BS CAN ( 8 H X h x

1 0 0 1 HT EM ) 9 I Y i y

1 0 1 0 LF SUB * : J Z j z

1 0 1 1 VT ESC + ; K [ k {
1 1 0 0 FF FS , < L \ l |
1 1 0 1 CR GS - = M ] m }
1 1 1 0 SO RS . > N ∧ n ∼
1 1 1 1 SI US / ? O o DEL

Example 6 (DES 64-bit blocks):

xi ∈ {(000 . . . 00), (000 . . . 01), . . . , (111 . . . 11)} =⇒ alphabet size N = 264

This corresponds to the plaintext alphabet for the Data Encryption Standard (DES).

The less likely an event is expected to occur, the more information one obtains when this
particular event happens. With each message xi is associated a probability of occurrence p(xi).
The amount of uncertainty of a particular message xi is termed self-information and is defined as:

IX(xi) = logb

1
p(xi)

(1.1)

IX(xi) = − logb p(xi)
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Note: The choice of the logarithmic base, i.e. b, determines the units of the
information measure:
b = 2 Sh (shannons) or bit (binary digit)
b = e logons or nats (natural units)
b = 10 hartleys (in honor of R.V.L. Hartley, pioneer in communication and

information theory)
Whether base b = 2, e or10, the information quantities are obviously the same. The
conversion between the different bases is given by:

1 logon = 1
ln 2 = log2 e = 1.443 Sh

1 hartley = 1
log10 2 = log2 10 = 3.322 Sh

1 hartley = 1
log10 e = ln 10 = 2.303 logons

(1.2)

A message xi can take only one of the N possible values from the set of messages, or sample
space X , defined as the source alphabet:

X ≡ {x1, x2, . . . , xN} (1.3)

and the sum of the probabilities of occurrence of all the messages is equal to unity:

N∑
i=1

p(xi) = 1 (1.4)

Definition (Entropy):

The entropy H(X) of a source of information X (i.e. random variable) is defined as the weighted
sum (or average) of the self-information of each message xi from that source:

H(X) =
N∑

i=1

p(xi) IX(xi) (1.5)

H(X) = −
N∑

i=1

p(xi) logb p(xi)

Example (quaternary source distribution):
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As an example, lets consider the distribution of quaternary sources. Let the distribution of a
quaternary source be: p(x1) = 1

2 , p(x2) = p(x4) = 1
8 , and p(x3) = 1

4 . The self-information of each
message is then:

IX(x1) = − log2
1
2 = 1 Sh (shannon)

IX(x2) = IX(x4) = − log2
1
8 = 3 Sh

IX(x3) = − log2
1
4 = 2 Sh

As can be seen from the above equation, the more likely the event (i.e. the message), the less
uncertainty its occurrence resolves. In other words, as the probability of an event increases, its
corresponding self-information decreases. The entropy of this source of information is obtained by
averaging the self-information over the set of messages:

H(X) =
4∑

i=1

p(xi) IX(xi) = 1.75 Sh

0

0,25

0,5

0,75

1

1,25

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

M1 M2 M3 M4

Symbol

Quaternary source distribution

Equiprobable

Deterministic

Arbitrary

Figure 1.1: Example of quaternary source distributions (arbitrary, deterministic, and equiprobable).

Now, suppose that the quaternary source distribution has changed to the following: p(x1) =
p(x2) = p(x4) = 0, and p(x3) = 1. This constitutes the special case of a deterministic source where
it is certain that the third symbol x3 will always occurs while x1, x2 and x4 never occur. The
self-information of symbol x3 is simply IX(x3) = − log2 1 = 0 Sh and thus the entropy H(X) is
also equal to 0 Sh. The observation of that source does not provide any additional information.
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Finally, let the quaternary source have an equiprobable distribution, that is each symbol are
produced with the same probability: p(x1) = p(x2) = p(x3) = p(x4) = 1

4 . the self-information is
the same for the four symbols

IX(x1) = IX(x2) = IX(x3) = IX(x4) = − log2

1
4

= 2 Sh

and the entropy is simply:
H(X) = 2 Sh

An equiprobable source is the source of information which provides the most uncertainty. This
result is important in cryptography: the security of a cryptosystem is increased if the choice of
encryption keys is equiprobable.
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Example(Standard alphabet distribution):

The entropy of English language can be determined from the frequency of occurrence of the
individual letters, as a first approximation. Table 1.1 indicates the relative frequencies of letters in
English and French languages including the space character (represented by ✷).

HEnglish(X) = −
27∑
i=1

p(xi) log2 p(xi) = 4.0755 Sh

By comparison, French language has a slightly lower entropy (it has slightly less uniform letter
distribution).

HFrench(X) = −
27∑
i=1

p(xi) log2 p(xi) = 3.9568 Sh

Suppose that there exists a 27-letter language for which each letter xi is equally probable, that is
P (xi) = 1

27 for 1 ≤ i ≤ 27. Then this new source’s entropy is given by:

HEquiprobable(X) = −
27∑
i=1

(
1
27

)
log2

(
1
27

)
= − log2

(
1
27

)
= 4.7549 Sh

which is the highest achievable entropy for a 27-letter alphabet.



   

1.1. SELF-INFORMATION AND SOURCE ENTROPY 7

0
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Figure 1.2: Letter distribution of standard alphabet (equiprobable, English, and French).
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Table 1.1: Relative frequencies of letters for an equiprobable source, and English and French
languages (alphabet size = 27).

Letter Equiprobable English language French language

xi p(xi) = 1
27 − log2

1
27 p(xi) − log2 p(xi) p(xi) − log2 p(xi)

✷ 0.0370 4.7549 0.1859 2.4274 0.1732 2.5295
a 0.0370 4.7549 0.0642 3.9613 0.0690 3.8573
b 0.0370 4.7549 0.0127 6.2990 0.0068 7.2002
c 0.0370 4.7549 0.0218 5.5195 0.0285 5.1329
d 0.0370 4.7549 0.0317 4.9794 0.0339 4.8826
e 0.0370 4.7549 0.1031 3.2779 0.1428 2.8079
f 0.0370 4.7549 0.0208 5.5873 0.0095 6.7179
g 0.0370 4.7549 0.0152 6.0398 0.0098 6.6730
h 0.0370 4.7549 0.0467 4.4204 0.0048 7.7027
i 0.0370 4.7549 0.0575 4.1203 0.0614 4.0256
j 0.0370 4.7549 0.0008 10.2877 0.0024 8.7027
k 0.0370 4.7549 0.0049 7.6730 0.0006 10.7027
l 0.0370 4.7549 0.0321 4.9613 0.0467 4.4204
m 0.0370 4.7549 0.0198 5.6584 0.0222 5.4933
n 0.0370 4.7549 0.0574 4.1228 0.0650 3.9434
o 0.0370 4.7549 0.0632 3.9839 0.0464 4.4297
p 0.0370 4.7549 0.0152 6.0398 0.0261 5.2598
q 0.0370 4.7549 0.0008 10.2877 0.0104 6.5873
r 0.0370 4.7549 0.0484 4.3688 0.0572 4.1278
s 0.0370 4.7549 0.0514 4.2821 0.0624 4.0023
t 0.0370 4.7549 0.0796 3.6511 0.0580 4.1078
u 0.0370 4.7549 0.0228 5.4548 0.0461 4.4391
v 0.0370 4.7549 0.0083 6.9127 0.0104 6.5873
w 0.0370 4.7549 0.0175 5.8365 0.0005 10.9658
x 0.0370 4.7549 0.0013 9.5873 0.0035 8.1584
y 0.0370 4.7549 0.0164 5.9302 0.0018 9.1178
z 0.0370 4.7549 0.0005 10.9658 0.0006 10.7027
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Example (Binary source):

Consider a binary source X with 0 < p(x1) < 1 and p(x2) = 1 − p(x1). The entropy H(X) of
the source is then given by (see figure 1.3):

H(X) = − [p(x1) logb p(x1) + (1− p(x1)) logb (1− p(x1))] (1.6)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

H(X)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

p(x1)

Figure 1.3: Entropy of a binary source as a function of its distribution.
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1.2 Joint entropy and equivocation

Consider now two random variables X and Y having a joint probability density function (pdf)
p(x, y) (note that X and Y may happen to be independent). The joint entropy H(XY ) of X and
Y is defined as:

H(XY ) = −
∑
x∈X

∑
y∈Y

p(x, y) logb p(x, y) (1.7)

H(XY ) = −
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi, yj) (1.8)

where X and Y are the sample spaces of X and Y respectively.

The conditional entropy H(X|Y ), or equivocation, of a source X, given the observation of Y is
defined as:

H(X|Y ) = −
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi|yj) (1.9)

The equivocation H(X|Y ), or equivalently HY (X), represents the remaining amount of uncer-
tainty (or information) about X after the observation of Y .

Theorem (Chain Rule):

The joint entropy H(XY ) of a pair of random variables X and Y is equal to the sum of the
entropy of X, that is H(X), and the conditional entropy (or remaining uncertainty) of Y , given
the observation of X.

H(XY ) = H(X) + H(Y |X) (1.10)

Proof:

Consider the sum H(X) + H(Y |X):
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H(X) + H(Y |X) = −
N∑

i=1

p(xi) logb p(xi)

−
N∑

i=1

M∑
j=1

p(xi, yj) logb p(yj |xi) (1.11)

= −
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi)

−
N∑

i=1

M∑
j=1

p(xi, yj) logb p(yj |xi) (1.12)

= −
N∑

i=1

M∑
j=1

p(xi, yj) [logb p(xi) + logb p(yj |xi)] (1.13)

= −
N∑

i=1

M∑
j=1

p(xi, yj) logb [p(xi)p(yj |xi)] (1.14)

H(X) + H(Y |X) = −
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi, yj) (1.15)

Therefore

H(XY ) = H(X) + H(Y |X) (1.16)

QED

Theorem (Chain Rule Generalization):

Let X̄ = X1, X2, . . . , XN be a random vector then the chain rule can be expressed as:

H(X1, . . . , XN ) = H(X1) + H(X2|X1) + H(X3|X1, X2) + . . . + H(XN |X1, . . . , XN−1)

(1.17)
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1.3 Mutual information

Let X and Y be two random variables defined over a joint sample space XY :

X = {x1, . . . , xN} (1.18)
Y = {y1, . . . , yM} (1.19)

For instance, xi can be a symbol at the input of a communication channel while yj represents
the outcome from the channel, or the output symbol. The joint probability of both events: “input
symbol is xi” and “output symbol is yj” is the probability of the joint event (xi, yj). One may raise
the following question: “How much information does the observation of a particular output symbol
yjfrom the channel provide about the input symbol xi generated by the source?”.

Before the observation of yj , the probability of occurrence of the symbol xi is simply p(xi) which
is called the “a priori” probability. Upon reception of yj , the probability that the symbol xi was
transmitted, given yj , is the “a posteriori” probability p(xi|yj).

This conditional probability p(xi|yj) is also called the “backward transition probability” of the
channel (for input symbol xi and output symbol yj). The additional information provided about
the event xi by the observation of the output symbol is given by:

I(xi; yj) = I(xi)− I(xi|yj) (1.20)
I(xi; yj) = − logb p(xi)− [− logb p(xi|yj)] (1.21)

I(xi; yj) = logb

p(xi|yj)
p(xi)

(1.22)

Then I(xi; yj) is the additional information provided by the occurrence of yj about xi. Consider
now the inverse case where one wants to find the additional information about the outcome yj given
that the specific symbol xi has been transmitted through the channel.

I(yj ;xi) = I(yj)− I(yj |xi) (1.23)
I(yj ;xi) = − logb p(yj)− [− logb p(yj |xi)] (1.24)

Therefore
I(yj ;xi) = logb

p(yj |xi)
p(yj)

(1.25)
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Note that since the joint probability of (xi, yj) can be expressed as:

p(xi, yj) = p(xi) p(yj |xi) = p(yj) p(xi|yj) (1.26)

then

I(yj ;xi) = logb

p(yj |xi)
p(yj)

(1.27)

I(yj ;xi) = logb

p(xi, yj)
p(xi) p(yj)

(1.28)

I(yj ;xi) = logb

p(xi|yj)
p(xi)

(1.29)

Therefore the expression for the additional information:

I(xi; yj) = I(yj ;xi) (1.30)

is called mutual information between events xi and yj , due to its symmetrical behavior.
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1.4 Average mutual information

Definition (Average mutual information):

The average mutual information is defined as the weighted sum of the mutual information
between each pair of input and output events xi and yj :

I(X;Y ) =
N∑

i=1

M∑
j=1

p(xi, yj) I(xi; yj) (1.31)

or equivalently:

I(X;Y ) =
N∑

i=1

M∑
j=1

p(xi, yj) logb

p(xi|yj)
p(xi)

(1.32)

The average mutual information is a measure of the interdependence between the two random
variables X and Y . Note that we can express the average mutual information as a function of the
sets of joint probabilities p(xi, yj) and marginal probabilities p(xi) and p(yj):

I(X;Y ) =
N∑

i=1

M∑
j=1

p(xi, yj) logb

p(xi, yj)
p(xi) p(yj)

(1.33)
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1.5 Relationship between the entropy and the (average) mutual
information

The entropy of a source X, or its uncertainty, is denoted as:

H(X) = −
N∑

i=1

p(xi) logb p(xi) (1.34)

where N is the size of the sample space X . As seen previously, H(X) represents the entropy of the
source of information X prior to any observation.

On the other hand, the conditional entropy H(X|Y ), or equivocation, of this same source X
given the observation of Y (e.g. output from a communication channel) is defined as:

H(X|Y ) = −
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi|yj) (1.35)

which indicates the remaining amount of information about the source X after the observation
of Y . Consider the difference between these two entropy measures: the entropy H(X) and the
equivocation H(X|Y ).

H(X)−H(X|Y ) = −
N∑

i=1

p(xi) logb p(xi)−

− N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi|yj)


 (1.36)

H(X)−H(X|Y ) = −
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi) +
N∑

i=1

M∑
j=1

p(xi, yj) logb p(xi|yj) (1.37)

H(X)−H(X|Y ) =
N∑

i=1

M∑
j=1

p(xi, yj) [logb p(xi|yj)− logb p(xi)] (1.38)

H(X)−H(X|Y ) =
N∑

i=1

M∑
j=1

p(xi, yj) logb

p(xi|yj)
p(xi)

(1.39)

H(X)−H(X|Y ) = I(X;Y ) (1.40)

Therefore, the mutual information I(X;Y ) between the two random variables X and Y is equal
to the entropy H(X) minus the equivocation (or remaining information in X given Y ) H(X|Y ).

Theorem ((Average) Mutual Information):

Let XY be a joint sample space. The (average) mutual information I(X;Y ) between the two
random variables X and Y satisfies:
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I(X;Y ) ≥ 0 (1.41)

with equality, if and only if, the X and Y are statistically independent.

Proof:

Consider the inequality I(X;Y ) ≥ 0, or equivalently, −I(X;Y ) ≤ 0. By definition of the
(average) mutual information,

−I(X;Y ) = −
N∑

i=1

M∑
j=1

p(xi, yj) logb

p(xi|yj)
p(xi)

(1.42)

−I(X;Y ) =
N∑

i=1

M∑
j=1

p(xi, yj) logb

p(xi)
p(xi|yj)

(1.43)

−I(X;Y ) = (logb e)
N∑

i=1

M∑
j=1

p(xi, yj) ln
p(xi)

p(xi|yj)
(1.44)

If we consider only the events which have a non-zero probability of occurrence (i.e., the probable
events), then:

p(xi) > 0 and p(xi|yj) > 0 and thus p(xi, yj) > 0; ∀i, j (1.45)

and therefore:
p(xi)

p(xi|yj)
> 0; ∀i, j (1.46)

Since the natural logarithm lnx ≤ (x− 1), for x > 0, then for each pair (xi, yj),

ln
p(xi)

p(xi|yj)
≤

[
p(xi)

p(xi|yj)
− 1

]
(1.47)

a) If the random variables X and Y are independent then p(xi|yj) = p(xi), ∀i, j which implies
that:

−I(X;Y ) = (logb e)
N∑

i=1

M∑
j=1

p(xi, yj) ln
p(xi)

p(xi|yj)
(1.48)

−I(X;Y ) = (logb e)
N∑

i=1

M∑
j=1

p(xi, yj) ln
p(xi)
p(xi)

(1.49)

−I(X;Y ) = (logb e)
N∑

i=1

M∑
j=1

p(xi, yj) ln 1 (1.50)

−I(X;Y ) = 0 (1.51)
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and therefore:

I(X;Y ) = 0 if and only if X and Y are independent (1.52)

I(X;Y ) = 0 (1.53)

b) If X and Y are dependent from each other, then

−I(X;Y ) = (logb e)
N∑

i=1

M∑
j=1

p(xi, yj) ln
p(xi)

p(xi|yj)
(1.54)

−I(X;Y ) < (logb e)
N∑

i=1

M∑
j=1

p(xi, yj)

[
p(xi)

p(xi|yj)
− 1

]
(1.55)

but since the joint probability p(xi, yj) = p(yj)p(xi|yj), the above inequality can be expressed
as:

−I(X;Y ) < (logb e)
N∑

i=1

M∑
j=1

p(xi, yj)

[
p(xi)

p(xi|yj)
− 1

]
(1.56)

−I(X;Y ) < (logb e)
N∑

i=1

M∑
j=1

p(yj)p(xi|yj)

[
p(xi)

p(xi|yj)
− 1

]
(1.57)

−I(X;Y ) < (logb e)
N∑

i=1

M∑
j=1

[
p(xi)p(yj)p(xi|yj)

p(xi|yj)
− p(yj)p(xi|yj)

]
(1.58)

−I(X;Y ) < (logb e)
N∑

i=1

M∑
j=1

[p(xi)p(yj)− p(xi, yj)] (1.59)

−I(X;Y ) < (logb e)


 N∑

i=1

M∑
j=1

p(xi)p(yj) −
N∑

i=1

M∑
j=1

p(xi, yj)


 (1.60)

−I(X;Y ) < (logb e)


 N∑

i=1

p(xi)
M∑

j=1

p(yj) −
N∑

i=1

M∑
j=1

p(xi, yj)


 (1.61)

−I(X;Y ) < (logb e) [(1× 1)− 1] = 0 (1.62)

Therefore:

I(X;Y ) > 0 when X and Y are dependent (1.63)

QED
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The average mutual information I(X;Y ) is equal to the difference between the entropy H(X)
and the equivocation H(X|Y ):

I(X;Y ) = H(X)−H(X|Y ) (1.64)

Note that, since I(X;Y ) is always positive or equal to 0:

H(X)−H(X|Y ) ≥ 0 (1.65)

which results in:

H(X) ≥ H(X|Y ) with equality when X and Y are independent (1.66)

Then, the entropy of X, H(X), is always larger or equal to the equivocation of X given Y , H(X|Y ).
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1.6 Inequalities concerning the entropy and (average) mutual in-
formation

Theorem (Entropy upper bound):

Let X be a sample space consisting of N possible outcomes: {x1, . . . , xN}, then:

H(X) ≤ logb N (1.67)

with equality, if and only if, the outcomes are equiprobable.

Proof:

Consider the difference H(X)− logb N :

H(X)− logb N =
N∑

i=1

p(xi) logb

1
p(xi)

− logb N (1.68)

since
∑N

i=1 p(xi) = 1 and the term logb N is constant, the above expression can be rewritten as:

H(X)− logb N = −
N∑

i=1

p(xi) logb p(xi)−
N∑

i=1

p(xi) logb N (1.69)

H(X)− logb N =
N∑

i=1

p(xi) logb

1
Np(xi)

(1.70)

Converting to a natural logarithm;

H(X)− logb N = (logb e)
N∑

i=1

p(xi) ln
1

Np(xi)
(1.71)

The natural logarithm can be expanded as:

lnx = (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − . . . (1.72)

For x > 0, lnx ≤ (x− 1) with equality if x = 1 (see Figure 1.4).

Therefore, since

ln
1

Np(xi)
≤

[
1

Np(xi)
− 1

]
(1.73)
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Figure 1.4: Natural logarithm (log(x) ≤ x− 1 for x > 0).

then

H(X)− logb N = (logb e)
N∑

i=1

p(xi) ln
1

Np(xi)
(1.74)

≤ (logb e)
N∑

i=1

p(xi)
[

1
Np(xi)

− 1
]

(1.75)

≤ (logb e)

[
N∑

i=1

1
N
−

N∑
i=1

p(xi)

]
(1.76)

≤ (logb e) [1− 1] (1.77)
H(X)− logb N ≤ 0 (1.78)

or

H(X) ≤ logb N (1.79)

QED
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Note that if the source is equiprobable, then p(xi) = 1
N , for all i, and therefore:

ln
1

Np(xi)
= ln 1 = (x− 1) = 0 (1.80)

which implies that:

H(X) = logb N (1.81)

The entropy H(X) of a source can be increased by increasing the probability of an unlikely
outcome xi at the expense of a more probable outcome xj .
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1.7 Conditional and joint (average) mutual information

1.7.1 Conditional (average) mutual information

Let xi, yj and zk be a set of specific outcomes in a joint sample space XYZ. Then the conditional
mutual information I(xi; yj |zk) between the events xi and yj , given zk, is defined as:

I(xi; yj |zk) ≡ logb

p(xi|yj , zk)
p(xi|zk)

(1.82)

Note: The condition of occurrence of event zk affects both outcomes xi and yj . Thus the probability
p(xi) becomes p(xi|zk) while the conditional probability p(xi|yj) now becomes p(xi|yj , zk). Also,
the conditional mutual information I(xi; yj |zk) can be expressed as the difference between I(xi|zk),
the conditional self-information of xi given zk before the occurrence of yj , and I(xi|yj , zk) which
denotes the conditional self-information of xi (still given zk) after the occurrence of event yj :

I(xi; yj |zk) = I(xi|zk)− I(xi|yj , zk) (1.83)

The above result is demonstrated as follows:

I(xi|zk)− I(xi|yj , zk) = − logb p(xi|zk)− [− logb p(xi|yj , zk)] (1.84)

= logb

p(xi|yj , zk)
p(xi|zk)

(1.85)

I(xi|zk)− I(xi|yj , zk) = I(xi; yj |zk) (1.86)

Theorem ((Average) Conditional Mutual Information):

Let XYZ be a joint sample space. Then the average conditional mutual information I(X;Y |Z)
between the X and Y random variables, given Z, is greater or equal to zero:

I(X;Y |Z) ≥ 0 (1.87)

with equality, if and only if, conditional on each outcome zk, X and Y are statistically independent,
that is if:

p(xi, yj |zk) = p(xi|zk)p(yj |zk), for all i, j, k (1.88)
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Note that all p(zk) > 0. The proof of this theorem can be demonstrated in a similar manner
than for theorem 2, by adding the conditioning on Z.

Consider the (average) conditional mutual information:

I(X;Y |Z) =
N∑

i=1

M∑
j=1

L∑
k=1

p(xi, yj , zk) logb

[
p(xi|yj , zk)

p(xi|zk)

]
(1.89)

I(X;Y |Z) =
N∑

i=1

M∑
j=1

L∑
k=1

p(xi, yj , zk) logb p(xi|yj , zk)

−
N∑

i=1

L∑
k=1

p(xi, zk) logb p(xi|zk) (1.90)

Then, the (average) conditional mutual information I(X;Y |Z) can be expressed as the difference
of 2 equivocations (i.e. H(X|Z) and H(X|Y Z)) of X:

I(X;Y |Z) = H(X|Z)−H(X|Y Z) (1.91)

and since I(X;Y |Z) ≥ 0, this implies that:

H(X|Z) ≥ H(X|Y Z) (1.92)

with equality if I(X;Y |Z) = 0, that is if, conditionally on Z, the random variables X and Y are
statistically independent. Conditioning of X over the joint sample space YZ instead of Z alone
reduces the uncertainty about X.

Also, by averaging the conditional mutual information I(xi, yj |zk) over the XYZ joint sample
space, one obtains the average conditional mutual information I(X;Y |Z):

I(X;Y |Z) =
N∑

i=1

M∑
j=1

L∑
k=1

p(xi, yj , zk)I(xi, yj |zk) (1.93)

I(X;Y |Z) =
N∑

i=1

L∑
k=1

p(xi, zk)I(xi|zk)

−
N∑

i=1

M∑
j=1

L∑
k=1

p(xi, yj , zk)I(xi|yj , zk) (1.94)

or once again:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (1.95)
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Remark:

Even if both entropies (or equivocations) H(X|Z) and H(X|Y, Z) as well as the average con-
ditional mutual information I(X;Y |Z) are expressed using the same units, they have different
meanings:

H(X|Z): average uncertainty remaining in X after the observation in Z

H(X|Y Z): average uncertainty remaining in X after the observation in both Z and Y

I(X;Y |Z): average amount of uncertainty in X resolved by the observation in Y

1.7.2 Joint (average) mutual information

Now lets go back to the XYZ joint sample space where xi ∈ X , yj ∈ Y and zk ∈ Z.

Theorem ((Average) Mutual Information (over three sets)):

The mutual information I(xi; yj , zk) between the event xi ∈ X and the pair of events (yj , zk) ∈
YZ is equal to the sum of the mutual information I(xi; yj) between the events xi and yj and the
conditional mutual information I(xi; zk|yj) between xi and zk, given that yj has occurred:

I(xi; yj , zk) = I(xi; yj) + I(xi; zk|yj) (1.96)

or, equivalently:

I(xi; yj , zk) = I(xi; zk) + I(xi; yj |zk) (1.97)

Proof:

Write the expressions for the (average) mutual information terms in the sum:

I(xi; yj) = logb

p(xi|yj)
p(xi)

and (1.98)

I(xi; zk|yj) = logb

p(xi|yj , zk)
p(xi|yj)

(1.99)

Therefore, using the properties of the logarithms, the sum becomes:



       

1.7. CONDITIONAL AND JOINT (AVERAGE) MUTUAL INFORMATION 25

I(xi; yj) + I(xi; zk|yj) = logb

p(xi|yj)
p(xi)

+ logb

p(xi|yj , zk)
p(xi|yj)

(1.100)

I(xi; yj) + I(xi; zk|yj) = logb

p(xi|yj)
p(xi)

p(xi|yj , zk)
p(xi|yj)

(1.101)

I(xi; yj) + I(xi; zk|yj) = logb

p(xi|yj , zk)
p(xi)

(1.102)

I(xi; yj) + I(xi; zk|yj) = I(xi; yj , zk) (1.103)

QED

The average of the mutual information I(xi; yj , zk) over the entire joint sample space XYZ
results in the average mutual information I(X;Y Z) between the single sample space X and the
joint sample space YZ:

N∑
i=1

M∑
j=1

L∑
k=1

p(xi, yj , zk)I(xi; yj , zk) =
N∑

i=1

M∑
j=1

p(xi, yj)I(xi; yj) +
N∑

i=1

M∑
j=1

L∑
k=1

p(xi, yj , zk)I(xi; zk|yj)

(1.104)

or

I(X;Y Z) = I(X;Y ) + I(X;Z|Y ) (1.105)

where I(X;Y Z) is the average mutual information between X and Y Z, I(X;Y ) the average
mutual information between X and Y , and I(X;Z|Y ) is the additional average mutual information
between X and Z given Y .

We know that the conditional average mutual information I(X;Z|Y ) is always greater or equal
to zero (with equality if and only if, conditional on Y , X and Z are independent). The average
mutual information I(X;Y Z) should then be greater or at least equal to I(X;Y ).

For instance, one may consider a broadcast network for which the channel consists in a single
source of information, e.g. X, and a number of receivers, say Y and Z. The message content
from the source may have a common message intended for both receivers and some specific mes-
sages intended solely to each user independently of the other. The average mutual information
term I(X;Y Z) represent the overall average mutual information between the source and the two
receivers, whereas the I(X;Y ) term represent the average mutual information between X and Y ,
that is the common message and the specific message for this specific link. Finally, the remaining
conditional average mutual information I(X;Z|Y ) represents only the information contents that is
specific to the second receiver Z regardless of the common message sent to both users.
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1.7.3 Average mutual information for cascaded channels

Another interesting example for the computation of joint (average) mutual information is for a
cascaded channels for which the output of a channel in the chain depends uniquely on the preceeding
regardless of the previous channels in that channel chain. A simple cascaded channel of only two
channels is depicted in figure 1.5).

✲

✲

✲

x1

...
xi

...
xN

channel 1
{p(zk|xi)}

✲

✲

✲

z1

...
zk

...
zL

channel 2
{p(yj |zk)}

✲

✲

✲

y1

...
yj

...
yM

Figure 1.5: Transmission through two cascaded channels.

The output Y of the second channel depends entirely on its input Z, which itself depends only
on its input X. Then for all i, j, and k, the conditional probability of the output symbol yj given
both inputs xi and zk, p(yj |xi, zk) = p(yj |zk). Multiplying both sides of the equality by p(xi|zk)
leads to:

p(yj |xi, zk) = p(yj |zk) (1.106)
p(yj |xi, zk)p(xi|zk) = p(xi|zk)p(yj |zk) (1.107)

p(xi, yj |zk) = p(xi|zk)p(yj |zk) (1.108)

which implies that, conditionnally on the outcome zk, each input xi and output yj are statistically
independent. Then, by the Theorem on (Average) Conditional Mutual Information, we have that
the average conditional mutual information between X and Y , given Z is equal to zero:

I(X;Y |Z) = 0

Intuitively, one may expect that the average mutual information I(X;Y ) between the input X
and output Y of the cascaded channels can not be greater than through either channel, that is
I(X;Z) or I(Z;Y ). Consider the average mutual information I(X;Y Z) between the input X and
the two channels’ outputs Y Z.
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I(X;Y Z) = I(X;Y ) + I(X;Z|Y ) or (1.109)
I(X;Y Z) = I(X;Z) + I(X;Y |Z) (1.110)

Since, conditionnally on the output of the first channel Z, X and Y are independent we have
that I(X;Y |Z) = 0 but the term I(X;Z|Y ) ≥ 0 and

I(X;Y ) + I(X;Z|Y ) = I(X;Z) + I(X;Y |Z) (1.111)
I(X;Y ) + I(X;Z|Y ) = I(X;Z) (1.112)

I(X;Y ) = I(X;Z)− I(X;Z|Y ) (1.113)
I(X;Y ) ≤ I(X;Z) (1.114)

Or considering I(Y ;XZ), we obtain:

I(Y ;XZ) = I(Y ;X) + I(Y ;Z|X) or (1.115)
I(Y ;XZ) = I(Y ;Z) + I(Y ;X|Z) where I(Y ;X|Z) = 0 (1.116)

I(Y ;X) + I(Y ;Z|X) = I(Y ;Z) (1.117)
I(Y ;X) = I(Y ;Z)− I(Y ;Z|X) where I(Y ;Z|X) ≥ 0 (1.118)
I(Y ;X) ≤ I(Y ;Z) (1.119)

By the “commutativity property” of the average mutual information:

I(X;Y ) ≤ I(X;Z) and I(X;Y ) ≤ I(Z;Y ) (1.120)

In terms of entropies, the above can be restated as:

I(X;Y ) ≤ I(X;Z) (1.121)
H(X)−H(X|Y ) ≤ H(X)−H(X|Z) (1.122)

−H(X|Y ) ≤ −H(X|Z) (1.123)
H(X|Y ) ≥ H(X|Z) (1.124)

The uncertainty (unresolved information) about the source X given the observation of the
output of the first channel, i.e. H(X|Z) is smaller than given the observation of the second channel
(cascaded channel) output Y .
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H(X|Z) ≤ H(X|Y ) (1.125)

The conclusion is that the remaining uncertainty about the source X never decreases as we go
further from the input through a series of cascaded channels. In our example, the second channel
(it could even be a data processor such as an error correction decoder, the first channel being the
noisy channel) cannot increases the average mutual information I(X;Y ) between the input X and
cascaded channel output Y ! Note however, that even if the mutual information decreases, the
second channel can represent the available information at the output of the first channel (e.g. noisy
channel), i.e. Z, in a more useful format at the output of the second channel and hence increasing
the overall reliability of the cascaded channels without increasing the average mutual information.
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1.8 Generalization over N sample spaces

1.8.1 Entropy of a random vector

Consider N sample spaces forming the joint sample space (or joint ensemble) (X1, . . . ,XN ); in other
words, we consider an N -dimensional random vector (X1, . . . , XN ). The probability of occurrence
of a particular string of events (x1, . . . , xN ) is given by:

p(x1, . . . , xN ) = p(x1) p(x2|x1) p(x3|x1, x2) . . . p(xN |x1, . . . , xN−1) (1.126)

The amount of self-information of this specific sequence of events (x1, . . . , xN ) is then equal to:

I(x1, . . . , xN ) = − logb p(x1, . . . , xN ) (1.127)
I(x1, . . . , xN ) = − logb [p(x1) p(x2|x1) p(x3|x1, x2) . . . p(xN |x1, . . . , xN−1)] (1.128)
I(x1, . . . , xN ) = − logb p(x1) − logb p(x2|x1) − logb p(x3|x1, x2) . . . − logb p(xN |x1, . . . , xN−1)(1.129)

Then,

I(x1, . . . , xN ) = I(x1) + I(x2|x1) + I(x3|x1, x2) + . . . + I(xN |x1, . . . , xN−1)

This result indicates that the self-information of a string (x1, . . . , xN ) is equal to the sum of
the self-information of the first symbol in the string, namely x1, the conditional self-information of
the second symbol x2, given symbol x1, and so on up to the conditional self-information of the last
symbol xN , given the previous substring of events (or symbols) (x1, . . . , xN−1).

The average of the self-information over all possible strings or symbols in the joint sample space
(X1, . . . ,XN ), results in the entropy of the random vectors source:

H(X1, . . . , XN ) =
K1∑

k1=1

K2∑
k2=1

. . .
KN∑

kN=1

p(xk1 , xk2 , . . . , xkN
) I(xk1 , xk2 , . . . , xkN

)

or equivalently,

H(X1, . . . , XN ) = H(X1) + H(X2|X1) + H(X3|X1, X2) + . . . + H(XN |X1, . . . , XN−1)

This result is also known as the chain rule for the entropy of a random vector.
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1.8.2 (Average) mutual information between two random vectors

Consider now two random vectors of dimension N and M respectively: (X1, . . . , XN ) and (Y1, . . . , YM )
defined on two joint ensembles (X1, . . . ,XN ) and (Y1, . . . ,YM ). The (average) mutual information
I(X1, . . . , XN ;Y1, . . . , YM ) between these two random vectors is:

I(X1, . . . , XN ;Y1, . . . , YM ) = H(X1, . . . , XN )−H(X1, . . . , XN |Y1, . . . , YM )

which says that the (average) mutual information I(X1, . . . , XN ;Y1, . . . , YM ) is the difference be-
tween the joint entropy of the source H(X1, . . . , XN ) and the equivocation of the source given
the observation of the output random vector H(X1, . . . , XN |Y1, . . . , YM ). But the joint entropy
H(X1, . . . , XN ) can be expressed as:

H(X1, . . . , XN ) = H(X1) + H(X2|X1) + H(X3|X1, X2) + . . . + H(XN |X1, . . . , XN−1) (1.130)

while the equivocation H(X1, . . . , XN |Y1, . . . , YM ) is given by:

H(X1, . . . , XN |Y1, . . . , YM ) = H(X1|Y1, . . . , YM ) + H(X2|X1, Y1, . . . , YM ) + H(X3|X1, X2, Y1, . . . , YM ) + . . .

+H(XN |X1, . . . , XN−1, Y1, . . . , YM ) (1.131)

The difference between the two terms is the (average) mutual information I(X1, . . . , XN ;Y1, . . . , YM ):

I(X1, . . . , XN ;Y1, . . . , YM ) = H(X1) + H(X2|X1) + H(X3|X1, X2) + . . . + H(XN |X1, . . . , XN−1)
−H(X1|Y1, . . . , YM )−H(X2|X1, Y1, . . . , YM )−H(X3|X1, X2, Y1, . . . , YM )
− . . .−H(XN |X1, . . . , XN−1, Y1, . . . , YM ) (1.132)

Or in (average) mutual information terms:

I(X1, . . . , XN ;Y1, . . . , YM ) = I(X1;Y1, . . . , YM ) + I(X2;Y1, . . . , YM |X1) + . . . + I(XN ;Y1, . . . , YM |X1, . . . , XN−1)

The above result is known as the chain rule for the (average) mutual information between these
two random vectors I(X1, . . . , XN ) and (Y1, . . . , YM ).
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1.9 Relative entropy

Consider a sample space X and a random variable X with two different distributions p(X) = {p(xi)}
and q(X) = {q(xi)} for i = 1, . . . , N

Definition (Relative entropy):

The relative entropy D [p(X)‖q(X)] between two distributions p(X) and q(X) is defined as the
expectation of the logarithm of the ratio of the distributions:

D [p(X)‖q(X)] = E
[
logb

p(X)
q(X)

]
(1.133)

In terms of probabilities of each outcome, the relative entropy D [p(X)‖q(X)] becomes:

D [p(X)‖q(X)] =
N∑

i=1

p(xi) logb

[
p(xi)
q(xi)

]

The relative entropy is a measure of the distance between the two distributions (or probability
mass function) p(X) and q(X). It is also known as the Kullback-Leibler distance. The concept of
relative entropy is used in the Maximum a Posteriori (MAP) decoding techniques.

Note that if the two distributions are identical, i.e. p(X) = q(X), or p(xi) = q(xi) ∀i, then
the relative entropy D [p(X)‖q(X)] = 0, since the term logb

[
p(xi)
q(xi)

]
= logb 1 = 0 for all i.

Example 1(relative entropy):

Consider the following quaternary distributions p(X) and q(X) of the random variable X:
p(x1) = p(x2) = p(x3) = p(x4) = 1

4 , and q(x1) = 1
2 , q(x2) = 1

4 , and q(x3) = q(x4) = 1
8 . The relative

entropy (in Sh) between those distributions is:

D [p(X)‖q(X)] =
4∑

i=1

p(xi) log2

[
p(xi)
q(xi)

]

D [p(X)‖q(X)] =
1
4

log2

[
1
4
1
2

]
+

1
4

log2

[
1
4
1
4

]
+

1
4

log2

[
1
4
1
8

]
+

1
4

log2

[
1
4
1
8

]
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D [p(X)‖q(X)] =
1
4

[
log2

1
2

+ log2 1 + log2 2 + log2 2
]

D [p(X)‖q(X)] =
1
4

Sh

Now let’s consider the relative entropy D [q(X)‖p(X)] between q(X) and p(X):

D [q(X)‖p(X)] =
4∑

i=1

q(xi) log2

[
q(xi)
p(xi)

]

D [q(X)‖p(X)] =
1
2

log2

[
1
2
1
4

]
+

1
4

log2

[
1
4
1
4

]
+

1
8

log2

[
1
8
1
4

]
+

1
8

log2

[
1
8
1
4

]

D [q(X)‖p(X)] =
1
2

log2 2 +
1
4

log2 1 +
1
8

log2

1
2

+
1
8

log2

1
2

D [q(X)‖p(X)] =
1
4

Sh

Note that here D [p(X)‖q(X)] = D [q(X)‖p(X)] = 0.250 Sh.

Example 2(relative entropy):

For this second example, p(X) and q(X) are two distributions of a binary random variable X
where: p(x1) = p(x2) = 1

2 and q(x1) = 1
4 and q(x2) = 3

4 . The relative entropy D [p(X)‖q(X)] is:

D [p(X)‖q(X)] =
2∑

i=1

p(xi) log2

[
p(xi)
q(xi)

]

D [p(X)‖q(X)] =
1
2

log2

[
1
2
1
4

]
+

1
2

log2

[
1
2
3
4

]
=

1
2

log2 2 + log2

2
3

D [p(X)‖q(X)] = 0.208 Sh

whereas:

D [q(X)‖p(X)] =
2∑

i=1

q(xi) log2

[
q(xi)
p(xi)

]

D [q(X)‖p(X)] =
1
4

log2

[
1
4
1
2

]
+

3
4

log2

[
3
4
1
2

]
=

1
4

log2

1
2

+
3
4

log2

3
2

D [q(X)‖p(X)] = 0.189 Sh

In general, as in this second example, D [p(X)‖q(X)] �= D [q(X)‖p(X)].
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The relative entropy D [p(XY )‖p(X)p(Y )] between the joint distribution p(XY ) of two random
variables X and Y and the product of their marginal distributions p(X) and p(Y ) gives the (average)
mutual information I(X;Y ) between the two random variables:

D [p(XY )‖p(X)p(Y )] =
N∑

i=1

M∑
j=1

p(xi, yj) logb

[
p(xi, yj)

p(xi)p(yj)

]
= I(X;Y )
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1.10 Problems

Problem 1.1: A dishonest gambler has a loaded die which turns up the number 1 with a probability of
0.4 and the numbers 2 to 6 with a probability of 0.12 each. Unfortunately (or fortunately) he left the
loaded die in a box with 2 honest dice and could not tell them apart. He picks at random one die
from the box, rolls it once, and the number 1 appears.

a) What is the probability that he picked up the loaded die?

b) He rolls the same die once more and it comes up 1 again. What is the probability that he has
picked the loaded die after the second rolling?

c) Repeat parts a) and b) but assuming this time that the first outcome was a 4 and the second
outcome was 1.

Problem 1.2: A source of information produces letters from a three-symbol alphabet X = {x0, x1, x2}
with a probability assignment p(x0) = p(x1) = 1/4 and p(x2) = 1/2. Each source letter xi is
directly transmitted through two different channels simultaneously with outputs yj and zk for which
the transition probabilities p(yj |xi) and p(zk|xi) are as indicated in figure 1.6 shown below. Note that
this could be considered as a single channel with output (yj , zk).

a) Write the channel transition matrix for each channel.

b) Calculate the following entropies: H(X), H(Y ), H(Z) and H(Y Z).

c) Calculate the mutual information expressions: I(X;Y ), I(X;Z), I(X;Y |Z) and I(X;Y Z).

d) Interpret the mutual information expressions.

x2

x1

x0

✟✟✟✟✟✟✟✟✟✟✟✟✯

✘✘✘✘✘✘✘✘✘✘✘✘✿✲

✲

y1

y0

p(yj |xi)

1

1
1
2
1
2 x2

x1

x0

✘✘✘✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✘✘✘✿✲

z1

z0

p(zk|xi)

1
1

1

Figure 1.6: Simultaneous transmission through two channels.

Problem 1.3: A ternary source of information X ≡ {x0, x1, x2} is to be transmitted through a noisy
communication channel. The channel probability transition matrix P is given by:

P =


 1/2 1/4 0 1/4

0 1/2 1/4 1/4
1/4 0 1/2 1/4




If the source letters are generated with the probabilities p(x0) = p(x2) = 1
4 and p(x1) = 1

2 , find the
output letter probabilities p(yj) and the average mutual information I(X;Y ).
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Problem 1.4: A source of information generates the symbols {a0, · · · , ak, · · · , a7} with the following prob-
ability:

p(ak) =
(

7
k

)
ηk (1− η)7−k

a) Find the source entropy H(X) for η = 1/4.

b) If η is changed to 1/2, what is the new value the entropy H(X)?

Problem 1.5: Let U , V , W , X, Y , and Z be random variables.

a) Show that
I(XY ;UV W ) = I(XY ;U |V W ) + I(XY ;V |W ) + I(XY ;W )

.

b) Do the conditions, I(V ;Y Z|UX) = 0 and I(X;UZ|V Y ) = 0, imply that I(Z;XV |UY ) ?= 0?
Justify your answer.

Problem 1.6: (derived from Gallager)
In Ottawa, a radio station weatherman’s record is as follows: out of the 15% of the time when it
actually rains, the weatherman predicts “rain” 12% of the time and “no rain” 3% of the time. The
remaining 85% of the time, when it doesn’t rain, the weatherman’s prediction are “no rain” 64% of
the time and “rain” 21% of the time.
A clever ELG-5170 Information Theory graduate student notices that the weatherman’s predictions
are correct 76% of the time. However, by predicting “no rain” all the time, he (or she) can achieve
a higher success rate of 85%! The graduate student explains the situation to the weatherman’s boss
and applies for the job. However, the weatherman’s boss, who is also an information theorist, decides
to not hire the graduate student. Why?

Problem 1.7: Consider two statistical experiments represented by the random variables X and Y , where
the sample space of X is (x1, x2, x3, x4) and the sample space of Y is (y1, y2, y3). The joint probability
matrix P = {p(xi, yj)} i=1,2,3,4

j=1,2,3
for these 2 experiments is:

P =


 p(x1, y1) p(x2, y1) p(x3, y1) p(x4, y1)

p(x1, y2) p(x2, y2) p(x3, y2) p(x4, y2)
p(x1, y3) p(x2, y3) p(x3, y3) p(x4, y3)


 =


 3

32
1
32

1
32

7
32

1
32

3
32

3
32

1
32

7
32

1
32

1
32

3
32




a) How much information do we receive if someone tells us the outcome resulting from X and Y ?

b) How much information do we receive if someone tells us the outcome of Y ?

c) How much information do we receive if someone tells us the outcome of X if we already know
the outcome of Y ?
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Chapter 2

Distortionless Source Coding

2.1 Tchebycheff Inequality and the weak law of large numbers

2.1.1 Tchebycheff inequality

Consider a random variable X having the input symbol distribution {p(xk)}, an expectation ηX

and a variance σ2
X , that is:

ηX ≡ E[X] =
K∑

k=1

p(xk)× xk (2.1)

σ2
X ≡ E[(X − ηX)2] =

K∑
k=1

p(xk)× (xk − ηX)2 (2.2)

Definition (Tchebycheff inequality):

The Tchebycheff inequality states that:

Pr{|X − ηX | ≥ δ} ≤ σ2
X

δ2

2.1.2 Weak law of large numbers

Let X = X1, . . . , Xn, . . . , XN be a sequence of independent, identically distributed (i.i.d.) random
variables with expectation ηX and variance σ2

X . Define a new random variable YN which is the

37
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sample mean of the random sequence X:

YN ≡
1
N

N∑
n=1

Xn (2.3)

The mean ηYN
of this new random variable is then given by:

ηYN
= E[YN ] = E

[
1
N

N∑
n=1

Xn

]
(2.4)

=
1
N

E

[
N∑

n=1

Xn

]

=
1
N

N∑
n=1

E [Xn]

=
1
N

N∑
n=1

ηX

ηYN
= ηX

The variance σ2
YN

of the sample average YN is equal to the expectation of (YN − ηYN
)2:

σ2
YN

= E
[
(YN − ηYN

)2
]

(2.5)

= E


(

1
N

N∑
n=1

Xn − ηX

)2



=
1

N2
E

[
N∑

n=1

(Xn − ηX)2
]

σ2
YN

=
σ2

X

N

Applying the Tchebycheff inequality:

Pr

{∣∣∣∣∣
[

1
N

N∑
n=1

Xn

]
− ηX

∣∣∣∣∣ ≥ δ

}
≤ σ2

X

Nδ2
(2.6)

As N tends towards infinity, the right side of the above inequality approaches zero.

Definition (Weak Law of Large Numbers):

The weak law of large numbers stipulates that the sample average or sample mean of the random
sequence X approaches the statistical mean ηX with high probability:
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lim
N→∞

Pr

{∣∣∣∣∣
[

1
N

N∑
n=1

Xn

]
− ηX

∣∣∣∣∣ ≥ δ

}
= 0

or equivalently:

lim
N→∞

Pr

{∣∣∣∣∣
[

1
N

N∑
n=1

Xn

]
− ηX

∣∣∣∣∣ < δ

}
= 1
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2.2 Typical and atypical sequences

Definition (Typical and atypical sequences):

Consider a memoryless source X having the input symbol distribution {p(xk)}, k = 1, . . . , K,
and an entropy H(X). Let x be a vector of blocklength N : x = (xk1, · · · , xkN ). For any number
δ > 0, the set TX(δ) of typical sequences of blocklength N is defined as:

TX(δ) ≡ {x such that: |− 1
N

logb p(x)−H(X)| < δ}

The remaining vectors of length N form a complementary set; the set T c
X(δ) of atypical se-

quences:

T c
X(δ) ≡ {x : |− 1

N
logb p(x)−H(X)| ≥ δ}

Example (Typical sequences:):

Consider a binary source, or random variable, X = {xi} with the probabilities p(x1) = 1/4 and
p(x2) = 3/4. The source entropy H(X), expressed in Shannons (or bits), is then equal to:

H(X) = −
2∑

i=1

p(xi) log2 p(xi) (2.7)

= − [(1/4) log2 (1/4) + (3/4) log2 (3/4)]
H(X) = 0.811 Sh

Now if the experiment is repeated twice, that is if the source generates two binary symbols; the
outcomes will be all possible pairs X1, X2 = {(xi, xj)}. Since the random variables X1 and X2 are
independent and also identically distributed (i.i.d.) then the probability of each pair p(xi, xj) is
equal to the product of the marginal probabilities:

p(x1, x1) = p(x1)p(x1) = 1/4× 1/4 = 1/16 (2.8)
p(x1, x2) = p(x1)p(x2) = 1/4× 3/4 = 3/16
p(x2, x1) = p(x2)p(x1) = 3/4× 1/4 = 3/16
p(x2, x2) = p(x2)p(x2) = 3/4× 3/4 = 9/16
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For N = 3 (i.e. considering sequences of information of length 3), the probabilities of each
sequence p(xi, xj , xk) is:

p(x1, x1, x1) = p(x1)p(x1)p(x1) = 1/64 (2.9)
p(x1, x1, x2) = p(x1)p(x1)p(x2) = 3/64
p(x1, x2, x1) = p(x1)p(x2)p(x1) = 3/64
p(x1, x2, x2) = p(x1)p(x2)p(x2) = 9/64
p(x2, x1, x1) = p(x2)p(x1)p(x1) = 3/64
p(x2, x1, x2) = p(x2)p(x1)p(x2) = 9/64
p(x2, x2, x1) = p(x2)p(x2)p(x1) = 9/64
p(x2, x2, x2) = p(x2)p(x2)p(x2) = 27/64

Note that six sequences of symbols have a probability p(xi, xj , xk) = 3/64 or 9/64, out of the 2N = 8
possible sequences of length 3. For sequences to be termed typical sequences, their probability of
occurrence must be in the following range:

b−N [H(X)+δ] ≤ p(x) ≤ b−N[H(X)−δ]

where N = 3, b = 2, H(X) is the source entropy (per symbol), δ an arbitrarily small positive
number, and x is a specific sequence of length N :

2−3[H(X)+δ] ≤ p(xi, xj , xk) ≤ 2−3[H(X)−δ] (2.10)

2−3[0.811+δ] ≤ p(xi, xj , xk) ≤ 2−3[0.811−δ]

Writing the sequences’ probabilities in the form of b−N [H(X)±δ]:

p(x1, x1, x1) = 2−3×2.000 = 1/64 (2.11)
p(x1, x1, x2) = 2−3×1.472 = 3/64
p(x1, x2, x1) = 2−3×1.472 = 3/64
p(x1, x2, x2) = 2−3×0.943 = 9/64
p(x2, x1, x1) = 2−3×1.472 = 3/64
p(x2, x1, x2) = 2−3×0.943 = 9/64
p(x2, x2, x1) = 2−3×0.943 = 9/64
p(x2, x2, x2) = 2−3×0.415 = 27/64

There are thus three sequences ((x1, x2, x2), (x2, x1, x2) and (x2, x2, x1)) that have a probability of
occurrence close to b−N [H(X)±δ]. These can be considered (depending on the value of δ, that we
choose to be arbitrarily small), as typical sequences.

For N = 20, there is a single sequence having only the symbol x1 in it, 20 sequences with one
occurrence of x2,

(N
2

)
sequences with two occurences of x2, and so on.

(
N

n

)
≡ N !

(N − n)!n!
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The probability of each sequence of length N depends on the number n of occurrences of each
symbol x1:

p(x) = p(x1)n p(x2)N−n

Table 1 indicates the number of sequences as a function of the number n of occurrences of symbol
x1, along with the probability of each of these sequences and and total probability of all sequences
having symbol x1 n times.

The total probability of occurrence of all typical sequences is high; for instance for 2 ≤ n ≤ 8,
the exponent in the probability expression of the individual sequences ranges from 0.573 to 1.049
while H(X) = 0.811. Thus for δ ≤ .238, the total probability of the occurrence of typical sequences
is close to 94% (i.e. total probability is equal to 0.93478 for 2 ≤ n ≤ 8).

Note also that for n = 5, the probability of each sequence consisting of n = 5 occurrences of
the binary symbol x1 is equal to 2−20×0.811, which is exactly equal to b−N [H(X)]. That is, for δ = 0,
the total probability of all sequences with n = 5 is already 20% (i.e. 0.20233 for n = 5). For these
sequences, there are n = 5 occurrences of the x1 in the 20-symbol vector, which represent the actual
distribution of each individual symbol: {p(x1) = 1/4, p(x2) = 3/4}.
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Table 2.1: Typical (binary) sequences of length N = 20: p(x1) = 1
4 , p(x2) = 3

4

Occurrences Number of Probability of Probability of
of x1 sequences each sequence all sequences

n
(N

n

)
p(x1)n p(x2)N−n

(N
n

)
p(x1)n p(x2)N−n

0 1 3, 171× 10−3 = 2−20×0,415 0,003171
1 20 1, 057× 10−3 = 2−20×0,494 0,021141
2 190 3, 524× 10−4 = 2−20×0,574 0,066948
3 1140 1, 175× 10−4 = 2−20×0,653 0,133896
4 4845 3, 915× 10−5 = 2−20×0,732 0,189685
5 15504 1, 305× 10−5 = 2−20×0,811 0,202331
6 38760 4, 350× 10−6 = 2−20×0,891 0,168609
7 77520 1, 450× 10−6 = 2−20×0,970 0,112406
8 125970 4, 833× 10−7 = 2−20×1,049 0,060887
9 167960 1, 611× 10−7 = 2−20×1,128 0,027061

10 184756 5, 370× 10−8 = 2−20×1,208 0,009922
11 167960 1, 790× 10−8 = 2−20×1,287 0,003007
12 125970 5, 967× 10−9 = 2−20×1,366 0,000752
13 77520 1, 989× 10−9 = 2−20×1,445 0,000154
14 38760 6, 630× 10−10 = 2−20×1,525 0,000026
15 15504 2, 210× 10−10 = 2−20×1,604 0,000003
16 4845 7, 367× 10−11 = 2−20×1,683 0,000000
17 1140 2, 456× 10−11 = 2−20×1,762 0,000000
18 190 8, 185× 10−12 = 2−20×1,842 0,000000
19 20 2, 728× 10−12 = 2−20×1,921 0,000000
20 1 9, 095× 10−13 = 2−20×2,000 0,000000
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2.3 Shannon-McMillan theorem

Theorem (Shannon-McMillan theorem for typical sequences:):

Given a memoryless source of entropy H(X) and an arbitrary positive number δ, a blocklength
N ≥ N0 can be choosen sufficiently large such that the set of all KN possible vectors {x} can be
partitioned into a set of typical (or likely) sequences TX(δ), and a complementary set of atypical
(or unlikely) sequences T c

X(δ) having the following properties:

a) The probability that a particular sequence x of blocklength N belongs to the set of atypical
sequences T c

X(δ) is upperbounded as:

Pr[x ∈ T c
X(δ)] < ε

b) If a sequence x is in the set of typical sequences TX(δ) then its probability of occurrence p(x)
is approximately equal to b−NH(X), that is:

b−N [H(X)+δ] < p(x) < b−N [H(X)−δ]

c) The number of typical, or likely, sequences ‖TX(δ)‖ is bounded by:

(1− ε)bN [H(X)−δ] < ‖TX(δ)‖ < bN [H(X)+δ]

Proof:

a) P [x ∈ T c
X(δ)] < ε:

By the Asymptotic Equipartition Property (AEP), the set of atypical sequences ∈ T c
X(δ) is

upperbound as:

P [x ∈ T c
X(δ)] = P

[∣∣∣∣− 1
N

logb p(x)−H(X)
∣∣∣∣ > δ

]
(2.12)

P

[∣∣∣∣− 1
N

logb p(x)−H(X)
∣∣∣∣ > δ

]
<

σ2
X

Nδ2

P

[∣∣∣∣− 1
N

logb p(x)−H(X)
∣∣∣∣ > δ

]
< ε

P [x ∈ T c
X(δ)] < ε
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b) b−N [H(X)+δ] < p(x) < b−N [H(X)−δ]:

If x is in the set of typical sequences TX(δ), we have by definition that:
∣∣∣∣− 1

N
logb p(x)−H(X)

∣∣∣∣ < δ (2.13)

or, for N sufficiently large (i.e., N ≥ N0):

−δ < − 1
N

logb p(x)−H(X) < δ (2.14)

or, adding H(X) everywhere:

H(X)− δ < − 1
N

logb p(x) < H(X) + δ (2.15)

Multiplying by −N (and changing the inequality signs accordingly):

−N [H(X)− δ] > logb p(x) > −N [H(X) + δ] (2.16)

Raising to the power b (i.e., logarithmic base used for computing the entropy):

b−N [H(X)−δ] > blogb p(x) = p(x) > b−N [H(X)+δ] (2.17)

Therefore,

b−N [H(X)+δ] < p(x) < b−N [H(X)−δ] (2.18)

for x ∈ TX(δ), which happens with a probability greater or equal to (1− ε), for N ≥ N0.

c) Number of typical sequences, ‖TX(δ)‖:

(1− ε)bN [H(X)−δ] < ‖TX(δ)‖ < bN [H(X)+δ]

i) The sum of probabilities of typical sequences is less than 1 (definition of a probability
space):

∑
x∈TX(δ)

b−N [H(X)+δ] <
∑

x∈TX(δ)

p(x) ≤
KN∑
i=1

p(x) = 1 (2.19)

where b−N [H(X)+δ] is the minimum probability of occurrence that a typical sequence can
have. Since the term b−N [H(X)+δ] is constant then:

∑
x∈TX(δ)

b−N [H(X)+δ] = ‖TX(δ)‖ b−N [H(X)+δ] < 1 (2.20)

which implies that:
‖TX(δ)‖ < bN [H(X)+δ] (2.21)
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ii) The sum of probabilities of all typical sequences is also lowerbounded by (1−ε) (definition
of typical sequences and Asymptotic Equipartition Property):

(1− ε) <
∑

x∈TX(δ)

p(x) <
∑

x∈TX(δ)

b−N [H(X)−δ] (2.22)

since b−N [H(X)−δ] is the highest probability of occurrence of a typical sequence. Then

(1− ε) <
∑

x∈TX(δ)

b−N [H(X)−δ] = ‖TX(δ)‖b−N [H(X)−δ] (2.23)

Therefore, the number of typical sequences, ‖TX(δ)‖, is lowerbounded as:

(1− ε)
b−N [H(X)−δ]

< ‖TX(δ)‖ (2.24)

‖TX(δ)‖ > (1− ε) bN [H(X)−δ] (2.25)

Combining the upper and lower bounds:

(1− ε) bN [H(X)−δ] < ‖TX(δ)‖ < bN [H(X)+δ] (2.26)

QED
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2.4 Variable length codes (source coding)

Consider a source code C which encodes each different source symbol (or sourceword) with a unique
codeword. To be able to retrieve the original information at the receiver (i.e. information sink), all
codewords should be uniquely decodable. It is desirable to minimize the average codeword length.

Source X = {x1, . . . , xK}

p = {p(x1), . . . , p(xK)}
Variable-length
source encoder

Codewords C = {c1, . . . , cK}

Lenghts {l1, . . . , lK}

Figure 2.1: Variable length source encoder.

The source X = {x1, . . . , xk, . . . , xK}, K being the source alphabet size, is characterized by its
letter distribution: p = {p(x1), . . . , p(xk), . . . , p(xK)} and its entropy H(X).

The variable length source code C is a set of codewords {c1, . . . , ck, . . . , cK} which consists each
in lk symbols taken from an output alphabet Y = {y1, . . . , yj , . . . , yJ}. In other words, the lth

element of the kth codeword ck,l ∈ {y1, . . . , yJ} (where 1 ≤ l ≤ lk):

Source Codeword
Symbol Codeword Length

x1 c1 = (c1,1, c1,2, . . . , c1,l, . . . , c1,l1) l1
x2 c2 = (c2,1, c2,2, . . . , c2,l, . . . , c2,l2) l2
...

...
...

xk ck = (ck,1, ck,2, . . . , ck,l, . . . , ck,lk) lk
...

...
...

xK cK = (cK,1, cK,2, . . . , cK,l, . . . , cK,lK ) lK

The expected code length L(C) of the variable length source code is determined by the source
symbols distribution p and the length of the individual codewords.

L(C) =
K∑

k=1

p(xk)lk (2.27)
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2.4.1 Uniquely decodable codes

The transmission of data from an information source (e.g. transmitter) to an information sink (e.g.
receiver) is generally in the form of a continuous data stream; at the receiving end, one should be
able to reconstruct without any ambiguity the source symbol sequence from the received sequence
of codewords. However, some conditions must be imposed on the choice of the set of codewords,
or code C, to insure that a received sequence would uniquely determine the original transmitted
information sequence generated from the source X. The ensemble (or universe) of all possible codes
{C} can be subdivided into smaller sets of codes:

All possible codes (e.g. C4)

Non-singular codes (e.g. C3)

Uniquely decodable codes (e.g. C2)

Prefix codes (e.g. C1)

Figure 2.2: Source codes’ subdivisions.

a) Prefix code:

A code is called a prefix code, or sometimes instantaneous code, if no codeword ck is a prefix
of any other codeword ck′ in the code C. For instance, the code C1 is a prefix code:

C1 = {0, 10, 110, 111}

b) Uniquely decodable code:
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A code is called a uniquely decodable code if each possible sequence of codewords can be
produced only by a unique sequence of source symbols.

C2 = {0, 01, 011, 0111}

The code C2 is not a prefix code: the codeword c1 = (0) is a prefix of c2 = (01), c3 = (011)
and c4 = (0111). Nevertheless, there is no ambiguity in the decoding process for such a
code. The received sequence “001110100110” for instance corresponds to the source symbol
sequence “x1, x4, x2, x1, x3, x1” and no other one.

c) Non-singular code:

The only condition for a non-singular code is that all codewords in such a code is different
from the other codewords, i.e. ck �= ck′ if k �= k′.

C3 = {0, 1, 00, 11}

Here, code C3 is neither prefix code nor a uniquely decodable code. The received string
“01000110111” can be decoded in many ways as “x1, x2, x1, x1, x1, x2, x2, x1, x2, x2, x2” or
“x1, x2, x3, x1, x4, x1, x2, x4”, etc.

d) All possible codes:

Here, one considers all possible mappings from the set of K symbols {x1, . . . , xK} into K
codewords {c1, . . . , cK}, and this without any conditions.

C4 = {0, 10, 11, 10}

Both source letters x2 and x4 are encoded with the same string “10”.
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2.4.2 Kraft Inequality and Optimum Codes

2.4.2.1 Kraft Inequality for Prefix Codes

Theorem (Kraft Inequality for Prefix Codes)

A prefix code C, with K codewords {c1, . . . , ck, . . . , cK} of lengths l1, . . . , lk, . . . , lK and using
an alphabet of size J , must satisfy the following inequality (Kraft Inequality):

K∑
k=1

J−lk ≤ 1

Proof:

A prefix code C can be represented as a tree where each branch of the tree represents a symbol
from a codeword, and a codeword is represented by a path from the root to a leaf (see Figure 2.3).

For a prefix code, no codeword can be the prefix of another codeword. On the tree, because of
this prefix condition, no branch (i.e., no codeword, or part of a codeword) extends beyond a given
leaf (that is from a shorter codeword). In other words, a given ancestor codeword (leaf) disables
all descendants codewords (branches).

Let the lengths l1 ≤ . . . ≤ lk ≤ . . . ≤ lK . If the length of a first codeword c1 is l1 = 1, then one
of the J branches at level 1 in the code tree is disabled. Thus, a fraction J−1, or J−l1 , of the total
number of branches in the tree is disabled. Now, if a second codeword c2 of the same length l2 = 1
is used, then an additional fraction J−l2 = J−1 is disabled in the code tree.

A codeword ck of length lk once chosen will result in another J−lk of the code tree to be again
disabled. Since the prefix code C consists in the K codewords {c1, . . ., ck, . . ., cK}, of respective
lengths l1, . . . , lk, . . . , lK , then, once all codewords are used, the sum of the fractions of the branches
of the code tree will be given by:

K∑
k=1

J−lk ≤ 1 (2.28)

the sum of fractions of the total number of branches being less or at most equal to unity.
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Figure 2.3: Code tree (Kraft inequality): ancestors and descendants.

QED
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2.4.2.2 Kraft Inequality for Uniquely Decodable Codes

To be able to decode without ambiguity the codewords one does not necessarily need to chose a
prefix code. We have seen that the larger set of uniquely decodable codes can be used for source
compaction coding. Since the set of uniquely decodable codes contains the set of prefix codes, then
it seems that one can contruct a more efficient code due to its greater flexibility. However, quite
surprisingly, a uniquely decodable code still need to satisfy the Kraft inequality.

Theorem (Uniquely Decodable Code):

A uniquely decodable code C, defined on an alphabet of size J , with K codewords having the
lengths l1, . . . , lk, . . . , lK , must satisfy the Kraft inequality:

K∑
k=1

J−lk ≤ 1

Proof: Consider a string of N concatenated codewords (i.e., sequence of codewords). Assume that

the lengths of the codewords are arranged in a ascending order:

l1 ≤ . . . ≤ lk ≤ . . . ≤ lK (2.29)

Consider the following sum over each of the K codewords, for all N codewords in the sequence:

(
K∑

k=1

J−lk

)N

=
K∑

k1=1

J−lk1

︸ ︷︷ ︸
first codeword

K∑
k2=1

J−lk2

︸ ︷︷ ︸
second codeword

. . .
K∑

kN=1

J−lkN

︸ ︷︷ ︸
last codeword

(2.30)

(
K∑

k=1

J−lk

)N

=
K∑

k1=1

K∑
k2=1

. . .
K∑

kN=1︸ ︷︷ ︸
sum over all possible sequences

J−(lk1
+lk2

+...+lkN
)︸ ︷︷ ︸

all strings of N codewords
(2.31)

The exponent of J , ignoring the minus sign (−), represents the total length of a particular
sequence of codewords:

lk1 + lk2 + . . . + lkN
(2.32)
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Since the codewords are arranged according to their respective lengths, then the minimum and
maximum of the exponent is given by:

lmin = min [lk1 + lk2 + . . . + lkN
] = N l1 (2.33)

lmax = max [lk1 + lk2 + . . . + lkN
] = N lK (2.34)

Thus the total length l of a particular sequence of codewords ranges from lmin = N l1 to lmax =
N lK :

lmin = N l1 ≤ l ≤ N lK = lmax (2.35)

Let the parameter Al be an enumerator indicating the number of sequences of N codewords for
which the total length is exactly l. We can then write that:

K∑
k1=1

K∑
k2=1

. . .
K∑

kN=1

J−(lk1
+lk2

+...+lkN
) =

lmax∑
l=lmin

AlJ
−l (2.36)

Now, since code C is a uniquely decodable code, there is a maximum number of distincts
sequences of length l which is equal to:

max(Al) = J l (2.37)

thus Al ≤ J l and:

(
K∑

k=1

J−lk

)N

=
lmax∑

l=lmin

AlJ
−l (2.38)

(
K∑

k=1

J−lk

)N

≤
lmax∑

l=lmin

J lJ−l (2.39)

(
K∑

k=1

J−lk

)N

≤ lmax − lmin + 1 (2.40)

(
K∑

k=1

J−lk

)N

≤ N(lK − l1) + 1 (2.41)

Taking the Nth root on both sides:

K∑
k=1

J−lk ≤ [N(lK − l1) + 1]1/N (2.42)

Choosing the sequence length N to be arbitrary large, i.e. N →∞ or 1/N → 0:
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lim
N→∞

[N(lK − l1) + 1]1/N = 1 (2.43)

and therefore,

K∑
k=1

J−lk ≤ 1

QED
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2.4.2.3 Lower Bound on the Average Codeword Length

In this section, we consider a uniquely decodable (source) code C and determine a lower bound on
its average, or expected, codeword length L(C).

Let X be a memoryless source of alphabet size K having the distribution: p(x) = {p(x1), . . .,
p(xk), . . ., p(xK)}. This source of information is to be represented by a variable length code C
={c1, . . ., ck, . . ., cK}, where each component ck,l ∈ {0, . . . , J − 1}, i.e. taken from an alphabet of
size J .

Theorem (Lower Bound on the Average Codeword Length):

The average codeword length L(C) of a uniquely decodable code C is lower bounded by the
source entropy H(X):

L(C) logb J ≥ H(X) or equivalently: L(C) ≥ H(X)
logb J

where b is the logarithmic base used to compute the source entropy H(X).

Proof:

If the theorem statement is true then:

L(C) logb J −H(X) ≥ 0 or (2.44)
H(X)− L(C) logb J ≤ 0 or using natural logarithms: (2.45)

(logb e) [H(X)− L(C) lnJ ] ≤ 0 (2.46)

By definition, the entropy H(X) and the average codeword lenght L(C) are:

H(X) = −
K∑

k=1

p(xk) ln p(xk) and L(C) =
K∑

k=1

p(xk)lk (2.47)

The left-hand side of the previous inequality becomes:

(logb e) [H(X)− L(C) lnJ ] = (logb e)

[
−

K∑
k=1

p(xk) ln p(xk)−
(

K∑
k=1

p(xk)lk

)
lnJ

]
(2.48)

(logb e) [H(X)− L(C) lnJ ] = (logb e)

[
K∑

k=1

p(xk) (− ln p(xk)− lk lnJ)

]
(2.49)
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(logb e) [H(X)− L(C) lnJ ] = (logb e)

[
K∑

k=1

p(xk)
(
lnJ−lk − ln p(xk)

)]
(2.50)

(logb e) [H(X)− L(C) lnJ ] = (logb e)

[
K∑

k=1

p(xk) ln

(
J−lk

p(xk)

)]
(2.51)

Since the alphabet size J and the probabilities {p(xk)} are always positive, then the ratio J−lk

p(xk) is
also positive. Since for x ≥ 0, lnx ≤ x− 1, then

ln

[
J−lk

p(xk)

]
≤

[
J−lk

p(xk)
− 1

]
for k = 1, . . . , K (2.52)

and therefore,

(logb e) [H(X)− L(C) lnJ ] ≤ (logb e)

[
K∑

k=1

p(xk)

[
J−lk

p(xk)
− 1

]]
(2.53)

(logb e) [H(X)− L(C) lnJ ] ≤ (logb e)

[
K∑

k=1

J−lk −
K∑

k=1

p(xk)

]
(2.54)

Since the variable length code (C) is uniquely decodable, it must satisfies the Kraft inequality,
i.e.

∑K
k=1 J−lk ≤ 1. On the other hand, by definition, the sum of probabilities

∑K
k=1 p(xk) = 1,

and thus,

(logb e) [H(X)− L(C) lnJ ] ≤ (logb e)




K∑
k=1

J−lk

︸ ︷︷ ︸
≤1

−
K∑

k=1

p(xk)

︸ ︷︷ ︸
=1


 (2.55)

(logb e) [H(X)− L(C) lnJ ] ≤ (logb e)




K∑
k=1

J−lk −
K∑

k=1

p(xk)

︸ ︷︷ ︸
≤0


 (2.56)

(logb e) [H(X)− L(C) lnJ ] ≤ 0 (2.57)

Therefore, for any logarithmic base b:

H(X)− L(C) logb J ≤ 0 (2.58)

and the average codeword length is larger or equal to the source entropy:

L(C) ≥ H(X)
logb J

(2.59)

QED
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2.4.2.4 Upper Bound on the Average Codeword Length

In the previous section, we have seen that the average codeword length L(C) of a uniquely decodable
source compaction code C is larger or equal to the entropy H(X) of the source X. In this section,
we show that it is always possible to construct a uniquely decodable with an average codeword
length which is arbitrarily close to the source’s entropy.

Theorem (Upper Bound on the Average Codeword Length):

Given a memoryless source X = {x1, . . ., xk, . . ., xK}, it is possible to construct a uniquely
decodable code C for which the average codeword length L(C) is upper bounded by:

L(C) <
H(X)
logb J

+ 1

Proof:

For this proof, we can choose the (J-ary) Shannon code construction where each codeword has
a specific length lk such that:

lk = �− logJ p(xk)� (2.60)

or, by definition of the ceiling function1:

− logJ p(xk) ≤ lk = �− logJ p(xk)� < − logJ p(xk) + 1 (2.61)

We must ensure that the code is uniquely decodable. Does it satisfy the Kraft inequality? From
the above inequality, we know that:

lk ≥ − logJ p(xk) or (2.62)
−lk ≤ logJ p(xk) (2.63)

Raising J by the left and right hand sides of the inequality,

J−lk ≤ J logJ p(xk) = p(xk) for k = 1, . . . , K. (2.64)
1�x�: smallest integer larger than or equal to the argument x.
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Summing over the set of source symbols:

K∑
k=1

J−lk ≤
K∑

k=1

p(xk) = 1 (2.65)

This implies that the code satisfies the Kraft inequality and can then be represented as a prefix
code or a uniquely decodable code.

Now consider that for the Shannon code, we also have:

lk < − logJ p(xk) + 1 (2.66)

Averaging on both sides of this inequality over all source symbols, i.e. for k = 1, . . . , K:

K∑
k=1

p(xk)lk <
K∑

k=1

p(xk) [− logJ p(xk) + 1] (2.67)

K∑
k=1

p(xk)lk < −
K∑

k=1

p(xk) logJ p(xk) +
K∑

k=1

p(xk) (2.68)

L(C) < H(X) + 1 (2.69)

where the entropy H(X) is the entropy of the source X expressed using base J . Converted to an
arbitry base b, one obtains:

L(C) <
H(X)
logbJ

+ 1 (2.70)

QED

Thus, a uniquely decodable code is lower bounded and upper bounded as:

H(X)
logb J︸ ︷︷ ︸

unique codewords

≤ L(C) <
H(X)
logb J

+ 1︸ ︷︷ ︸
existence of the code
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2.4.2.5 Encoding N i.i.d. source symbols

Let X = (X1, . . ., Xn, . . ., XN ) be a sequence of N independent and identically distributed (i.i.d.)
random variables (or a N -dimensional random vector) of entropy:

H(X) = H(X1) + . . . + H(Xn) + . . . + H(XN ) = NH(Xn) = NH(X) (2.71)

The average codeword length needed to represent the random vector X of alphabet size KN

(i.e. {x1, . . ., xK , xK+1, . . ., xKN }). The average (concatenated) codeword length LN (C) is N
times the average codeword length of the code use to encode a single source Xn, L(C):

LN (C) = NL(C) (2.72)

The average concatenated codeword length is bounded by:

H(X)
logb J

≤ LN (C) <
H(X)
logb J

+ 1 or (2.73)

NH(X)
logb J

≤ NL(C) <
NH(X)
logb J

+ 1 (2.74)

Then, dividing both sides of the equation by N ,

H(X)
logb J

≤ L(C) <
H(X)
logb J

+
1
N

where the average codeword length L(C) per source symbol can be made arbitrary close to the
entropy per symbol H(X) by increasing the number of symbols N being encoded, hence reducing
the ratio 1

N .
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2.4.3 Optimum coding (Huffman code)

Consider a source X = {x1, · · · , xK} with a distribution p(x) = {p(x1), · · · , p(xK)}. The problem
of source coding is to minimize the average codeword length L(C) of a uniquely decodable code C:

x1 ⇒ c1 = (c1,1, . . . , c1,l1)
...

...
...

xk ⇒ ck = (ck,1, . . . , ck,lk)
...

...
...

xK ⇒ cK = (cK,1, . . . , cK,lK )

(2.75)

where lk is, as previously, the length of the codeword ck used to represent the symbol xk and
M the codeword symbol alphabet size. The problem consists in minimizing the expected length of
the code for a given input distribution p(x).

min
{C}

L(C) = min
{C}

K∑
k=1

p(xk)lk (2.76)

Let the distribution of the source symbols be arranged in a decreasing order of probability:

p(x1) ≥ p(x2) ≥ . . . ≥ p(xk) . . . ≥ p(xK−1) ≥ p(xK) (2.77)

The source symbols are to be encoded using a prefix code (and thus a uniquely decodable code)
where the length of the codewords are l1, . . . , lK .

If for k < j, which means that p(xk) ≥ p(xj), the length lk > lj (which is not wanted), then
one can exchange the 2 codewords. The improvement, or reduction, ∆L in the average codeword
length, due to this permutation of codewords, is equal to:

∆L = [p(xk)lj + p(xj)lk]− [p(xk)lk + p(xj)lj ] (2.78)
= [p(xj)− p(xk)] [lk − lj ]

∆L ≤ 0

If the original code was already an optimum code then ∆L = 0.

2.4.3.1 Procedure to construct a binary Huffman code

a) Arrange the source symbols in order of decreasing probabilities:

p(x1) ≥ p(x2) ≥ . . . ≥ p(xk) . . . ≥ p(xK−1) ≥ p(xK)

For instance:

p(“E”) ≈ 10.3% ≥ p(“T”) ≈ 7.96% ≥ . . . ≥ p(“Z”) ≈ 0.05%
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b) Assign a “1” (or “0”) to the last digit of the Kth codeword cK and a “0” (or “1”) to the last
digit of codeword cK−1. Then the 2 codewords cK and cK−1 have the same codeword length
lK = lK−1.

cK−1 ⇒ (cK−1,1, . . . , cK−1,l(K−1)−1, 0)
cK ⇒ (cK,1, . . . , cK,lK−1, 1)

c) Form a new source X ′ where x′
k = xk for k = 1, 2, . . . , K−2, and create a new “pseudosymbol”

x′
K−1 = xK−1 ∪ xK . The resulting new distribution p′ is then given by:

p(x′
k) = p(xk) for 1 ≤ k ≤ K − 2 and

p(x′
K−1) = p(xK−1) + p(xK)

d) Rearrange the new set of probabilities (or distribution) such as:

p(x′
1) ≥ . . . ≥ p(x′

k) . . . ≥ p(x′
K−1)

e) Repeat steps 2 to 5 until all original source symbols {xk} have been encoded.

Example (Huffman code for single symbols):

Consider a source X = {x1, x2, x3, x4, x5} characterized with the following distribution p(x):
p(x1) = 0.35, p(x2) = 0.22, p(x3) = 0.18, p(x4) = 0.15 and p(x5) = 0.10. The entropy H(X) of this
source of information is then equal to:

H(X) = −
5∑

k=1

p(xk) log2 p(xk) = 2.1987 Sh

This source can be encoded using a binary Huffman code. Table 2.2 and Figure 2.4 shown
below, indicate the resulting codewords {ck = (ck,1, · · · , ck,lk)} along with the codeword length lk
for this particular source of information.

The average codeword length L is equal to:

L =
5∑

k=1

p(xk) lk = 2.25 bits/source symbol

providing a variable-length source code efficiency ξ of 97.7%:

ξ =
H(X)

L
=

2.1987 Sh

2.25 bits
= 97.7%
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p(x1) = 0.35

p(x2) = 0.22

p(x3) = 0.18

p(x4) = 0.15

p(x5) = 0.10

0.35

0.22

0.18

0.25

0.35

0.40

0.25

0.60

0.40

1.00✲ ✲ ✲ ✲

✲ ✲ ✲

✲

✲ ✲�

�

� �

1

0

1

0

1

0

1

0

Figure 2.4: Binary Huffman code structure

Table 2.2: Huffman code for single symbols

Symbol Probability Codeword Length
xk p(xk) ck = (ck,1, · · · , ck,lk) lk

x1 p(x1) = 0.35 0 0 2
x2 p(x2) = 0.22 1 0 2
x3 p(x3) = 0.18 1 1 2
x4 p(x4) = 0.15 0 1 0 3
x5 p(x5) = 0.10 0 1 1 3

Example (Huffman code for pairs of symbols):

Let now construct another binary Huffman code, but this time to encode pairs of source symbols
xk (i.e., digrams): xk ≡ (xi, xj). The entropy H(X) of the source of digrams is now:

H(X) = −
25∑

k=1

p(xk) log2 p(xk) = 4.3974 Sh/digram = 2.1987 Sh/source symbol

while the average codeword length L becomes (see table 2.3 on next page):

L =
25∑

k=1

p(xk) lk = 4.4196 bits/digram = 2.2098 bits/source symbol
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The Huffman code efficiency ξ has then increased to the ratio:

ξ =
H(X)

L
=

4.3974 Sh/digram

4.4196 bits/digram
= 99.5%
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Table 2.3: Huffman code for digram sourcewords xk = (xi, xj)

Sourceword Probability Codeword Length
xk = (xi, xj) p(xk) = p(xi)p(xj) ck = (ck,1, · · · , ck,lk) lk

x1 = (x1, x1) 0.1225 1 0 0 3
x2 = (x1, x2) 0.0770 0 0 0 1 4
x3 = (x2, x1) 0.0770 0 0 1 0 4
x4 = (x1, x3) 0.0630 0 1 1 0 4
x5 = (x3, x1) 0.0630 0 1 1 1 4
x6 = (x1, x4) 0.0525 1 0 1 1 4
x7 = (x4, x1) 0.0525 1 1 0 0 4
x8 = (x2, x2) 0.0484 1 1 1 0 4
x9 = (x2, x3) 0.0396 0 0 1 1 0 5
x10 = (x3, x2) 0.0396 0 0 0 0 1 5
x11 = (x1, x5) 0.0350 0 0 1 1 1 5
x12 = (x5, x1) 0.0350 0 1 0 0 0 5
x13 = (x2, x4) 0.0330 0 1 0 0 1 5
x14 = (x4, x2) 0.0330 0 1 0 1 0 5
x15 = (x3, x3) 0.0324 1 0 1 0 0 5
x16 = (x3, x4) 0.0270 1 0 1 0 1 5
x17 = (x4, x3) 0.0270 1 1 0 1 0 5
x18 = (x4, x4) 0.0225 1 1 1 1 0 5
x19 = (x2, x5) 0.0220 1 1 1 1 1 5
x20 = (x5, x2) 0.0220 0 0 0 0 0 0 6
x21 = (x3, x5) 0.0180 0 0 0 0 0 1 6
x22 = (x5, x3) 0.0180 0 1 0 1 1 0 6
x23 = (x4, x5) 0.0150 0 1 0 1 1 1 6
x24 = (x5, x4) 0.0150 1 1 0 1 1 0 6
x25 = (x5, x5) 0.0100 1 1 0 1 1 1 6
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2.4.3.2 Non-binary Huffman codes

Let X = {x1, · · · , xK} be the source of information with the distribution p(x) = {p(x1), · · · , p(xK)}
and let the codeword symbol alphabet size M �= 2. A non-binary Huffman code C can be contructed
as indicated below on Figure 2.5. Note that, this time, since the number of source symbols K may
not be exactly equal to c(M − 1) + M , where c is an arbitrary integer.

p(x1)(1)

p(x2)(1)

p(x3)(1)

...

p(xM )(1)

p(xM+1)(1)

p(xM+2)(1)

...

p(x2M−1)(1)

p(x2M )(1)

p(x2M+1)(1)

...

p(x3M−2)(1)

p(x1)(2)

p(x2)(2)

p(x3)(2)

...

p(xM )(2)

p(xM+1)(2)

p(xM+2)(2)

...

p(x2M−1)(2)

p(x1)(3)

p(x2)(3)

p(x3)(3)

...

p(xM )(3)

p(x1)(4) = 1✲ ✲ ✲

✲ ✲

✲ ✲

✲ ✲

✲

✲

✲

�

�

�

�

�

�

0

0

0

1

1

1

2

2

2

...

...

...

M − 1

M − 1

M − 1

Figure 2.5: Structure of a non-binary Huffman code



        

66 CHAPTER 2. DISTORTIONLESS SOURCE CODING

2.5 Fixed length source compaction codes (Shannon source coding
theorem)

Consider a sourcewords, or sequences of information, of length N , generated by a discrete memory-
less source X of independent and identically distributed (i.i.d.) random variables with of entropy
H(X). These sourcewords are to be Consider a sourcewords, or sequences of information, of length
N , generated by a discrete memoryless source X of encoded into codewords of blocklength L where
each component is taken from an alphabet of size J .

✲
Source X = {x1, . . . , xK}
p = {p(x1), . . . , p(xK)}

Entropy H(X)

KN distinct sourcewords
(x1, . . . , xn, . . . , xN )

where xn ∈ {0, . . . , K − 1}
Fixed length

source encoder
✲

JL distinct codewords
(y1, . . . , yl, . . . , yL)

where yl ∈ {0, . . . , J − 1}

Figure 2.6: Fixed length source compaction encoder.

Theorem (Shannon Source Coding Theorem)

Consider a memoryless source X of entropy H(X). It is possible to construct a fixed length
source compaction code that encode sourcewords of length N into codewords of length L, having
an arbitrary small block decoding failure probability Pe, provided that:

a) L logb J > NH(X) and

b) N ≥ N0 (sufficiently large)

where b is the base of the source entropy H(X).
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Proof:

The set of all KN sourcewords can be partionned into the sets of typical sequences, i.e. TX(δ),
and the set of non typical, or unlikely, sequences T c

X(δ). The number of typical sequences ‖TX(δ)‖
is bounded as:

(1− ε)bN [H(X)−δ] < ‖TX(δ)‖ < bN [H(X)+δ] (2.79)

The maximum number of possible codewords of length L is JL whereas the number of typical
sequences of the information source X is upper bounded by bN [H(X)+δ].

If, as required by the theorem, the alphabet size J and the codeword length L are such that
L logb J > NH(X), then, raising b by both terms of the inequality:

L logb J > NH(X) implies that (2.80)
bL logb J > bNH(X) (2.81)

JL > bNH(X) (2.82)

The parameter δ that defines the typical sequences, can be chosen such that both sides are
equal (by allowing a sufficient number of sequences to be considered as typical:

JL︸︷︷︸
codewords

≥ bN [H(X)+δ]︸ ︷︷ ︸
typical sequences

(2.83)

hence providing a unique codeword for each typical sequence, the number of which can not be greater
that bN [H(X)+δ].

Therefore, the set of non encodable sequences (sourcewords) is contained in the set of atypical
sequences T c

X(δ). For N sufficiently large, i.e. N ≥ N0, the probability that a source sequence
is in the set of atypical sequences T c

X(δ) is smaller than ε. Therefore the probability of having a
sourceword that is not typical, or the probability of an error decoding failure can be made arbitrary
small: Pe ≤ ε.

QED
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Example (Fixed Length Source Compaction Encoder):

Let X represent a memoryless source of information with the probabilities p(x1) = 0.1 and
p(x2) = 0.9. Its entropy H(X) is:

H(X) = −
2∑

i=1

p(xi) log2 p(xi) = − [(0.1) log2 (0.1) + (0.9) log2 (0.9)]

H(X) = 0.4690 (Shannons)

✲

Source X = {x1, x2}
Entropy H(X) = 0.4690

2N sourcewords
xn ∈ {0, 1}

Rate 3
4

source compaction
encoder

✲

2L codewords
yl ∈ {0, 1}

Figure 2.7: Rate 3
4 fixed length source compaction encoder.

Suppose that we use the fixed length source compaction encoder depicted on Figure 2.7 to
encode N -bit sourcewords into L bits binary codewords, where N = 4 and L = 3, hence resulting
in a rate 3

4 source encoder. We note that the condition of Shannon source coding theorem is
satisfied, that is:

H(X) = 0.4690 ≤ L

N
=

3
4

= 0.75 (with K = J = 2)

There are 24 = 16 possible sourcewords of length 4. However, there are only 23 = 8 possible
codewords of length L.
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We can partition the 16 sourcewords into a set of 7 typical sequences TX(δ) which will be
assigned to a unique codeword and a set of 9 non typical sequences T c

X(δ) which will be represented
by a default codeword. The probabilities of the sourcewords are, in increasing order:

p(x1)4 = 0.0001
(4
4

)
= 1 sourceword

p(x1)3p(x2) = 0.0009
(4
3

)
= 4 sourcewords

p(x1)2p(x2)2 = 0.0081
(4
2

)
= 6 sourcewords

p(x1)p(x2)3 = 0.0729
(4
1

)
= 4 sourcewords

p(x2)4 = 0.6561
(4
0

)
= 1 sourceword

The probability 1− Pe of faithful decoding, or of transmitting a sourceword which is in the set
of typical sequence is:

1− Pe =

(
4
0

)
︸ ︷︷ ︸

1

p(x2)4 +

(
4
1

)
︸ ︷︷ ︸

4

p(x1)p(x2)3 + min

((
4
2

)
, 2

)
︸ ︷︷ ︸

2

p(x1)2p(x2)2

1− Pe = 0.6561 + (4× 0.0729) + (2× 0.0081) = 9.6390× 10−1

The decoding error probability Pe is then equal to 3.6100× 10−2 or 3.61%.

Now, let the sourceword blocklength be increased from N = 4 to N = 8 and the codeword
blocklength increased from L = 3 to L = 6, thus keeping the code rate R = 6

8 = 0.75 as before.
The entropy per source symbol H(X) remains the same as well, that is H(X) = 0.4690.

There are now 28 = 256 8-bit sourcewords to be encoded into 26 = 64 6-bit codewords. A
unique 6-bit codeword is assigned to each of the 63 most likely sourcewords, or typical sequences
(in TX(δ)), and the remaining 193 sourcewords (atypical sequences in T c

X(δ)) are encoded into the
default 6-bit codeword. The probabilities of the 8-bit sourcewords are:

p(x1)8 = 1.0000× 10−8 (8
8

)
= 1 sourceword

p(x1)7p(x2) = 9.0000× 10−8 (8
7

)
= 8 sourcewords

p(x1)6p(x2)2 = 8.1000× 10−7 (8
6

)
= 28 sourcewords

p(x1)5p(x2)3 = 7.2900× 10−6 (8
5

)
= 56 sourcewords

p(x1)4p(x2)4 = 6.5610× 10−5 (8
4

)
= 70 sourcewords

p(x1)3p(x2)5 = 5.9049× 10−4 (8
3

)
= 56 sourcewords

p(x1)2p(x2)6 = 5.3144× 10−3 (8
2

)
= 28 sourcewords

p(x1)p(x2)7 = 4.7830× 10−2 (8
1

)
= 8 sourcewords

p(x2)8 = 4.3047× 10−1 (8
0

)
= 1 sourceword
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The faithful decoding probability 1− Pe is then:

1− Pe =

(
8
0

)
︸ ︷︷ ︸

1

p(x2)8 +

(
8
1

)
︸ ︷︷ ︸

8

p(x1)p(x2)7 +

(
8
2

)
︸ ︷︷ ︸

28

p(x1)2p(x2)6

+ min

((
8
3

)
, 26

)
︸ ︷︷ ︸

26

p(x1)3p(x2)5

1− Pe = 4.3047× 10−1 + (8× 4.7830× 10−2) + (28× 5.3144× 10−3)
+(26× 5.9049× 10−4)

1− Pe = 9.7726× 10−1

The decoding error probability Pe is then equal to 2.2739 × 10−2 or 2.2739%. Therefore, for
the same source entropy H(X) = 0.4690 and the same code rate R = L

N = 6
8 = 3

4 = 0.75,
the decoding error probability decreased from Pe = 3.61% to Pe = 2.2739% by increasing the
sourceword blocklength from N = 4 to N = 8.

Theorem (Converse of the Source Coding Theorem)

Let ε > 0. Given a memoryless source X of entropy H(X), a codeword alphabet size J and a
codeword length L, if:

a) L logb J < NH(X) and

b) N ≥ N0

then the probability of decoding failure Pe is lower bounded by:

Pe > 1− ε
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Example (Fixed Length Source Compaction Encoder Revisited):

Let X be a memoryless source of information but this times with the following probabilities
p(x1) = 0.3 and p(x2) = 0.7. The new source entropy H(X) is:

H(X) = −
2∑

i=1

p(xi) log2 p(xi) = − [(0.3) log2 (0.3) + (0.7) log2 (0.7)]

H(X) = 0.88129 (Shannons)

Suppose that the sourcewords are again encoded with the same source compaction encoder of
rate R = L

N = 0.75 (see Figure 2.8) as was used in the previous example (where the source entropy
was only 0.4690 bits). Therefore,

R =
L

N
= 0.75 < H(X) = 0.88129

and this code do not satisfy the condition of the source coding theorem.

✲

Source X = {x1, x2}
Entropy H(X) = 0.88129

2N sourcewords
xn ∈ {0, 1}

Rate R = L
N = 0.75

source compaction
encoder

✲

2L codewords
yl ∈ {0, 1}

Figure 2.8: Rate R = L
N fixed length source compaction encoder.

If we encode the N -bit sourcewords into L bits binary codewords with N = 4 and L = 3, and
partition the 16 sourcewords into the set of 7 typical sequences TX(δ) and the set of 9 non typical
sequences T c

X(δ), then the probabilities of the sourcewords will be:

p(x1)4 = 2.4010× 10−1 (4
4

)
= 1 sourceword

p(x1)3p(x2) = 1.0290× 10−1 (4
3

)
= 4 sourcewords

p(x1)2p(x2)2 = 4.4100× 10−2 (4
2

)
= 6 sourcewords

p(x1)p(x2)3 = 1.8900× 10−2 (4
1

)
= 4 sourcewords

p(x2)4 = 8.1000× 10−3 (4
0

)
= 1 sourceword
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and the probability 1− Pe is in that case given by:

1− Pe = p(x2)4 + (4× p(x1)p(x2)3) + (2× p(x1)2p(x2)2)
1− Pe = 2.4010× 10−1 + (4× 1.0290× 10−1) + (2× 4.4100× 10−2)
1− Pe = 7.3990× 10−1

leading to a decoding error probability Pe of 2.6010× 10−1 or 26.01%.

Increasing the sourceword blocklength to N = 8 and the codeword blocklength to L = 6, for
the same code rate R = 6

8 = 0.75, the 8-bit sourceword probabilities become:

p(x1)8 = 6.5610× 10−5 (8
8

)
= 1 sourceword

p(x1)7p(x2) = 1.5309× 10−4 (8
7

)
= 8 sourcewords

p(x1)6p(x2)2 = 3.5721× 10−4 (8
6

)
= 28 sourcewords

p(x1)5p(x2)3 = 8.3349× 10−4 (8
5

)
= 56 sourcewords

p(x1)4p(x2)4 = 1.9448× 10−3 (8
4

)
= 70 sourcewords

p(x1)3p(x2)5 = 4.5379× 10−3 (8
3

)
= 56 sourcewords

p(x1)2p(x2)6 = 1.0588× 10−2 (8
2

)
= 28 sourcewords

p(x1)p(x2)7 = 2.4706× 10−2 (8
1

)
= 8 sourcewords

p(x2)8 = 5.7648× 10−2 (8
0

)
= 1 sourceword

The 256 8-bit sourcewords are encoded into 63 unique 6-bit codewords and the 193 sourcewords
encoded into a default codeword. The faithful decoding probability 1− Pe is then:

1− Pe = 5.7648× 10−2 + (8× 2.4706× 10−2) + (28× 1.0588× 10−2)
+(26× 4.5379× 10−3)

1− Pe = 6.6976× 10−1

and the decoding error probability Pe = 3.3024 × 10−1. Therefore, by increasing the sourceword
length from N = 4 to N = 8, the decoding error probability did increase from 26.01% to 33.024%!
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2.6 Discrete sources with memory

So far, we have only considered sequences of independent, identically distributed (i.i.d.) random
variables. We now consider information sources represented by random variables that are dependent
from each other. The probability of a random vector, p(x), is characterized by:

p(x) = p(x1, . . . , xn, . . . , xN ) �=
N∏

n=1

p(xn) (2.84)

We can represent a sequence of random variables {Xn}n=1,...,N , as a discrete-time random
process. Here, we will assume that the information source can be modeled as a stationary random
process.

Definition (Stationary Random Process):

A random process is said to be stationary if the joint distribution of any subset of the sequence
of random variables, is invariant with respect to a time shift τ .

fX(x1, . . . , xN ; t1, . . . , tN ) = fX(x1, . . . , xN ; t1 + τ, . . . , tN + τ) where τ ∈ R

For a discrete-time random process, this stationarity property can be written as:

Pr{X1 = x1, . . . , XN = xN} = Pr{X1+l = x1, . . . , XN+l = xN}

where l is a discrete-time shift.

Definition (Markovian Random Process):

A discrete-time random process {X1, . . . , Xn, . . . , XN} is termed a Markov process if, for 1 ≤
n ≤ N :

Pr{Xn+1 = xn+1|X1 = x1, . . . , Xn = xn} = Pr{Xn+1 = xn+1|Xn = xn}
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The joint probability can be rewritten from the general expression:

p(x1, . . . , xn) = p(x1) p(x2|x1) p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1)
p(x1, . . . , xn) = p(x1) p(x2|x1) p(x3|x2) . . . p(xn|xn−1) (2.85)

Definition (Time-invariant Markov Chain):

A Markov process, or Markov chain, is said to be time-invariant, if the conditional probabilities
{p(xn+1|xn)} do not depend on the time index, that is, if:

Pr(X2 = x2|X1 = x1) = Pr(Xn+1 = x2|Xn = x1) for 1 ≤ n ≤ N

Definition (Entropy Rate):

For a source with memory, the entropy rate HR(X) is defined as the average information content
per source symbol:

HR(X) = lim
N→∞

1
N

H(X1, . . . , Xn, . . . , XN )

where the limit exists.

Example (Entropy Rate of a Memoryless Source):

Consider a memoryless source X where the random variables are, by definition, independent
but not necessarily identically distributed. The entropy rate HR(X) is:

HR(X) = lim
N→∞

1
N

H(X1, . . . , Xn, . . . , XN ) (2.86)

Using the chain rule for the entropy:

HR(X) = lim
N→∞

1
N

[H(X1) + H(X2|X1) + . . . + H(XN |X1, X2, . . . , XN−1)]

= lim
N→∞

1
N

[H(X1) + H(X2) + . . . + H(XN )] (2.87)

HR(X) = lim
N→∞

1
N

N∑
n=1

H(Xn) (independence of variables)
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Therefore,

HR(X) = lim
N→∞

1
N

N∑
n=1

H(Xn)

Note that the limit may, or may not, exist.

a) if the random variables {Xn}n=1,...,N are identically distributed, then the entropy H(Xn) will
be the same for all n.

Xn ❀ X ⇒ p(x) = {p(xk)} (unique distribution)

The entropy rate HR(X) for the independent, identically distributed random variables case
is:

HR(X) = lim
N→∞

1
N

N∑
n=1

H(Xn)

= lim
N→∞

1
N

N∑
n=1

H(X)

= lim
N→∞

N

N
H(X)

HR(X) = H(X)

The entropy rate HR(X) of a memoryless source of i.i.d. random variables is simply the
entropy H(X) of the random variable X.

b) if the random variables {Xn}n=1,...,N are not identically distributed, the limit may not exist.
For instance, consider the following binary distribution p(x) = {p(x1,n), p(x2,n)}:

p(x1,n) =

{
0.5 for 2k′ < logb logb n ≤ 2k′ + 1
0.0 for 2k′ + 1 < logb logb n ≤ 2k′ + 2

where k′ is a positive integer.

i) for 2 < n ≤ 4: p(x1) = 0.5, p(x2) = 0.5 and H(X3) = H(X4) = 1 Sh;

ii) for 4 < n ≤ 16: p(x1) = 0.0, p(x2) = 1.0 and H(X5) = . . . = H(X16) = 0 Sh;

iii) for 16 < n ≤ 256: p(x1) = 0.5, p(x2) = 0.5 and H(X17) = . . . = H(X256) = 1 Sh;

iv) for 256 < n ≤ 65, 536: p(x1) = 0.0, p(x2) = 1.0 and H(X257) = . . . = H(X65,536) = 0 Sh;
and so on.

For this specific distribution, we observe that the running average of the entropy H(Xn), as
n increases, oscillates from H(Xn) = 0 Sh to H(Xn) = 1 Sh. Then

HR(X) = lim
N→∞

1
N

N∑
n=1

H(Xn)
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does not converge (see Figure 2.9). Then the entropy rate HR(X) is not defined on this
particular distribution.

n = 0 log2 n = −∞ log2 log2 n = ∅
n = 1 log2 n = 0.000 000 log2 log2 n = −∞
n = 2 log2 n = 1.000 000 log2 log2 n = 0.000 000
n = 3 log2 n = 1.584 963 log2 log2 n = 0.664 449
n = 4 log2 n = 2.000 000 log2 log2 n = 1.000 000
n = 5 log2 n = 2.321 928 log2 log2 n = 1.215 323
n = 6 log2 n = 2.584 963 log2 log2 n = 1.370 143
n = 7 log2 n = 2.807 355 log2 log2 n = 1.489 211
n = 8 log2 n = 3.000 000 log2 log2 n = 1.584 963

...
...

...
n = 15 log2 n = 3.906 891 log2 log2 n = 1.966 021
n = 16 log2 n = 4.000 000 log2 log2 n = 2.000 000
n = 17 log2 n = 4.087 463 log2 log2 n = 2.031 206

...
...

...
n = 32 log2 n = 5.000 000 log2 log2 n = 2.321 928

...
...

...
n = 64 log2 n = 6.000 000 log2 log2 n = 2.584 963

...
...

...
n = 128 log2 n = 7.000 000 log2 log2 n = 2.807 355

...
...

...
n = 255 log2 n = 7.994 353 log2 log2 n = 2.998 981
n = 256 log2 n = 8.000 000 log2 log2 n = 3.000 000
n = 257 log2 n = 8.005 625 log2 log2 n = 3.001 014

...
...

...
n = 65, 535 log2 n = 15.999 978 log2 log2 n = 3.999 998
n = 65, 536 log2 n = 16.000 000 log2 log2 n = 4.000 000
n = 65, 537 log2 n = 16.000 022 log2 log2 n = 4.000 002

...
...

...
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Figure 2.9: Entropy rate HR(X) and entropy H(X) of source X.
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2.7 Properties of a stationary source:

Consider a stationary source of information X.

Property I:

H(XN |X1, . . . , XN−1) ≤ H(XN−1|X1, . . . , XN−2)

Proof:

H(XN−1|X1, . . . , XN−2) = H(XN |X2, . . . , XN−1)

by stationarity (time-shift l = 1). But

H(XN |X2, . . . , XN−1) ≥ H(XN |X1, X2, . . . , XN−1)

On the right hand side of the inequality, the uncertainty about XN is reduced, or at most
equal, by the observation of X1. Therefore, as expected:

H(XN |X1, . . . , XN−1) ≤ H(XN−1|X1, . . . , XN−2)

QED

Property II:

H(XN |X1, . . . , XN−1) ≤
1
N

H(X1, . . . , XN )

Proof:

Consider the entropy of the random vector X = (X1, . . . , XN ):

H(X1, . . . , XN ) = H(X1) + H(X2|X1) + . . . + H(XN |X1, . . . , XN−1)

H(X1, . . . , XN ) =
N∑

n=1

H(Xn|X1, . . . , Xn−1)

but we know, from property I, that:

H(Xn|X1, . . . , Xn−1) ≤ H(Xn−1|X1, . . . , Xn−2) for 1 ≤ n ≤ N

or
H(XN |X1, . . . , XN−1) ≤ H(Xn|X1, . . . , Xn−1)
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for 1 ≤ n ≤ N . Summing each side over N :

N∑
n=1

H(XN |X1, . . . , XN−1) ≤
N∑

n=1

H(Xn|X1, . . . , Xn−1)

N H(XN |X1, . . . , XN−1) ≤ H(X1, . . . , XN ) or

H(XN |X1, . . . , XN−1) ≤
1
N

H(X1, . . . , XN )

QED

Property III:

1
N

H(X1, . . . , XN ) ≤
(

1
N − 1

)
H(X1, . . . , XN−1)

Proof: The entropy H(X) can be expressed as the following sum of entropy and equivocation:

H(X1, . . . , XN ) = H(X1, . . . , XN−1) + H(XN |X1, . . . , XN−1)

Using property II, we obtain the inequality:

H(X1, . . . , XN ) ≤ H(X1, . . . , XN−1) +
1
N

H(X1, . . . , XN )(
N − 1

N

)
H(X1, . . . , XN ) ≤ H(X1, . . . , XN−1) or

H(X1, . . . , XN ) ≤
(

N

N − 1

)
H(X1, . . . , XN−1) or

Dividing both sides of the inequality by N :

1
N

H(X1, . . . , XN ) ≤
(

1
N − 1

)
H(X1, . . . , XN−1)

QED

Property IV:

lim
N→∞

1
N

H(X1, . . . , XN ) = lim
N→∞

H(XN |X1, . . . , XN−1)

Proof: We prove this result in two steps:
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a) Consider property II:

H(XN |X1, . . . , XN−1) ≤
1
N

H(X1, . . . , XN )

Since both sides of the inequality are positive and decreasing functions of the blocklength
N , the limit as N goes to infinity exists. Taking the limit as N → ∞, the inequality
holds:

lim
N→∞

H(XN |X1, . . . , XN−1) ≤ lim
N→∞

1
N

H(X1, . . . , XN )

lim
N→∞

1
N

H(X1, . . . , XN ) ≥ lim
N→∞

H(XN |X1, . . . , XN−1)

b) Consider the (N + l) terms in the entropy per symbol, where l is a positive integer
indicating a discrete time-shift.

(
1

N + l

)
H(X1, . . . , XN+l) =

(
1

N + l

)
[H(X1, . . . , XN−1) + H(XN |X1, . . . , XN−1)

+ . . . + H(XN+l|X1, . . . , XN+l−1)](
1

N + l

)
H(X1, . . . , XN+l) =

(
1

N + l

) [
H(X1, . . . , XN−1) +

N+l∑
n=N

H(Xn|X1, . . . , Xn−1)

]

But, since the process is a stationary process, for N ≤ n ≤ N + l, we must have, by
property I:

H(XN |X1, . . . , XN−1) ≥ H(Xn|X1, . . . , Xn−1)

Summing both sides from n = N to n = N + l:

N+l∑
n=N

H(XN |X1, . . . , XN−1) ≥
N+l∑
n=N

H(Xn|X1, . . . , Xn−1)

(l + 1) H(XN |X1, . . . , XN−1) ≥
N+l∑
n=N

H(Xn|X1, . . . , Xn−1)

Then, the previous inequality can be rewritten as:(
1

N + l

)
H(X1, . . . , XN+l) ≤

(
1

N + l

)
H(X1, . . . , XN−1)

+
(

l + 1
N + l

)
H(XN |X1, . . . , XN−1)

For l→∞:

lim
l→∞

(
1

N + l

)
H(X1, . . . , XN+l) ≤ lim

l→∞

[(
1

N + l

)
H(X1, . . . , XN−1)

+
(

l + 1
N + l

)
H(XN |X1, . . . , XN−1)

]
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As l→∞,
(

1
N+l

)
→ 0 and

(
l+1
N+l

)
→ 1, while both H(X1, . . . , XN−1) and H(XN |X1, . . . , XN−1)

terms are finite. Thus,

lim
l→∞

(
1

N + l

)
H(X1, . . . , XN+l) ≤ H(XN |X1, . . . , XN−1)

The above inequality holds true for any value of N . Now, taking the limit as N → ∞
on both sides, yields to:

lim
N→∞

lim
l→∞

(
1

N + l

)
︸ ︷︷ ︸

N+l→∞

H(X1, . . . , XN+l) ≤ lim
N→∞

H(XN |X1, . . . , XN−1)

lim
N→∞

1
N

H(X1, . . . , XN ) ≤ lim
N→∞

H(XN |X1, . . . , XN−1)

Then, having also that opposite inequality (from the first part of the proof):

lim
N→∞

1
N

H(X1, . . . , XN ) ≥ lim
N→∞

H(XN |X1, . . . , XN−1)

This implies that:

lim
N→∞

1
N

H(X1, . . . , XN ) = lim
N→∞

H(XN |X1, . . . , XN−1)

which is the entropy rate HR(X) for a stationary source.

QED

Example (Markovian Source):

Consider a stationary binary source of information having memory, which can be represented
as a time-invariant Markovian source, as shown on Figure 2.10, where the transition probabilities
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

The transition probability matrix P between the two states (here each state represents a binary
symbol from the source, i.e., x1 and x2) of the Markov chain is given by:

P =

[
p(x(n+1)

1 |x(n)
1 ) p(x(n+1)

2 |x(n)
1 )

p(x(n+1)
1 |x(n)

2 ) p(x(n+1)
2 |x(n)

2 )

]
=

[
(1− α) α

β (1− β)

]

Since the distribution is assumed stationary, then the distribution at discrete time (n + 1) is
equal to the distribution at time n, i.e,

p(n+1) = p(n) P = p(n) = p
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x1 x2

p(x2|x1) = α

p(x1|x2) = β

p(x1|x1) p(x2|x2)

1− α 1− β

Figure 2.10: Two-state Markovian source Xn.

Then, the stationary distribution p has the following property:

p = [p(x1), p(x2)]

= [p(x1), p(x2)]

[
p(x1|x1) p(x2|x1)
p(x1|x2) p(x2|x2)

]

p = {[p(x1) p(x1|x1) + p(x2) p(x1|x2)] , [p(x1) p(x2|x1) + p(x2) p(x2|x2)]}

and therefore,

p(x1) = p(x1) (1− α) + p(x2) β and
p(x2) = p(x1) α + p(x2) (1− β)

From the first equation, since p(x2) = 1 − p(x1), the probability p(x1) can be expressed as a
function of the transition probabilities:

p(x1) = p(x1) (1− α) + p(x2) β

p(x1) = p(x1) (1− α) + [1− p(x1)] β

p(x1) = p(x1) (1− α− β) + β

p(x1) (α + β) = β

p(x1) =
β

α + β

Similarly, p(x2) is a function of the transition probabilities.
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p(x2) = p(x1) α + p(x2) (1− β)
p(x2) = [1− p(x2)] α + p(x2) (1− β)
p(x2) = p(x2) (−α + 1− β) + α

p(x2) (α + β) = α

p(x2) =
α

α + β

The stationary distribution p is then given by the following expressions: (which is not a function
of the time index n):

p(x1) =
β

α + β
and p(x2) =

α

α + β

The entropy H(Xn) of this Markovian source Xn (at discrete time n) is:

H(Xn) = −
2∑

k=1

p(xk) logb p(xk)

H(Xn) = −
[(

β

α + β

)
logb

(
β

α + β

)
+

(
α

α + β

)
logb

(
α

α + β

)]

or equivalently:

H(Xn) = H

[(
β

α + β

)
,

(
α

α + β

)]
= H(X)

Note that the entropy H(Xn) = H(X) is not a function of the time index n.

How does the joint entropy H(X1, . . . , Xn, . . .) grow as a function of time n? The answer is
provided by the entropy rate function HR(X):

HR(X) = lim
N→∞

1
N

H(X1, . . . , XN )

Since this process is assumed stationary, we can write that:

HR(X) = lim
N→∞

H(XN |X1, . . . , XN−1)
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Furthermore, since this particular process is also a stationary Markovian process:

HR(X) = lim
N→∞

H(XN |XN−1)

Finally, the stationary process is time-invariant:

HR(X) = lim
N→∞

H(XN |XN−1)

= lim
N→∞

H(X2|X1)

HR(X) = H(X2|X1)

For this specific case, the entropy rate HR(X) is equal to the equivocation of X2 given X1:

HR(X) = H(X2|X1)

HR(X) = −
2∑

k=1

2∑
j=1

p(x(1)
k ) p(x(2)

j |x
(1)
k ) logb p(x(2)

j |x
(1)
k )

HR(X) = −
2∑

k=1

p(x(1)
k )

2∑
j=1

p(x(2)
j |x

(1)
k ) logb p(x(2)

j |x
(1)
k )

HR(X) = −
{(

β

α + β

)
[(1− α) logb(1− α) + α logb α]

+
(

α

α + β

)
[β logb β + (1− β) logb(1− β)]

}

The entropy rate HR(X) for the stationary Markovian source is:

HR(X) =
(

β

α + β

)
︸ ︷︷ ︸

p(x1)

H(α) +
(

α

α + β

)
︸ ︷︷ ︸

p(x2)

H(β)

2.8 Universal Source Coding

For a source of information X of known distribution p = {p(xk)}k=1,...,K , it is possible to design
source compaction code C for which the average codeword length L(C) is close to the source entropy
H(X). Huffman codes, for instance, are variable-length prefix codes which make use of the source
statistics to assign short codewords to those source symbols which occurs often whereas unlikely
symbols are encoded with longer codewords.
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Unfortunately, how can one transmit the symbols generated by a source of information of
unknown statistics, i.e., for which we don’t know a priori the relative frequency of each symbol? A
solution for this problem consists in a coding scheme, called universal source coding, which compacts
the information from X without the knowledge of the source statistics.

2.8.1 Lempel-Ziv Code

We describe here a simple source compaction coding scheme, the Lempel-Ziv algorithm, which is
a universal coding algorithm. The Lempel-Ziv algorithm is used often to compact data files for
which the input distribution p is unknown.

Example (Lempel-Ziv coding):

Let X be a source of information for which we do not know the distribution p. Suppose that
we want to source encode the following sequence S generated by the source X:

S = 001000101110000011011010111101 . . .

Since the sequence is binary, often the two subsequences S1 = 0 and S2 = 1 are already stored.
We perform the Lempel-Ziv encoding process by searching the original sequence S for those new
subsequences which are the shortest and identify them as such:

S = 00︸︷︷︸
S3=00

1000101110000011011010111101 . . .

S = 00 10︸︷︷︸
S4=10

00101110000011011010111101 . . .

S = 0010 001︸︷︷︸
S5=001

01110000011011010111101 . . .

S = 0010001 01︸︷︷︸
S6=01

110000011011010111101 . . .

S = 001000101 11︸︷︷︸
S7=11

0000011011010111101 . . .

S = 00100010111 000︸︷︷︸
S8=000

0011011010111101 . . .

S = 00100010111000 0011︸ ︷︷ ︸
S9=0011

011010111101 . . .

S = 001000101110000011 011︸︷︷︸
S10=011

010111101 . . .

S = 001000101110000011011 010︸︷︷︸
S11=010

111101 . . .
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S = 001000101110000011011010 111︸︷︷︸
S12=111

101 . . .

S = 001000101110000011011010111 101︸︷︷︸
S13=101

. . .

We then proceed to complete the Lempel-Ziv encoding process by arranging the subsequences
in order of occurrence, or position, in the sequence S as shown on Table 2.4.

Table 2.4: Example of a Lempel-Ziv code.

position subsequence numerical binary
Sn representation codeword

1 S1 0
2 S2 1
3 S3 00 1 1 001 0
4 S4 10 2 1 010 0
5 S5 001 3 2 011 1
6 S6 01 1 2 001 1
7 S7 11 2 2 010 1
8 S8 000 3 1 011 0
9 S9 0011 5 2 101 1

10 S10 011 6 2 110 1
11 S11 010 6 1 110 0
12 S12 111 7 2 111 1
13 S13 101 4 2 100 1

The numerical representation is obtained by concatenating the previous subsequences to make
longer ones. For instance, the subsequence S3 = 00 is the concatenation of subsequence S1 = 0
with itself, whereas the subsequence S9 = 0011 is obtained from S5 = 001 and S2 = 1. The first
part of the subsequence is called root sequence or pointer while the last part is termed innovation
symbol.

The numerical representation of the subsequence is then binary encoded as shown on the last
column of Table 2.4. Note that there are only two different innovation symbols, namely 1 and 2,
which are binary encoded as 0 and 1. For the binary representation of the pointer, the standard
binary representation is used, e.g., the pointer 6 is encoded as 110.

Note that the Lempel-Ziv code is a fixed-length code, unlike the Huffman code which is a variable
length code. In practice, the blocklength of a Lempel-Ziv code 12 bits long which corresponds to
212 = 4096 different entries.
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The decoding process should allow for the unique decoding of the coded sequence into the original
source sequence S. Here the Lempel-Ziv encoded stream will be:

SC = 0010 0100 0111 0011 0101 0110 1011 1101 1100 1111 1001

The source decoder uses the pointer to determine the root subsequence and appends the innova-
tion symbol. For instance, the last codeword c(11) = 1001 as the pointer 100 = 4 which represents
S4 = 10, and appens to it the innovation symbol S2 = 1, leading to the source subsequence
S13 = 101.

Note: The actual compaction ratio obtained for standard English text files is about 55%.
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2.9 Problems

Problem 2.1: A source produces a sequence X = {X1, . . . , XN} of statistically independent binary digits
with the probabilities p(x1) = 0.995 and p(x2) = 0.005. These digits are taken 100 at a time and a
binary codeword is provided for every sequence of 100 digits containing three or fewer 1’s.

a) If the codewords are all of the same length, find the minimum length required to provide the
specified set of codewords.

b) Find the probability of getting a source sequence for which no codeword has been provided.

c) Use the Weak Law of Large Numbers to bound the probability of getting a sequence for which
no codeword has been provided and compare with part (b).

Problem 2.2: An information source X produces statistically independent binary digits with the following
probabilities: p(x1) = 3/4 and p(x2) = 1/4. Consider sequences of N binary digits, where the
probability of unlikely sequences T c

X(δ) is bounded as:

Pr

{∣∣∣∣∣− 1
N

N∑
n=1

log2 p(xn)−H(X)

∣∣∣∣∣ ≥ δ

}
≤ ε (2.88)

a) Using the Weak Law of Large Numbers, determine the minimum sequence length N0 such that
for N ≥ N0 the inequality holds when δ = 5× 10−2 and ε = 10−1.

b) Repeat for δ = 10−3 and ε = 10−6.

c) For these two cases, find the lower and upper bounds for the number of typical sequences
∥∥TX(δ)

∥∥.

Problem 2.3: For each of the following discrete memoryless sources, construct a binary and a ternary
Huffman code and find the corresponding average codeword length L in each case.

a) A source X with a six-letter alphabet having these probabilities: p(x1) = .33, p(x2) = .23,
p(x3) = .12, p(x4) = .12, p(x5) = .10 and p(x6) = .10.

b) A source X with a seven-letter alphabet having these probabilities: p(x1) = .35, p(x2) = .20,
p(x3) = .15, p(x4) = .15, p(x5) = .10, p(x6) = .03 and p(x7) = .02.

c) For the code in (b), construct two different binary Huffman codes with the same (minimum)
average codeword length L but different variances. Which code is preferable in practice and
why?

Problem 2.4: A source of information X generates binary sourcewords of length n = 4 with a binomial
distribution:

p(xk) =
(

n

k

)
pkqn−k, for 0 ≤ k ≤ n.

where p(xk) represents the probability of having a sourceword with k ones (1’s) and n−k zeroes (0’s).

a) Determine the source entropy (per 4-tuples) H(X) in Sh if p = 0.1 and q = 0.9.

b) Contruct a binary Huffman code C for that source. What is the code efficiency ξ?

c) Now suppose that the probabilities are changed to: p = 0.35 and q = 0.65. What is the entropy
H(X)? What is the efficiency of the Huffman code?

Problem 2.5: (Computer-oriented problem)

An information source X with a five-letter alphabet {x1, . . . , x5} has the probabilities: p(x1) = .04,
p(x2) = .09, p(x3) = .12, p(x4) = .29 and p(x5) = .46.
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a) Construct a binary Huffman code for this source and compare the average codeword length L
with the source entropy H(X).

b) Consider now a new source X ′ consisting of pairs (or digrams) of the five original letters:

X ′ ≡ {(x1, x1), (x1, x2), · · · , (x5, x5)}

Construct a binary Huffman code for this new source X ′ and compare its efficiency with the single
symbol Huffman code of a). Assume independent random variables, i.e. p(xi, xj) = p(xi)p(xj),
∀i, j.

c) Repeat b) for trigrams, i.e.:

X ′′ ≡ {(x1, x1, x1), (x1, x1, x2), · · · , (x5, x5, x5)}

Once again, assume independence: p(xi, xj , xk) = p(xi)p(xj)p(xk), ∀i, j and k.

Problem 2.6: A binary Markov source generates two symbols, x1 and x2. The transition probabilities
between the Markov chain states are:

p
(
x

(2)
1 |x

(1)
1

)
= p

(
x

(2)
2 |x

(1)
2

)
= ρ and

p
(
x

(2)
2 |x

(1)
1

)
= p

(
x

(2)
1 |x

(1)
2

)
= 1− ρ

a) Compute the source entropy H(X) (per source symbol).

b) Let ρ = 0.25. Construct a binary Huffman code C which encodes sourcewords of blocklength
N = 3 (i.e., blocks of 3 source symbols).

c) What is the average codeword length L(C) (per source symbol) of this Huffman code?

d) Compute the code efficiency ηC .



  

90 CHAPTER 2. DISTORTIONLESS SOURCE CODING



          

Chapter 3

Channel Coding for Noisy Channels

3.1 Convex sets and convex functions

3.1.1 Convex sets

Definition (Convex set):

A set of points S is convex if, for any pair of points p1 ∈ S and p2 ∈ S, any point p on the
straight line connecting p1 and p2 will be also in the set S.

In other words, if the point p1 ∈ S and the point p2 ∈ S then for any point p = λp1 +(1−λ)p2,
where λ ∈ [0, 1], will be contained in the same set S.

Let p1 = (x1, . . . , xN ) and p2 = (y1, . . . , yN ) be two points in an N -dimensional space. Any
point p on the line connecting p1 and p2 in that N -dimensional space can be expressed as:

p = λp1 + (1− λ)p2 where λ ∈ [0, 1] (3.1)

That is, for λ = 1, p = p1, whereas for λ = 0, p = p1, and for 0 < λ < 1, the point p is located
on the line connecting p1 and p2 on the N -dimensional space. Figure 3.1 illustrates a convex set
and a non-convex.

91
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x2x

x1

x2

x1

x

convex set non-convex set

Figure 3.1: Convex and non-convex sets.
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Example (Convex set):

Let p1 = (x1, x2, x3) and p2 = (y1, y2, y3) be two 3-dimensional probability distributions, i.e.,
two points in a 3-dimensional space. Let the set Sp = {p} be the set of all possible 3-dimensional
probability distributions. Therefore, for any valid 3-dimensional probability distribution p, we
must have the two following conditions:

p(xk) ≥ 0 for k = 1, 2, 3

as well as
3∑

k=1

p(xk) = 1

We can view the distribution p as a 3-dimensional vector, as depicted on figure 3.2.

p(x1)

p(x2)

p(x3)

p1 = (1/3,1/3,1/3)

p2 = (0,1/2,1/2)

Figure 3.2: Example of a 3-dimensional probability distribution.

If we connect p1 = (x1, x2, x3) and p2 = (y1, y2, y3) with a straight line p (i.e. the set of
distributions between p1 and p2), then:

p = λp1 + (1− λ)p2

p(xk) = λp1(xk) + (1− λ)p2(xk) for k = 1, 2, 3
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For each input symbol xk, since p1(xk), p2(xk), λ, and (1 − λ) are all positive, we must have
that

p(xk) = λp1(xk) + (1− λ)p2(xk) ≥ 0 ∀k

We note also that

3∑
k=1

p(xk) =
3∑

k=1

[λp1(xk) + (1− λ)p2(xk)]

3∑
k=1

p(xk) = λ
3∑

k=1

p1(xk) + (1− λ)
3∑

k=1

p2(xk)

3∑
k=1

p(xk) = λ + (1− λ) = 1

Therefore, any point p = λp1 + (1 − λ)p2 between two distributions p1 and p2 is also a valid
distribution, and this for any choice of pairs of distributions. Thus, the set Sp of all possible
N -dimensional distributions (in this example N = 3) forms a convex set.
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3.1.2 Convex functions

Definition (Convex function):

A real function f(x), defined on a convex set S (e.g., input symbol distributions), is concave
(convex down, convex “cap” or convex ∩) if, for any point x on the straight line between the pair
of points x1 and x2, i.e., x = λx1 + (1− λ)x2 (λ ∈ [0, 1]), in the convex set S:

f(x) ≥ λf(x1) + (1− λ)f(x2)

otherwise, if:

f(x) ≤ λf(x1) + (1− λ)f(x2)

then the function is said to be simply convex (convex up, convex “cup” or convex ∪).
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f(x)

x

f(x)

f(x1)

f(x2)

x1 x2 x

Figure 3.3: Convex ∩ (convex down or convex “cap”) function.

f(x)

x

f(x)

f(x1)

f(x2)

x1 x2 x

Figure 3.4: Convex ∪ (convex up or convex “cup”) function.
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3.1.3 Convexity (∩) of mutual information over input distributions

Theorem (Convexity of the mutual information function):

The (average) mutual information I(X;Y ) is a concave (or convex “cap”, or convex ∩) function
over the convex set Sp of all possible input distributions {p}.

I(X;Y ) = I(p;P)

I(p;P)
I(p1;P)

I(p2;P)

p1 p p2 p

Figure 3.5: Convexity (∩) of mutual information function over the set of input symbol distributions
Sp.

Proof:

The (average) mutual information function I(X;Y ) is a function of both the input symbol distri-
bution p = {p(xk)}k=1,...,K and the channel transition probabilities’ matrix P = {p(yj |xk)} k=1,...,K

j=1,...,J
.

I(X;Y ) =
K∑

k=1

J∑
j=1

p(xk)p(yj |xk) logb

[
p(yj |xk)∑K

l=1 p(xl)p(yj |xl)

]
(3.2)

= f [p(xk), p(yj |xk)]
I(X;Y ) = f (p,P)
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For channel coding, we want to evaluate the maximum transfer of information on a given channel
(i.e., for a given transition probability matrix P) over all possible input distributions Sp = {p}.
Consider two different input distributions:

p1 = {p1(xk)}k=1,...,K and p2 = {p2(xk)}k=1,...,K

The distribution p, between distributions p1 and p2 in the convex set Sp, can be expressed as:

p = λ p1 + (1− λ) p2 or (3.3)
p(xk) = λ p1(xk) + (1− λ) p2(xk) for k = 1, . . . , K

The corresponding output symbol distribution {p(yj)} is given by:

p(yj) =
K∑

k=1

p(xk) p(yj |xk) for j = 1, . . . , J (3.4)

=
K∑

k=1

[λ p1(xk) + (1− λ) p2(xk)] p(yj |xk)

= λ
K∑

k=1

p1(xk) p(yj |xk) + (1− λ)
K∑

k=1

p2(xk) p(yj |xk)

p(yj) = λp1(yj) + (1− λ)p2(yj)

which is also a convex set. We want to show that the mutual information is a concave (i.e., convex
∩) function of the input distribution p, that is:

f(x) ≥ λ f(x1) + (1− λ) f(x2) for x = λ x1 + (1− λ) x2 (3.5)
I(X;Y ) ≥ λ I(X1;Y1) + (1− λ) I(X2;Y2) over the convex set Sp

Consider the difference between the right-hand side and left-hand side terms in the above Equation
(3.5). If the statement is true about the convexity of I(X;Y ) then the difference is negative (or at
most equal to zero).

λ I(X1; Y1) + (1− λ) I(X2;Y2)− I(X;Y ) = λ
K∑

k=1

J∑
j=1

p1(xk)p(yj |xk) logb

p(yj |xk)
p1(yj)

+ (3.6)

(1− λ)
K∑

k=1

J∑
j=1

p2(xk)p(yj |xk) logb

p(yj |xk)
p2(yj)

−
K∑

k=1

J∑
j=1

p(xk)p(yj |xk) logb

p(yj |xk)
p(yj)

= λ
K∑

k=1

J∑
j=1

p1(xk)p(yj |xk) logb

p(yj |xk)
p1(yj)

+ (1− λ)
K∑

k=1

J∑
j=1

p2(xk)p(yj |xk) logb

p(yj |xk)
p2(yj)

−
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K∑
k=1

J∑
j=1

[λ p1(xk) + (1− λ) p2(xk)] p(yj |xk) logb

p(yj |xk)
p(yj)

(3.7)

= λ
K∑

k=1

J∑
j=1

p1(xk)p(yj |xk)

[
logb

p(yj |xk)
p1(yj)

− logb

p(yj |xk)
p(yj)

]
+ (3.8)

(1− λ)
K∑

k=1

J∑
j=1

p2(xk)p(yj |xk)

[
logb

p(yj |xk)
p2(yj)

− logb

p(yj |xk)
p(yj)

]

λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) = (3.9)

λ
K∑

k=1

J∑
j=1

p1(xk)p(yj |xk) logb

p(yj)
p1(yj)

+ (1− λ)
K∑

k=1

J∑
j=1

p2(xk)p(yj |xk) logb

p(yj)
p2(yj)

but since the ratios p(yj)
p1(yj)

and p(yj)
p2(yj)

are strictly positive, and that logb(x) = logb(e) ln(x), then
Equation (3.9) can be rewritten as:

λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) = (3.10)

(logb e)


λ

K∑
k=1

J∑
j=1

p1(xk)p(yj |xk) ln
p(yj)
p1(yj)

+ (1− λ)
K∑

k=1

J∑
j=1

p2(xk)p(yj |xk) ln
p(yj)
p2(yj)




Changing the summation order;

λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) = (3.11)

(logb e)


λ

J∑
j=1

K∑
k=1

p1(xk)p(yj |xk) ln
p(yj)
p1(yj)

+ (1− λ)
J∑

j=1

K∑
k=1

p2(xk)p(yj |xk) ln
p(yj)
p2(yj)




λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) = (3.12)

(logb e)


λ

J∑
j=1

p1(yj) ln
p(yj)
p1(yj)

+ (1− λ)
J∑

j=1

p2(yj) ln
p(yj)
p2(yj)




Therefore, since ln(x) ≤ (x− 1) for x > 0 then:

λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) ≤ (3.13)

(logb e)


λ

J∑
j=1

p1(yj)

[
p(yj)
p1(yj)

− 1

]
+ (1− λ)

J∑
j=1

p2(yj)

[
p(yj)
p2(yj)

− 1

]
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λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) ≤ (3.14)

(logb e)


λ


 J∑

j=1

p(yj)−
J∑

j=1

p1(yj)


 + (1− λ)


 J∑

j=1

p(yj)−
J∑

j=1

p2(yj)







λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) ≤ (logb e) {λ [1− 1] + (1− λ) [1− 1]} (3.15)

This implies that λ I(X1;Y1) + (1− λ) I(X2;Y2)− I(X;Y ) ≤ 0, that is:

I(X;Y ) ≥ λ I(X1;Y1) + (1− λ) I(X2;Y2)

for p(xk) = λ p1(xk) + (1−λ) p2(xk), for k = 1, . . . .K. The mutual information I(X;Y ) does have
a maximum over the set Sp of all possible input distributions {p}.

QED
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3.1.4 Convexity (∪) of mutual information over channel transition probability
matrices

Theorem (Convexity of the mutual information function):

The (average) mutual information I(X;Y ) is a convex (or convex “cup”, or convex ∪) function
over the convex set SP of all possible transition probability matrices {P}.

I(X;Y ) = I(p;P)

I(p;P1)

I(p;P2)

I(p;P)

P1 P P2 P

Figure 3.6: Convexity (∪) of mutual information function over the set of transition probability
matrices SP.

The proof is similar to the proof of the convexity (∩) of the mutual information over the input
distributions.
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3.2 Capacity of memoryless channel

3.2.1 Capacity of symmetric channels

A discrete memoryless channel is said to be symmetric if the set of output symbols {yj}j=1,...,J can
be partitionned into subsets such that for each subset of the matrix of transition probabilities, each
column is a permutation of each other and each row is also a permutation of each other row.

For instance, the binary symmetric channel has a transition probability matrix P1:

P1 =

(
1− ε ε

ε 1− ε

)

where each column and row are permutations of others.

However, if the crossover probabilities of another binary transition probability matrix P2 are
of different values:

P2 =

(
1− ε1 ε1

ε2 1− ε2

)

then the binary channel is no longer symmetrical.

Consider now a binary input and ternary output channel characterized by transition probability
matrix P3:

P3 =


 1− ε1 − ε2 ε2

ε1 ε1
ε2 1− ε1 − ε2




In this 2×3 matrix, the second column is a permutation of the first one but the row permutation
condition is not respected. However, if we partition the set of outputs {y1, y2, y3} into the two
subsets {y1, y3} and {y2} we obtain the following submatrices:

P′
3 =

(
1− ε1 − ε2 ε2

ε2 1− ε1 − ε2

)
and P′′

3 =
(

ε1 ε1
)

For each submatrix, each row and each column is a permutation of another. This results in a
channel which is said to be a weakly symmetric channel.

If we modify matrix P3 into P4 by exchanging the crossover probabilites as:
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P4 =


 1− ε1 − ε2 ε1

ε1 ε2
ε2 1− ε1 − ε2




then the channel is no longer symmetric since it is impossible to partition the set of outputs such
has to obey the row and column permutation condition.
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Theorem (Capacity of a symmetric channel):

For a discrete symmetric channel, the channel capacity C is achieved with an equiprobable
input distribution, i.e., p(xk) = 1

K ,∀k, and is given by:

C =


 J∑

j=1

p(yj |xk) logb p(yj |xk)


 + logb J

In other words, the capacity of the channel is given by the maximum of the mutual information
over all possible input distributions for a fixed set of channel transition probabilities. For symmetric
channels this maximum is obtained with an equiprobable input distribution.

Proof:

C = max
Sp

I(X;Y ) (3.16)

C = max
Sp


 K∑

k=1

J∑
j=1

p(xk, yj) logb

p(yj |xk)
p(yj)


 (3.17)

C = max
Sp


 K∑

k=1

J∑
j=1

p(xk)p(yj |xk) logb p(yj |xk)−
K∑

k=1

J∑
j=1

p(xk)p(yj |xk) logb p(yj)


 (3.18)

C = max
Sp


 K∑

k=1

p(xk)
J∑

j=1

p(yj |xk) logb p(yj |xk)−
J∑

j=1

logb p(yj)
K∑

k=1

p(xk, yj)


 (3.19)

C = max
Sp


 K∑

k=1

p(xk)
J∑

j=1

p(yj |xk) logb p(yj |xk)−
J∑

j=1

p(yj) logb p(yj)


 (3.20)

Since the channel is symmetric and thus each row and column is a permutation of the other in the
transition probability matrix, the sum

∑J
j=1 p(yj |xk) logb p(yj |xk) in the first term is independent

of the input k and thus does not affect the maximization of the mutual information.

The second term, −∑J
j=1 p(yj) logb p(yj) is simply the entropy H(Y ) of the output Y :

max
Sp


− J∑

j=1

p(yj) logb p(yj)


 = max

Sp

H(Y ) (3.21)

and H(Y ) is maximized when the outputs are equiprobable: p(yj) = 1
J for j = 1, . . . , J .
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H(Y ) = −
J∑

j=1

1
J

logb

1
J

= logb J (3.22)

which is obtained when the inputs are also equiprobable: p(xk) = 1
K (since the channel is symmet-

ric):

p(yj) =
K∑

k=1

p(xk, yj) =
K∑

k=1

p(xk)p(yj |xk) =
1
J

(3.23)

and then the capacity is:

C =


 J∑

j=1

p(yj |xk) logb p(yj |xk)


 + logb J (3.24)

QED
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3.2.2 Blahut-Arimoto algorithm (capacity of asymmetric channels)

Step 1: Choose an arbitrary input distribution:

p(0) = {p(0)(xk)}k=1,...,K

A good choice for the initial distribution p(0) is the equiprobable distribution.

Step 2: Compute the following terms:

a) coefficients ck:

ck = exp


 J∑

j=1

p(yj |xk) ln

(
p(yj |xk)∑K

l=1 p(xl) p(yj |xl)

)
 for k = 1, . . . , K

b) lower bound on I(X;Y ):

IL = ln
K∑

k=1

p(xk) ck

c) upper bound on I(X;Y ):

IU = ln
(

max
k=1,...,K

ck

)

Step 3: Test if the difference between IU and IL is smaller than a fixed tolerance ε:

IU − IL

?
≤ ε

yes: If the answer is yes then

C = IL

and stop the program.

no: Otherwise, if the answer is no, then change the input distribution:

p(n+1)(xk) =
p(n)(xk) ck∑K
l=1 p(xl)(n) cl

and go back to step 2.
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p(n) = p(0)

❄ ❄

ck(p(n)) = exp


 J∑

j=1
p(yj |xk) ln


 p(yj |xk)

K∑
l=1

p(xl) p(yj |xl)







IL = ln
K∑

k=1
p(xk) ck(p(n))

IU = ln
[

max
k=1,...,K

ck(p(n))
]

✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✟✟✟✟✟✟

❄
yes no

IU − IL < ε

❄
❄

C = IL
p(n+1)(xk) = p(n)(xk)

ck(p(n))
K∑

l=1

p(xl)(n) cl(p(n))

❄

✚✙

✛✘

stop

Figure 3.7: Blahut-Arimoto algorithm for computing the capacity of asymmetric channels (from
“Principles and Practice of Information Theory” by Richard E. Blahut).
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Example (Capacity of a Non Symmetric Channel (Blahut-Arimoto Algorithm)):

For this example, we want to compute the capacity C of a channel which has four inputs and
four inputs. In order to verify that the program functions properly, we begin with a symmetric
channel with the following transition probability matrix:

P1 =




0.4000 0.3000 0.2000 0.1000
0.1000 0.4000 0.3000 0.2000
0.3000 0.2000 0.1000 0.4000
0.2000 0.1000 0.4000 0.3000




We know that for the input distribution p∗ that maximizes the mutual information is the
equiprobable distribution, that is p∗ = (1

4 , 1
4 , 1

4 , 1
4). We set the threshold value ε = 10−6 to stop

the iterative algorithm. If we begin the Blahut-Arimoto algorithm with p∗, then we must obtain
the channel capacity C at the first iteration, i.e. without updating the input distribution since it
is the optimum one already:

n p(x1) p(x2) p(x3) p(x4) IU IL ε

1 0.2500 0.2500 0.2500 0.2500 0.1064 0.1064 0.0000

And the channel capacity is C = 0.1064 logons or 0.1536 shannons (dividing by ln(2)).

Now, let’s compute the channel capacity of the same symmetric channel P (using the Blahut-
Arimoto algorithm) but starting this time with a non equiprobable input distribution: p1 =
(0.1, 0.6, 0.2, 0.1).

At the beginning, the algorithm shows different values of IU and IL for that distribution. After
a few iterations, the algorithm converges rapidly towards the ideal distribution p∗ = (1

4 , 1
4 , 1

4 , 1
4)

and the capacity is obtained: C = 0.1064 logons (or C = 0.1536 shannons).
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n p(x1) p(x2) p(x3) p(x4) IU IL ε

1 0.1000 0.6000 0.2000 0.1000 0.1953 0.0847 0.1106
2 0.1073 0.5663 0.2155 0.1126 0.1834 0.0885 0.0949
3 0.1141 0.5348 0.2287 0.1249 0.1735 0.0916 0.0819
4 0.1204 0.5061 0.2394 0.1369 0.1650 0.0942 0.0708
5 0.1264 0.4802 0.2480 0.1484 0.1576 0.0963 0.0613
...

...
...

...
...

...
...

...
10 0.1524 0.3867 0.2668 0.1963 0.1326 0.1024 0.0302
...

...
...

...
...

...
...

...
20 0.1912 0.3037 0.2604 0.2448 0.1219 0.1057 0.0162
...

...
...

...
...

...
...

...
40 0.2320 0.2622 0.2476 0.2578 0.1110 0.1064 0.0046
...

...
...

...
...

...
...

...
80 0.2482 0.2515 0.2486 0.2516 0.1068 0.1064 0.0004
...

...
...

...
...

...
...

...
202 0.2500 0.2500 0.2500 0.2500 0.1064 0.1064 0.0000

Now consider the following non symmetric channel’s transition probability matrix P2:

P2 =




0.1000 0.2500 0.2000 0.1000
0.1000 0.2500 0.6000 0.2000
0.8000 0.2500 0.1000 0.2000
0.1000 0.2500 0.1000 0.5000




We initialize the input distribution p2 = (1
4 , 1

4 , 1
4 , 1

4) ( a good choice is the equiprobable distri-
bution even if the channel is not symmetric).

The algorithm provides the following results:
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n p(x1) p(x2) p(x3) p(x4) IU IL ε

1 0.2500 0.2500 0.2500 0.2500 0.4498 0.2336 0.2162
2 0.3103 0.1861 0.2545 0.2228 0.4098 0.2504 0.1595
3 0.3640 0.1428 0.2653 0.2036 0.3592 0.2594 0.0998
4 0.4022 0.1118 0.2804 0.1899 0.3289 0.2647 0.0642
...

...
...

...
...

...
...

...
8 0.4522 0.0450 0.3389 0.1639 0.2988 0.2763 0.0225
...

...
...

...
...

...
...

...
16 0.4629 0.0076 0.3732 0.1565 0.2848 0.2830 0.0018
...

...
...

...
...

...
...

...
32 0.4641 0.0002 0.3769 0.1588 0.2846 0.2844 0.0003
...

...
...

...
...

...
...

...
64 0.4640 0.0000 0.3768 0.1592 0.2844 0.2844 0.0000
65 0.4640 0.0000 0.3768 0.1592 0.2844 0.2844 0.0000

The capacity is C = 0.2844 logons (or C = 0.4103 shannons) and is obtained with the optimum
input distribution for this assymetric channel: p∗ = (0.4640, 0.0000, 0.3768, 0.1592). Note that the
second symbol x2 should not be used if we want to reach the channel capacity!
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3.3 Capacity of channels with memory

As we have seen, the capacity per symbol of discrete channels having memory is given by the limit,
as the blocklength N goes to infinity, of the maximum of the mutual information over the set
Sp(X1,...,XN )

of all possible input vectors, or sourcewords:

C = lim
N→∞

max
Sp(X1,...,XN )

1
N

I(X1, . . . , Xn, . . . , XN ;Y1, . . . , Yn, . . . , YN ) (3.25)

The mutual information between the input and output vectors, X and Y is the difference
between the entropy of the input vector H(X) and its equivocation H(X|Y) given the output
vector.

✚✙

✛✘

⊕✲ ✲

✻

X = X1, . . . , Xn, . . . , XN

E = E1, . . . , En, . . . , EN

Y = Y1, . . . , Yn, . . . , YN

error sequence
(noisy channel)

input sequence output sequence

Figure 3.8: Binary channel with memory.

Consider, as a noisy channel over which we want to send information data, a binary channel
with memory (see Figure 3.8). The vector E = (E1, . . . , En, . . . , EN ) is an error sequence which
indicates if the channel is in error or not at discrete time n.

The mutual information can be expressed as a function

I(X;Y) = H(X)−H(X|Y) (3.26)
I(X;Y) = H(X)−H(X|(X⊕E))
I(X;Y) = H(X)−H(X|E)

But since the uncertainty (i.e., equivocation) about the input vector
(X1, . . . , XN ) at the receiving end, depends solely on the error sequence (E1, . . . , EN ) then the
mutual information I(X1, . . . , XN ;Y1, . . . , YN ) is equal to the uncertainty about (X1, . . . , XN ) less
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the uncertainty about the error sequence (E1, . . . , EN ) itself.

I(X;Y) = H(X)−H(E) (3.27)

From Equation (3.25), the channel capacity C becomes:

C = lim
N→∞

max
Sp(x)

[H(X)−H(E)] (3.28)

The entropy H(E1, . . . , EN ) is often called channel entropy.

Example (Capacity of a binary symmetric channel):

This is a channel without memory. Nevertheless, its capacity can be determined using the
general expression (i.e., Equation (3.28)). It is also a symmetric channel: therefore, the input
distribution p∗ which leads to the channel capacity C is an equiprobable source distribution:
p(x1) = p(x2) = 1

2 .

✲

✲

✟✟✟✟✟✟✟✟✟✟✟✟✯❍❍❍❍❍❍❍❍❍❍❍❍❥

x1

x2

y1

y2

1− ε

1− ε

ε

ε

Figure 3.9: Binary symmetric channel.

The entropy (per symbol) of the source is then H(X) = 1 Sh. The channel entropy H(E) is:

H(E) = −
2∑

j=1

p(yj |xk) logb p(yj |xk) for k = 1, 2

H(E) = − [(1− ε) log2(1− ε) + ε log2 ε]

The channel capacity C is:

C = max
Sp

I(X;Y )

C = H(X)−H(E)
C = 1 + [(1− ε) log2(1− ε) + ε log2 ε]
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For instance, if the crossover probability ε = 0.025, then the channel capacity C = 0.830 Sh.
Note that the corresponding channel bit error rate (BER) is equal to ε, i.e., BER = 0.025:

BER =
K∑

k=1

p(xk)
J∑

j=1
j �=k

p(yj |xk)

BER = p(x1) p(y2|x1) + p(x2) p(y1|x2)

BER =
1
2
ε +

1
2
ε = ε

Example (Capacity of a binary symmetric channel with memory):

Consider now a binary symmetric channel with memory for which the crossover probability
p(yj |xk)j �=k = ε at every discrete time instant n but for which the occurrence of errors are not
independent (for instance, En may not be independent of En−1):

En =

{
1 with probability p(n)(yj |xk)j �=k = ε

0 with probability p(n)(yj |xk)j=k = 1− ε

The BER is still equal to ε, but the channel capacity C is affected by the memory of the channel.
Since the channel is symmetric, we know that the capacity is achieved with the equiprobable
distribution p∗, that is: p(x1) = p(x2) = 1

2 . If the error generation process in the noisy channel
is independent of the input, which is a fair assumption, then we can assume that the identically
distributed input random variables {Xn}n=1,...,N are also independent.

BER =
1
N

N∑
n=1


 K∑

k=1

p(n)(xk)
J∑

j=1
j �=k

p(n)(yj |xk)




BER =
1
N

N∑
n=1

[
p(n)(x1) p(n)(y2|x1) + p(n)(x2) p(n)(y1|x2)

]

BER =
1
N

N∑
n=1

[
1
2
ε +

1
2
ε

]

BER =
1
2
ε +

1
2
ε

BER = ε

The entropy per symbol of the source is H(X) = 1 Sh. The channel capacity C is:

C = lim
N→∞

max
Sp(X1,...,XN )

[I(X1, . . . , Xn, . . . , XN ;Y1, . . . , Yn, . . . , YN )]
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The capacity per symbol is:

C = lim
N→∞

max
SpX

[
1
N

I(X1, . . . , Xn, . . . , XN ;Y1, . . . , Yn, . . . , YN )
]

C = lim
N→∞

max
SpX

[
1
N

H(X1, . . . , Xn, . . . , XN )− 1
N

H(X1, . . . , Xn, . . . , XN |Y1, . . . , Yn, . . . , YN )
]

C = lim
N→∞

max
SpX

[
1
N

N∑
n=1

H(Xn)− 1
N

H(E1, . . . , En, . . . , EN |Y1, . . . , Yn, . . . , YN )

]

C = lim
N→∞

max
SpX

[
H(X)− 1

N
H(E1, . . . , En, . . . , EN |Y1, . . . , Yn, . . . , YN )

]

since the variables X1, . . . , Xn, . . . , XN are i.i.d. Considering that the equivocation of the error
sequence H(E1, . . . , En, . . . , EN |Y1, . . . , Yn, . . . , YN ), after the observation of the received symbols
Y1, . . . , Yn, . . . , YN , can be at most equal to the entropy itself H(E1, . . . , En, . . . , EN ), then:

C = lim
N→∞

max
SpX

[
H(X)− 1

N
H(E1, . . . , En, . . . , EN |Y1, . . . , Yn, . . . , YN )

]

C ≥ lim
N→∞

max
SpX

[
H(X)− 1

N
H(E1, . . . , En, . . . , EN )

]

C ≥ lim
N→∞

max
SpX

[
H(X)− 1

N

N∑
n=1

H(En)

]

because for the error generation process with memory, H(E1, . . . , En, . . . , EN ) =
∑N

n=1 H(En|E1, . . . , En−1) ≤∑N
n=1 H(En). However, the En are identically distributed:

C ≥ lim
N→∞

max
SpX

[
H(X)− 1

N

N∑
n=1

H(En)

]

C ≥ lim
N→∞

max
SpX

[
H(X)− 1

N

N∑
n=1

H(E)

]

C ≥ lim
N→∞

max
SpX

[H(X)−H(E)]

C ≥ H(X)−H(E)
C ≥ Cmemoryless

Even if the bit error rate is the same in both memory and memoryless channels cases, the
channel capacity is greater or equal than the capacity of the memoryless channel. In fact, for a
given BER, the memory of the channel can be exploited, e.g, the correlation between the successive
noise samples, to increase the effective throughput of information (e.g., channel equalization, error
correcting codes).



        

3.4. JOINTLY TYPICAL PAIRS OF SEQUENCES 115

3.4 Jointly typical pairs of sequences

Definition (Jointly typical pair of sequences):

Given a memoryless pair of random variables (X, Y ) with a joint probability distribution
{p(x,y)} and a joint entropy H(XY ), the set of jointly typical pairs of sequences TXY (δ) of block-
length N are the pairs (x,y) in the set:

TXY (δ) ≡
{

(x,y) :
∣∣∣∣− 1

N
logb p(x,y)−H(XY )

∣∣∣∣ < δ

}
(3.29)

provided that x and y are respective elements of the typical sequences sets TX(δ) and TY (δ):

TX(δ) =
{
x such that:

∣∣∣∣− 1
N

logb p(x)−H(X)
∣∣∣∣ < δ

}

TY (δ) =
{
y such that:

∣∣∣∣− 1
N

logb p(y)−H(Y )
∣∣∣∣ < δ

}
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TX(δ)

TY (δ)

TXY (δ)

‖TXY (δ)‖ ≈ bNH(XY )

‖TX(δ)‖ ≈ bNH(X) ‖TY (δ)‖ ≈ bNH(Y )

KN sequences

JN sequences

Figure 3.10: Relationship between the sets of jointly typical pairs of sequences TXY (δ), and the
sets of typical sequences TX(δ) and TY (δ).

Theorem (Shannon-McMillan theorem for jointly typical pairs of sequences):

Given a dependent pair of memoryless sources of joint entropy H(XY ), for a blocklength N
sufficiently large (i.e. N ≥ N0), the set of pairs of vectors {(x,y)} can be partitioned into a set of
jointly typical pairs of sequences TXY (δ) and a set of jointly atypical pairs of sequences T c

XY (δ) for
which:

a) The probability of atypical sequences is upperbounded as:

Pr [(x,y) ∈ T c
XY (δ)] < ε (3.30)

b) If the pair of sequences (x,y) ∈ TXY (δ) then:

b−N [H(XY )+δ] < p(x,y) < b−N [H(XY )−δ] (3.31)
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c) The number of elements in the set of jointly typical pairs of sequences TXY (δ) is upperbounded
by:

‖TXY (δ)‖ < bN [H(XY )+δ] (3.32)

d) If (x,y) ∈ TXY (δ) and x is fixed, then the conditional probability p(y|x) is bounded as:

b−N [H(Y |X)+2δ] < p(y|x) < b−N [H(Y |X)−2δ] (3.33)

Proof:

The proof of the first three properties of jointly typical pairs of sequences is similar to that for
typical sequences. The proof of the fourth property of jointly typical pairs of sequences follows.

The conditional probability p(y|x) can be expressed as:

p(y|x) =
p(x,y)
p(x)

(3.34)

and the conditional entropy H(Y |X), or equivocation of Y given X, is the difference between the
joint entropy H(XY ) and the entropy H(X):

H(Y |X) = H(XY )−H(X) (3.35)

Considering that, if the pair of sequences (x,y) ∈ TXY (δ), and that, by definition, x ∈ TX(δ) and
y ∈ TY (δ), then; ∣∣∣∣− 1

N
logb p(x,y)−H(XY )

∣∣∣∣ < δ (3.36)∣∣∣∣− 1
N

logb p(x)−H(X)
∣∣∣∣ < δ and∣∣∣∣− 1

N
logb p(y)−H(Y )

∣∣∣∣ < δ

Considering the difference between 1
N logb p(y|x) and the equivocation H(Y |X), then:

∣∣∣∣− 1
N

logb p(y|x)−H(Y |X)
∣∣∣∣ =

∣∣∣∣− 1
N

logb

p(x,y)
p(x)

− [H(XY )−H(X)]
∣∣∣∣ (3.37)

=
∣∣∣∣− 1

N
logb p(x,y) +

1
N

logb p(x)−H(XY ) + H(X)
∣∣∣∣

=
∣∣∣∣− 1

N
logb p(x,y)−H(XY ) +

1
N

logb p(x) + H(X)
∣∣∣∣∣∣∣∣− 1

N
logb p(y|x)−H(Y |X)

∣∣∣∣ < δ + δ
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and therefore: ∣∣∣∣− 1
N

logb p(y|x)−H(Y |X)
∣∣∣∣ < 2δ (3.38)

QED
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3.5 Channel coding theorem

3.5.1 Shannon’s channel (second) coding theorem

Figure 3.11 illustrates a communication link. A source of information W generates messages as
symbols, or sourcewords, from a set of M possible messages.

channel
encoder
x ∈ C

noisy
channel

P = p(y|x)

channel
decoder
y ?= x

✲ ✲ ✲ ✲
W Y W̃

original
message

original
codeword

corrupted
codeword

decoded
message

Figure 3.11: Noisy communication channel with channel coding.

We assume that each message w is chosen with equal probability:

p(w) =
1
M

= b−NR (3.39)

where R is the code rate and N is the codewords’ blocklength. The information rate into a
channel is R = 1

N H(X) where H(X) is the entropy of the set of M sourcewords (or input vectors)
of lenght N . Then, if we consider an equiprobable source R = 1

N logb M .

A channel encoder maps each message Wm, m = 1, . . . , M , as a unique codeword cm of block-
length N . We assume also that the codewords are b-ary (cm,n ∈ {0, 1, . . . , b− 1}∀m, n). A code C
consists in M codewords:

C =




c1
...

cm
...

cM




=




c1,1 · · · c1,n · · · c1,N
...

. . .
...

. . .
...

cm,1 · · · cm,n · · · cm,N
...

. . .
...

. . .
...

cM,1 · · · cM,n · · · cM,N




(3.40)

There are M = bNR different messages and therefore the code C consists in bNR codewords. The
number of possible codes SC ≡ {C} is equal to the number of possible matrices: bN×M = b(N×2NR).

For instance, consider a binary code for which the blocklength N = 20. If the code rate R = 1
2 ,
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then there are:
2(N×2NR) = 2(20×210) = 2(20×1024)

2(N×2NR) = 220480 = 106165

possible codes, which is quite large. For larger values of N , the number of codes becomes enormous.
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Theorem (Shannon’s channel coding theorem):

Let C be the information transfer capacity of a memoryless channel defined by its transition
probabilities matrix P = {p(y|x)}. If the code rate R < C, then there exists a channel code C of
size M and blocklength N , such that the probability of decoding error Pe is upperbounded by an
arbitrarily small number ε;

Pe ≤ ε

provided that the blocklength N is sufficiently large (i.e., N ≥ N0).

Proof:

The proof of Shannon’s channel coding theorem derived below is based on the random selection
of a set of codes SC = {C} and the average probability of decoding errors over this set of codes
SC . A decoding rule using jointly typical pairs of sequences is considered. This isn’t an optimal
decoding rule but it is probably the simplest rule to prove the channel coding theorem (also know
as Shannon’s second coding theorem).

The codes are chosen with the following random coding rule: the bNR codewords are selected
accordingly to a fix distribution p(x). In other words, each of the N × bNR elements of the code
matrix C is chosen independently of each other with the same probability p(x) (which maximizes
the mutual information):

C =




x1
...

xm
...

xM




=




x1,1 · · · x1,n · · · x1,N
...

. . .
...

. . .
...

xm,1 · · · xm,n · · · xm,N
...

. . .
...

. . .
...

xM,1 · · · xM,n · · · xM,N




(3.41)

The probability p(C) of selecting a particular code C is:

p(C) =
M∏

m=1

p(xm) (3.42)

p(C) =
M∏

m=1

N∏
n=1

p(xm,n)

Note that some codes will be bad codes. The mutual information I(X,Y) between the channel
input and output is a function of the codewords’ elements distribution p = {p(x)} as well as
the transition probability matrix P = {p(y|x)} of the noisy channel. The channel transition
probabilities are considered also i.i.d. (independent and identically distributed).
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The decoding rule is based on the definition of jointly typical sequences. A received (and
possibly corrupted) codeword y is mapped into a valid codeword xm, or cm, if the pair of sequences
(y, cm) are jointly typical, i.e., (y, cm) ∈ TXY (δ). The decoded message is then wm.

As shown on Figure 3.12 two types of decoding errors may occur:

• (cm,y) /∈ TXY (δ) for m = 1, . . . , M

• (cm′ ,y) ∈ TXY (δ) for m′ �= m

U 1

U 2

U m

U m'

U M-1

U M

c1

c2

cm cm'

cM-1

cM

set {y} of all possible received sequences

(cm,y) ∈ TXY (δ)

(cm,y) ∈ TXY (δ) and
(cm′ ,y) ∈ TXY (δ)

(cm,y) /∈ TXY (δ)

Figure 3.12: Decoding decision regions for jointly typical pairs of sequences TXY (δ).

As mentionned previously, this decoding rule is not an optimal one, but it provides a relatively
simple derivation of the channel coding theorem.
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The probability of a decoding error Pe|m, given that message wm was transmitted is given by
the probability of the union of error events:

Pe|m = Pr


[(cm,y) /∈ TXY (δ)]

⋃ M⋃
m′=1
m′ �=m

[(cm′ ,y) ∈ TXY (δ)]


 (3.43)

Pe|m ≤ Pr [(cm,y) /∈ TXY (δ)] +
M∑

m′=1
m′ �=m

Pr [(cm′ ,y) ∈ TXY (δ)] (3.44)

by the union bound property: Pr
[⋃M

m=1 Ei
]
≤∑M

m=1 Pr [Ei].

From the Shannon-McMillan theorem for jointly typical pairs of sequences (cm,y) /∈ TXY (δ)
(for N sufficiently large):

Pr [(cm,y) /∈ TXY (δ)] ≤ ε1 (3.45)

Then, for a given transmitted codeword cm, the error probability is bounded as:

Pe|m ≤ ε1 +
M∑

m′=1
m′ �=m

Pr [(cm′ ,y) ∈ TXY (δ)] (3.46)

The second term on the right-hand side is not necessarily small. However, we will see that, on the
average, this term is small.

Define an indicator function φ(x,y) such that:

φ(x,y) =

{
1 if (x,y) ∈ TXY (δ)
0 if (x,y) /∈ TXY (δ)

(3.47)

Then, for a given transmitted codeword cm,

Pr [(cm′ ,y) ∈ TXY (δ)] =
∑
y

φ(cm′ ,y) p(y|cm) (3.48)

where p(y|cm) represents the probability of receiving the vector y given that the mth codeword
cm was transmitted, and the sum

∑
y is over all received sequences {y}.

Then, for all m′ �= m:

Pe|m ≤ ε1 +
M∑

m′=1
m′ �=m

∑
y

φ(cm′ ,y) p(y|cm) (3.49)

We now use the random coding scheme where each element of a code C is chosen according
to a fix distribution p(x). Instead of determining the error probability of a given code C, we will
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determine the expected error decoding probability over all possible codes, i.e., SC with distribution
p(x).

The expected error decoding probability, given that codeword cm was transmitted, over the
ensemble of randomly chosen codes SC is:

∑
SC

Pr(C)
[
Pe|m

]
≤

∑
SC

Pr(C)


ε1 +

M∑
m′=1
m′ �=m

∑
y

φ(cm′ ,y) p(y|cm)


 (3.50)

∑
SC

Pr(C)
[
Pe|m

]
≤

∑
SC

Pr(C) [ε1] +

∑
SC

Pr(C)




M∑
m′=1
m′ �=m

∑
y

φ(cm′ ,y) p(y|cm)


 (3.51)

∑
SC

Pr(C)
[
Pe|m

]
≤ ε1 +

∑
SC

Pr(C)




M∑
m′=1
m′ �=m

∑
y

φ(cm′ ,y) p(y|cm)


 (3.52)

∑
SC

Pr(C)
[
Pe|m

]
≤ ε1 +

M∑
m′=1
m′ �=m

∑
SC

Pr(C)
[∑

y

φ(cm′ ,y) p(y|cm)

]
(3.53)

But since the term
∑

SC Pr(C)
[∑

y φ(cm′ ,y) p(y|cm)
]

is an expectation over the ensemble of
codes SC (randomly chosen), it can be rewritten as Pr [(x,y) ∈ TXY (δ)]. The expected probability
of error becomes:

∑
SC

Pr(C)
[
Pe|m

]
≤ ε1 +

M∑
m′=1
m′ �=m

Pr [(x,y) ∈ TXY (δ)] (3.54)

∑
SC

Pr(C)
[
Pe|m

]
≤ ε1 + (M − 1) Pr [(x,y) ∈ TXY (δ)] (3.55)

since the random codeword x is not a function of the received codeword index m′.

Now, let’s consider the expected probability of decoding errors Pe over the set {cm} of codewords
(i.e., the code C).

Pe =
M∑

m=1

p(cm) Pe|m (3.56)
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The expected probability of error
∑

SC Pr(C) [Pe] over the set of codes SC is:

∑
SC

Pr(C) [Pe] =
∑
SC

Pr(C)
[

M∑
m=1

p(cm) Pe|m

]
(3.57)

∑
SC

Pr(C) [Pe] =
M∑

m=1

∑
SC

Pr(C)
[
p(cm) Pe|m

]
(3.58)

∑
SC

Pr(C) [Pe] =
M∑

m=1

p(cm)
∑
SC

Pr(C)
[
Pe|m

]
(3.59)

∑
SC

Pr(C) [Pe] =
∑
SC

Pr(C)
[
Pe|m

]
(3.60)

Therefore we can write the expected error decoding probability over SC as:

∑
SC

Pr(C) [Pe] ≤ ε1 + (M − 1) Pr [(x,y) ∈ TXY (δ)] (3.61)

A decoding error will occur if the pair of transmitted and received codewords, (x,y), are jointly
typical, which implies that:

x ∈ TX(δ) → b−N [H(X)+δ] ≤ p(x) ≤ b−N [H(X)−δ]

y ∈ TY (δ) → b−N [H(Y )+δ] ≤ p(y) ≤ b−N [H(Y )−δ]

(x,y) ∈ TXY (δ) → ‖TXY (δ)‖ ≤ bN [H(XY )+δ]

Then:

Pr [(x,y) ∈ TXY (δ)] =
∑

(x,y)∈TXY (δ)

p(x,y) (3.62)

Pr [(x,y) ∈ TXY (δ)] =
∑

(x,y)∈TXY (δ)

p(x)p(y) (3.63)

Pr [(x,y) ∈ TXY (δ)] = ‖TXY (δ)‖p(x)p(y) (3.64)
Pr [(x,y) ∈ TXY (δ)] ≤ ‖TXY (δ)‖ b−N [H(X)−δ] b−N [H(Y )−δ] (3.65)
Pr [(x,y) ∈ TXY (δ)] ≤ bN [H(XY )+δ] b−N [H(X)−δ] b−N [H(Y )−δ] (3.66)
Pr [(x,y) ∈ TXY (δ)] ≤ b−N [H(X)+H(Y )−H(XY )−3δ] (3.67)
Pr [(x,y) ∈ TXY (δ)] ≤ b−N [I(X;Y )−3δ] (3.68)

The expected error decoding probability over SC becomes:
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∑
SC

Pr(C) [Pe] ≤ ε1 + (M − 1) Pr [(x,y) ∈ TXY (δ)] (3.69)

∑
SC

Pr(C) [Pe] ≤ ε1 + (M − 1) b−N [I(X;Y )−3δ] (3.70)

∑
SC

Pr(C) [Pe] ≤ ε1 + M b−N [I(X;Y )−3δ] (3.71)

∑
SC

Pr(C) [Pe] ≤ ε1 + bNR b−N [I(X;Y )−3δ] (3.72)

∑
SC

Pr(C) [Pe] ≤ ε1 + b−N [I(X;Y )−R−3δ] (3.73)

The second term in the above equation can be made arbitrarily small provided that the code rate
R is smaller than I(X;Y )− 3δ (making the exponent negative), and provided that the blocklength
N is sufficiently large. If the fixed input distribution is chosen such as to maximize the mutual
information I(X;Y ) then the probability of error can be made arbitrarily small provided that
R < C − 3δ. For p(x) = p∗(x):

∑
SC

Pr(C) [Pe] ≤ ε1 + ε2

Finally, if the average probability of error
∑

SC Pr(C) [Pe] can be made smaller than ε1+ε2, then
there must exists a code C∗ for which the error probability Pe is at least as good as the average:

Pe ≤ ε

QED
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3.5.2 Converse of the Channel Coding Theorem

Shannon’s coding theorem states that there exists a channel code C of size M and blocklength N ,
such that the probability of decoding error Pe is arbitrarily small provided that the rate R < C, and
that N is sufficiently large. What happens now if we try to transmit information at a rate R above
the channel capacity C? The converse of the channel coding theorem stipulates that:

Theorem (Converse of the channel coding theorem):

Let a memoryless channel with capacity C be used to transmit codewords of blocklength N and
input information R. Then the error decoding probability Pe satisfies the following inequality:

Pe(N, R) ≥ 1− C

R
− 1

NR

If the rate R > C, then the error decoding probability Pe is bounded away from zero.

Proof:

The Fano’s inequality provides a lower bound on the probability of error Pe(N, R) in terms of
the conditional entropy H(X|Y):

H(X|Y) ≤ 1 + NR Pe(N, R)

The decoding error probability Pe(N, R) is given by

Pe(N, R) = Pr
(
W̃ �= W

)
(3.74)

Define a binary error variable E with entropy H(E) ≤ 1 Sh such that:

E =

{
1 if W̃ �= W (an error)
0 if W̃ = W (no error)

(3.75)

Consider the following equivocation: H(E,W|Y). It can be expanded as:

H(E,W|Y) = H(E|Y) + H(W|E,Y)
H(E,W|Y) = H(W|Y) + H(E|W,Y)

H(E|Y) + H(W|E,Y) = H(W|Y) + H(E|W,Y) (3.76)

However, the term H(E|W,Y) = 0 since, given both W,Y and thus W̃, there is no uncertainty
about E (i.e. we know for sure from the observation of both W and Y if there is an error or not).
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Furthermore, H(E|Y) ≤ H(E) ≤ 1.

H(E|Y) + H(W|E,Y) = H(W|Y)
1 + H(W|E,Y) ≥ H(W|Y) (3.77)

Finally, consider the term H(W|E,Y):

H(W|E,Y) = Pr(E = 0)H(W|E = 0,Y) + Pr(E = 1)H(W|E = 1,Y)
H(W|E,Y) ≤ Pr(E = 0)0 + Pr(E = 1) log2(M − 1)
H(W|E,Y) ≤ Pr(E = 1) log2(M)
H(W|E,Y) ≤ Pr(E = 1) log2(2

NR)
H(W|E,Y) ≤ Pr(E = 1)NR

H(W|E,Y) ≤ Pe(N, R) NR (3.78)

Then,

1 + H(W|E,Y) ≥ H(W|Y)
1 + Pe(N, R) NR ≥ H(W|Y)

(3.79)

Again, we consider a source of information W which generates messages as symbols, or source-
words, from a set of M possible messages with equal probability, i.e. p(w) = 1

M = 2−NR. The
source entropy H(W) is simply equal to − log2 2−NR = NR. Using the relationships between
entropies, equivocations and mutual information, can rewrite NR as:

NR = H(W)
NR = H(W|Y) + I(W;Y)
NR = H(X|Y) + I(X;Y) (3.80)

Using the Fano’s inequality, i.e. H(X|Y) ≤ 1 + NR Pe(N, R), then:

NR = H(X|Y) + I(X;Y)
NR ≤ 1 + NR Pe(N, R) + I(X;Y) (3.81)

The mutual information I(X;Y) between the input vectors (original codewords of blocklength
N) and output vectors (codewords corrupted by the memoryless channel) can be expressed as:

I(X;Y) = H(Y)−H(Y|X)

I(X;Y) = H(Y)−
N∑

n=1

H(Yn|Xn)

I(X;Y) ≤
N∑

n=1

H(Yn)−
N∑

n=1

H(Yn|Xn)
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I(X;Y) ≤
N∑

n=1

I(Xn;Yn)

I(X;Y) ≤
N∑

n=1

C

I(X;Y) ≤ NC (3.82)

using the facts that: (i) the joint entropy of vector H(Y), which is a sum of entropies and equiv-
ocations, is less or equal to the sum of individual entropies

∑N
n=1 H(Yn); and (ii) the capacity C

is the maximum of the mutual information I(Xn;Yn). Therefore, the source entropy H(W) = NR
satisfies the inequality

NR ≤ 1 + NR Pe(N, R) + I(X;Y)
NR ≤ 1 + NR Pe(N, R) + NC (3.83)

and finally, dividing by NR, we have that

1 ≤ 1
NR

+ Pe(N, R) +
C

R
(3.84)

Pe(N, R) ≥ 1− C

R
− 1

NR

QED

Therefore, for R > C, we cannot achieve an arbitrarily low error decoding probability Pe. This
results is known as the weak converse of the channel coding theorem. There is also a strong converse
of the channel coding theorem, based on the probability of decoded symbol error, which states that,
at rates R above channel capacity C, the error decoding probability Pe tends towards one.
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3.6 Channel reliability function

3.6.1 Random coding exponent

The conditional error decoding probability Pe|m, given that the mth message is generated by the
source of information and encoded with codeword cm, is equal to (using as the M decoding regions
{Um}Mm=1 the jointly typical pairs of sequences):

Pe|m ≤ Pr [(cm,y) /∈ TXY (δ)] +
M∑

m′=1
m′ �=m

Pr [(cm′ ,y) ∈ TXY (δ)] (3.85)

The decoding error probability Pe of a code C is in fact a function Pe(N, R) of the choosen code
blocklength N , the code rate R, and (the channel capacity C being determined by the channel
itself):

Pe(N, R) ≤ Pr [(cm,y) /∈ TXY (δ)]︸ ︷︷ ︸
ε1

+ b−N [C−R−3δ]︸ ︷︷ ︸
ε2

= ε (3.86)

where the first term ε1 is smaller than δ for a sufficiently large blocklength N , while the second
term ε2 decreases exponentially with N , provided that the code rate R < C−3δ. The error decoding
probability Pe(N, R), can be expressed as [Bla87]:

Pe(N, R) ≤ b−NEr(R) (3.87)

where the function Er(R) is called the random coding exponent.

The random coding exponent is defined as [Bla87]:

Er(R) ≡ max
s∈[0,1]

max
Sp


−sR− logb

J∑
j=1

(
K∑

k=1

p(xk)p(yj |xk)
1

(1+s)

)1+s

 (3.88)

Since the random coding exponent can be written in terms of a double maximum over the input
symbols distribution Sp and a parameter s ∈ [0, 1], the decoding error probability Pe(N, R) can be
written as a double minimum over the same sets:

Pe(N, R) ≤ min
s∈[0,1]

min
Sp


bsNR

∑
y

(∑
x

p(x)p(y|x)
1

(1+s)

)1+s

 (3.89)
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Figure 3.13 illustrates the typical shape of the random coding exponent Er(R) as a function of
the code rate R. The larger is the random coding exponent Er(R), the smaller will be the error
decoding probability Pe(N, R) for a given blocklength. As shown on this figure, the maximum of
the random coding exponent Er(R), over the ensemble of all possible input distributions Sp and
parameter s ∈ [0, 1], is achieved with s = 1 for low code rates. The largest code rate R at which the
random coding exponent Er(R) decreases with a slope s = −1 is called the critical rate Rcrit. The
cut-off rate R0 corresponds to the code rate R, at which the tangent of the random coding exponent
Er(R) intersects with the rate axis. The cut-off rate R0 is often considered as the code rate limit
beyond which it is very expensive to communicate reliably [Bla87] over a noisy communication
channel.

Rcrit R0 C R

R0

Er(R)

Figure 3.13: Random coding exponent Er(R) for block codes for BSC with ε = 10−2.

3.6.2 Error bounds and channel reliability function

The random coding exponent Er(R) provides an upperbound on the error decoding probability
Pe(N, R). This bound is obtained from a random coding argument. The question is: “How tight
is this bound?”. Other bounds on the probability of error have been derived based on different
arguments. Some of them, such as the random coding bound, give an upperbound on the probability
of error (i.e. there exists a code for which Pe is smaller than εupper), while others are lower bounds
on Pe (i.e. it is impossible to create codes such that Pe < εlower).

The channel reliability function E∗(R) takes into account the upperbounds, as well as the
lowerbounds, on the decoding error probability Pe(C) [Bla87] to define an area where should lie the
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actual exponent of the probability of decoding error Pe(N, R).

3.6.3 Error bounds on Pe(N, R)

a) The random coding bound Er(R) is a lower bound on the channel reliability function E∗(R)
and thus an upper bound on the error decoding probability Pe(N, R). As we have already
seen, this bound is obtained by random codes selection coding and a maximum likelyhood
decoding rule (or also a decoding rule based on jointly typical pairs of sequences)

Pe(N, R) ≤ b−NEr(R) (3.90)

b) The expurgated bound Ex(R) also provides a lower bound on E∗(R) (and an upper bound on
Pe(N, R). Its derivation is based on a random selection of codes (i.e., SC) and a maximum
likelyhood decoding rule (as for the random coding bound). For small code rates R, many of
the bad codes obtained by random selection can be improved before the expectation of the
probability of error

∑
SC Pr(C) [Pe] is computed, leading to a lower decoding error probability.

Pe(N, R) ≤ b−NEx(R) (3.91)

c) The space-partitioning bound Ep(R), however, is an upper bound on E∗(R) and thus a lower
bound on the decoding error probability Pe(N, R). For this bound, the space Sy of received
(and corrupted) codewords is partitioned into a set of M decoding regions: U1, . . ., Um,
. . ., UM . A message wm is encoded with the codeword cm before transmission in the noisy
channel. A received vector y will be correctly decoded as message wm if y ∈ Um, but
incorrectly decoded if y /∈ Um. Since the received vector y can be anywhere in the space Sy,
this leads to a minimum probability of error Pe(N, R) [Bla87]: it is impossible to find a code
C with a lower probability of error.

Pe(N, R) ≥ b−NEp(R) (3.92)

d) The sphere-packing bound Es(R) is another upper bound on E∗(R) (i.e. a lower bound on
Pe(N, R)). Here the codewords of a code C are represented as points on the set of all possible
received vectors Sy in an N -dimensional space. The decoding regions: U1, . . ., Um, . . ., and
UM ; are represented as N -dimensional spheres. A decoding error occurs when the received
codeword y /∈ Um, assuming that the correct codeword is cm, or when there is an overlapping
of spheres: y ∈ Um and y ∈ U ′

m (m �= m′). The problem is how much decoding spheres can
be packed in the N -dimensional space with minimum (or no) overlapping?
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Pe(N, R) ≥ b−NEs(R) (3.93)

e) Finally, the straight-line bound El(R) is an upper bound on the reliability function E∗(R) and
therefore a lower bound on Pe(N, R). It is based on the conjecture (not proven yet) that the
channel reliability function is a convex ∪ function over the rate R of the code. If this argument
is true, then any point on a straight line between any two points on the upperbounds of E∗(R)
will be also an upperbound of E∗(R).

Pe(N, R) ≥ b−NEl(R) (3.94)

3.6.4 Channel reliability function E∗(R)

The channel reliability function E∗(R) is established from these bounds as shown below on Figure
3.14.
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Rcrit R0 C R

R0

E∗(R)

Er(R)

Ex(R)

Ep(R)

Es(R)

El(R)

Figure 3.14: Channel reliability function E∗(R).
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3.7 Channel coding theorem revisited

3.7.1 Shannon’s channel coding theorem (random coding exponent)

In the proof of Shannon’s channel coding theorem, we used a random coding argument along with
a decision rule based on jointly typical pairs of sequences. This was useful since we knew the
properties of such sequences, and it provided a bounded expression for the probability of decoding
errors Pe: an exponent of base b, function of the difference between the rate R of error control code
and the channel capacity C, as well as the blocklength N of the codewords (we implicitly assumed
a fixed length code).

In this section, we determine the probability of decoding errors Pe, using once again the random
coding argument. However, this time, we will use a maximum likehood decoding rule.

Theorem (Shannon’s channel coding theorem (random coding exponent)):

Let C be the information transfer capacity of a memoryless channel defined by its transition
probabilities matrix P. If the code rate R < C, then there exists a channel code C of size M and
blocklength N , such that the probability of decoding error Pe is upperbounded as:

Pe(N, R) ≤ min
s∈[0,1]

min
Sp


bsNR

∑
y

(∑
x

p(x)p(y|x)
1

(1+s)

)1+s



provided that the blocklength N is sufficiently large (i.e., N ≥ N0).

Proof:

The proof is based as before on the random selection of a set of codes SC = {C} and the expected
error probability Pe over that set. Once again we assume that the source of information W is an
equiprobable source:

p(wm) =
1
M

= b−NR ∀m (3.95)

where R is the code rate, N the blocklength. The encoder assigns the unique codeword cm to the
message wm.

C =




c1
...

cm
...

cM




=




c1,1 · · · c1,n · · · c1,N
...

. . .
...

. . .
...

cm,1 · · · cm,n · · · cm,N
...

. . .
...

. . .
...

cM,1 · · · cM,n · · · cM,N




=




x1,1 · · · x1,n · · · x1,N
...

. . .
...

. . .
...

xm,1 · · · xm,n · · · xm,N
...

. . .
...

. . .
...

xM,1 · · · xM,n · · · xM,N
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The bNR codewords of the code C are chosen such as the distribution of the codewords elements
p(x) maximize the mutual information I(X;Y ) and hence lead to the channel capacity C. At
the channel output, a maximum likehood decoding decoder assigns to the received (and probably
corrupted) codeword y, the original codeword cm according to the maximum likelyhood rule:

Um = {y : p(y|cm) > p(y|cm′) for all m �= m′}

The error probability Pe|m, given that codeword cm is transmitted, is given by:

Pe|m =
∑

y/∈Um

p(y|cm) (3.96)

Let φm(y) be an indicator function defined as:

φm(y) =

{
1 if y ∈ Um

0 if y /∈ Um

This indicator function in bounded as:

1− φm(y) ≤




M∑
m′=1
m′ �=m

[
p(y|cm′)
p(y|cm)

]( 1
1+s)




s

for s ∈ [0, 1] (3.97)

The expression 1− φm(y) can take only two values, i.e., 1− φm(y) = 0 or 1− φm(y) = 1. For
1− φm(y) = 0, the inequality holds true since the right-hand side of the inequality is positive; it is
a sum a positive terms raised at a positive power:




M∑
m′=1
m′ �=m

[
p(y|cm′)
p(y|cm)

]( 1
1+s)




s

≥ 0 (3.98)

Now, if 1−φm(y) = 1, i.e., φm(y) = 0, then this indicates that there is at least a codeword cm′

such that

p(y|cm′) ≥ p(y|cm)

(thus leading to a decoding error). Then, for this codeword cm′ :

p(y|cm′)
p(y|cm)

≥ 1 (3.99)
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Raising to a positive power
(

1
1+s

)
and adding M−2 non negative terms maintains the inequality:

M∑
m′=1
m′ �=m

[
p(y|cm′)
p(y|cm)

]( 1
1+s)
≥ 1 (3.100)

and raising once more to a positive exponent s still preserves the inequality:




M∑
m′=1
m′ �=m

[
p(y|cm′)
p(y|cm)

]( 1
1+s)




s

≥ 1 (3.101)

The error probability can be expressed as a function of the indicator function and then upper-
bounded as follows:

Pe|m =
∑

y/∈Um

p(y|cm) (3.102)

Pe|m =
∑
y

p(y|cm)[1− φm(y)] (3.103)

Pe|m ≤
∑
y

p(y|cm)




M∑
m′=1
m′ �=m

[
p(y|cm′)
p(y|cm)

]( 1
1+s)




s

(3.104)

Pe|m ≤
∑
y

p(y|cm)


p(y|cm)(−

1
1+s)

M∑
m′=1
m′ �=m

[p(y|cm′)](
1

1+s)




s

(3.105)

Pe|m ≤
∑
y

p(y|cm)p(y|cm)(−
s

1+s)




M∑
m′=1
m′ �=m

[p(y|cm′)](
1

1+s)




s

(3.106)

Pe|m ≤
∑
y

p(y|cm)(
1+s−s
1+s )




M∑
m′=1
m′ �=m

[p(y|cm′)](
1

1+s)




s

(3.107)

Pe|m ≤
∑
y

p(y|cm)(
1

1+s)




M∑
m′=1
m′ �=m

[p(y|cm′)](
1

1+s)




s

(3.108)

Considering the random selection scheme where each element of a code C is chosen according
to the distribution p(x), we will determine the average error decoding probability over the set SC
of all possible codes (with distribution p(x)).
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∑
SC

Pr(C)
[
Pe|m

]
≤

∑
SC

Pr(C)




∑
y

p(y|cm)(
1

1+s)




M∑
m′=1
m′ �=m

p(y|cm′)(
1

1+s)




s
 (3.109)

The expectation of a sum being equal to the sum of expectations,

∑
SC

Pr(C)
[
Pe|m

]
≤

∑
y

∑
SC

Pr(C)


p(y|cm)(

1
1+s)




M∑
m′=1
m′ �=m

p(y|cm′)(
1

1+s)




s
 (3.110)

Note that the first term on the right-hand side is a function of the selected codeword cm while
the second term depends only on the codeword cm′ which are selected randomly from each other.
Therefore the error expectation

∑
SC Pr(C)

[
Pe|m

]
can be written as:

∑
SC

Pr(C)
[
Pe|m

]
≤

∑
y




∑
SC

Pr(C)
[
p(y|cm)(

1
1+s)

]
×

∑
SC

Pr(C)




M∑
m′=1
m′ �=m

p(y|cm′)(
1

1+s)




s
 (3.111)

Using the Jensen’s inequality1:

∑
SC

Pr(C)
[
Pe|m

]
≤

∑
y




∑
SC

Pr(C)
[
p(y|cm)(

1
1+s)

]
×


∑

SC

Pr(C)
M∑

m′=1
m′ �=m

p(y|cm′)(
1

1+s)




s
(3.112)

∑
SC

Pr(C)
[
Pe|m

]
≤

∑
y




∑
SC

Pr(C)
[
p(y|cm)(

1
1+s)

]
×




M∑
m′=1
m′ �=m

∑
SC

Pr(C)
[
p(y|cm′)(

1
1+s)

]



s
(3.113)

Since the information source W generates the messages with equal probability, then the code-
words occur with equal probability:

p(cm) =
1
M

= b−NR

and the second term
[
p(y|cm′)(

1
1+s)

]
do not depend on the actual message, or codeword, transmit-

ted.
1The Jensen’s inequality states that E [xs] ≤ [E(x)]s
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∑
SC

Pr(C)
[
Pe|m

]
≤

∑
y

∑
SC

Pr(C)
[
p(y|x)(

1
1+s)

]
×




M∑
m′=1
m′ �=m

∑
SC

Pr(C)
[
p(y|x)(

1
1+s)

]



s

(3.114)

∑
SC

Pr(C)
[
Pe|m

]
≤ (M − 1)s

∑
y

∑
SC

Pr(C)
[
p(y|x)(

1
1+s)

]
×

[
p(y|x)(

1
1+s)

]s
(3.115)

∑
SC

Pr(C)
[
Pe|m

]
≤ (M − 1)s

∑
y

∑
SC

Pr(C)
[
p(y|x)(

1
1+s)

](s+1)
(3.116)

∑
SC

Pr(C)
[
Pe|m

]
≤ M s

∑
y

∑
SC

Pr(C)
[
p(y|x)(

1
1+s)

](s+1)
(3.117)

∑
SC

Pr(C)
[
Pe|m

]
≤ bNRs

∑
y

∑
SC

Pr(C)
[
p(y|x)(

1
1+s)

](s+1)
(3.118)

Rewritting the right-hand side in terms of the probability p(x) of selecting the random codeword
x over the set of codes SC and considering the expected probability of error for any transmitted
codeword.

∑
SC

Pr(C) [Pe] =
∑
SC

Pr(C)
[

M∑
m=1

p(cm) Pe|m

]
(3.119)

∑
SC

Pr(C) [Pe] =
∑
SC

Pr(C)
[
Pe|m

]
(3.120)

∑
SC

Pr(C) [Pe] ≤ bNRs
∑
y

[∑
x

p(x)p(y|x)(
1

1+s)
](s+1)

(3.121)

Pe ≤ bNRs
∑
y

[∑
x

p(x)p(y|x)(
1

1+s)
](s+1)

(3.122)

because there must exist one code C∗ for which Pe is, at most, as small as the the expected
probability of decoding error over the set of codes SC . This holds true for value of parameter
s ∈ [0, 1]. Therefore, the error probability Pe can be written as a double minimum over the input
distribution (to maximize the mutual information and hence reach the channel capacity C) and the
positive exponent parameter s:

Pe(N, R) ≤ min
s∈[0,1]

min
Sp


bsNR

∑
y

(∑
x

p(x)p(y|x)
1

(1+s)

)1+s

 (3.123)
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The error probability Pe(N, R) can also be expressed in terms of the individual codeword ele-
ments. Since we consider a memoryless channel and the random generation of codewords, we have
that:

p(y|x) =
N∏

n=1

p(yj |xk) and (3.124)

p(x) =
N∏

n=1

p(xk) (3.125)

then:

Pe ≤ bNRs
∑
y

[∑
x

p(x)p(y|x)(
1

1+s)
](s+1)

(3.126)

Pe ≤ bNRs
∑
y

[∑
x

N∏
n=1

p(xk)p(yj |xk)(
1

1+s)
](s+1)

(3.127)

Pe ≤ bNRs
J∑

y1=1

J∑
y2=1

· · ·
J∑

yN=1


 K∑

x1=1

K∑
x2=1

· · ·
K∑

xN=1

N∏
n=1

p(xk)p(yj |xk)(
1

1+s)



(s+1)

(3.128)

The sums of products can be replaced by a product of sums using the rule:

K∑
x1=1

K∑
x2=1

· · ·
K∑

xN=1

[
N∏

n=1

A(xn)

]
=

N∏
n=1


 K∑

xN=1

A(xn)


 (3.129)

and therefore,

Pe ≤ bNRs
J∑

y1=1

J∑
y2=1

· · ·
J∑

yN=1


 K∑

x1=1

K∑
x2=1

· · ·
K∑

xN=1

N∏
n=1

p(xk)p(yj |xk)(
1

1+s)



(s+1)

(3.130)

Pe ≤ bNRs
N∏

n=1


 J∑

yN=1


 K∑

xN=1

p(xk)p(yj |xk)(
1

1+s)



(s+1)

 (3.131)

Pe ≤ bNRs


 J∑

j=1

[
K∑

k=1

p(xk)p(yj |xk)(
1

1+s)
](s+1)




N

(3.132)

(3.133)

Maximizing over the range s and the input distributions, the random coding error bound can
expressed as:
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Pe(N, R) ≤ min
s∈[0,1]

min
Sp


bNRs


 J∑

j=1

[
K∑

k=1

p(xk)p(yj |xk)(
1

1+s)
](s+1)




N

 (3.134)

The random coding exponent Er(R) ≈ − 1
N logb Pe can be expressed as double maximum over

the same sets Sp and s ∈ [0, 1]:

Er(R) ≡ max
s∈[0,1]

max
Sp


−sR− logb

J∑
j=1

(
K∑

k=1

p(xk)p(yj |xk)
1

(1+s)

)1+s

 (3.135)

QED
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3.8 Problems

Problem 3.1: The average mutual information I(X;Y ) is a convex ∩ function (i.e. “concave” function)
over the convex set of input symbols distributions {p̄} = {{p(xk)}}. However, I(X;Y ) is a convex
∪ function (or “convex” function) over the convex set of channel transition probabilities matrices
{P} = {{p(yj |xk)}}.

a) Show that the set of channel transition probabilities matrices {P} = {{p(yj |xk)}} forms a convex
set.

b) Show that over this convex set {P} = {{p(yj |xk)}}, the average mutual information is a convex
∪ function.

Problem 3.2: The channel transition probability matrix P of a ternary communication channel is given
by:

P =


 (1− 2ε) ε ε

ε (1− 2ε) ε
ε ε (1 − 2ε)




a) What is capacity C of the ternary channel as a function of the crossover probability ε?

b) If this ternary channel is cascaded with another identical ternary channel what will be the
resulting channel capacity Ccascade?

c) Draw on the same figure both capacities (i.e. C and Ccascade) for ε ∈ [0, 0.5].

d) How does the cascading of these ternary channels affect the rate of transfer of information (i.e.
I(X;Y ))?

Problem 3.3: Consider all binary sequences of blocklength N = 7. We wish to choose a code C of size M :

C = {c1, · · · , cm, · · · , cM}

To correct all single errors during transmission through a binary channel, the minimum distance dmin

between any pairs of codewords (cm, cm′) should be ≥ 3.

a) How many binary sequences have a distance less than or equal to 1 from a given codeword cm?

b) What is the maximum possible value of the code size M?

c) Assuming that the maximum value of M can be achieved, what is the rate R of generation of
information that can be transmitted over the channel?

Problem 3.4: Consider a binary noisy channel for which the noise affects the transmitted bits in blocks of
15 bits. For this specific channel, a block is either transmitted without error, with one error or with 2
errors out of the 15 bits. Each combination of no error, single error or double errors occur with equal
probability. Let X represent the 15-bits source sequences whereas Y represent the 15-bits sequences
received from the noisy channel.

a) Indicate the number of error patterns and their probability of occurrence.

b) Determine the equivocation H(Y|X).

c) What is the maximum value of the mutual information between the input and output sequences
I(X;Y)? Under what conditions is achieved the maximum of I(X;Y)?

d) Now what is the capacity C of the original binary channel (i.e. considering a transmission bit
per bit but under the same channel conditions)?

Problem 3.5: Consider n identical binary symmetric channels with crossover probability 0 < ε < 1
2 .



        

3.8. PROBLEMS 143

a) Find the channel capacity C2 when two of these BSC channels are cascaded.

b) Write an expression for the capacity Cn of n cascaded channels.

c) Suppose that the number of BSC channels n→∞. What is the resulting capacity C∞? Justify
your answer and explain the result.

Problem 3.6: Consider the following M -ary memoryless channel.

xM ✲
1− ε

yM

...
...

x2 ✲
1− ε

y2

x1 ✲
1− ε

y1

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚✚❃

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿�


































ε
M−1

ε
M−1

ε
M−1

ε
M−1

ε
M−1

ε
M−1

a) Find the expression for the channel capacity C as a function of the parameter ε.

b) Draw the channel capacity function C for 0 ≤ ε ≤ 1.

c) If we put two of these M -ary memoryless channels in cascade what will be the expression of the
resulting composite channel C2?

d) Sketch the composite channel capacity C2 over the same range of parameter ε.

Problem 3.7: The channel reliability function of a given transmission channel is given below. We want to
use channel coding in order to insure reliable communication over this noisy channel.
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 R

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

E∗(R)

Er(R)

Ex(R)

Ep(R)

Es(R)

El(R)

a) What is the maximum code rate R = k
n for this channel. Give the theoretical as well as practical

limits.

b) How would you assess the probability of error Pe for a code with a rate R = 10 and a code length
n = 255?

c) What can be said about the probability of error for a code rate R = 2.5 and a code length
n = 63?

Problem 3.8: Consider the following quaternary memoryless channel.
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x4 ✲1− 2α y4

x3 ✲1− 2α y3

x2 ✲1− 2α y2

x1 ✲1− 2α y1

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚✚❃

�

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

�

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

�

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

α

α

α

α

α

α

α

α

a) What is the transition probability matrix P?

b) Find the expression for the channel capacity C as a function of the parameter α.

c) Compute the values of the channel capacity function C for α = 0, 0.05, 0.10, . . . , 0.40, 0.45,
0.50, and draw this channel capacity function C for that range of α values.

Problem 3.9: For each of the following channels, give the transition probability matrix P, determine the
expression for the channel capacity (in Sh or bits) and the corresponding input symbols’ distribution.

a) Ternary memoryless channel:

x3 ✲

1− ε1 − ε2

y3

x2 ✲1− ε1 − ε2 y2

x1 ✲
1− ε1 − ε2

y1

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

�

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

�

ε1

ε1

ε2

ε2

ε2

ε1

b) Pentagonal channel, where for 0 ≤ k ≤ 4 and 0 ≤ j ≤ 4:

p(yj |xk) =
{

1
2 if j = k ± 1 mod 5
0 if j �= k ± 1 mod 5

Problem 3.10: Computer-oriented problem
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Write a program which computes the capacity C of asymmetric channels. Use the Blahut-Arimoto
algorithm described in class. You have to provide the program’s listing. (Note: for further references
you may wish to read section 5.4 of “Principles and Practice of Information Theory” by Richard E.
Blahut and/or section 13.8 of “Elements of Information Theory” by Thomas M. Cover and Joy A.
Thomas. Compute the channel capacity of the following channels:

a)

P =
(

0.7 0.2 0.1
0.2 0.1 0.7

)

b)

P =




0.4 0.2 0.4 0.0 0.0
0.0 0.4 0.2 0.4 0.0
0.2 0.2 0.2 0.2 0.2
0.4 0.0 0.0 0.4 0.2
0.2 0.4 0.0 0.0 0.4






           

Chapter 4

Rate Distortion Theory

4.1 Rate distortion function

Definition (Rate distortion function):

The rate distortion function R(D) is defined, for a given distortion criterion (or fidelity criterion)
D, as the minimum of the mutual information I(X; X̂) over the set of D-admissible transition
matrices:

R(D) ≡ min
PD

I(X; X̂)

where PD is the set of all D-admissible (distortion) transition probability matrices, defined as:

PD ≡


P :

K∑
k=1

J∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j) ≤ D




Theorem (Convexity of the rate distortion function):

The rate distortion function R(D) is a convex cup, or convex ∪, function over the convex set
D ≡ {D}, decreasing in the distortion interval: [dmin, dmax].

Proof:

Consider the set PD of all D-admissible transition probability matrices (which are function of
the fidelity criterion D).

147
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PD =




P = {p(x̂j |xk)} :
K∑

k=1

J∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j)

︸ ︷︷ ︸
average distortion

≤ D︸︷︷︸
distortion
criterion




(4.1)

a) If the distortion criterion D is negative, then the set PD is empty, which implies that the rate
distortion function R(D) is not defined (this is due to the fact that the average distortion is
defined as being always positive).

b) If D is positive but smaller than dmin, then the set PD is still empty, since it is not possible
to find a matrix P giving an average distortion

∑K
k=1

∑J
j=1 p(xk, x̂j)d(xk, x̂j) smaller than D:

dmin =
K∑

k=1

p(xk)d(xk, x̂j0) (4.2)

where d(xk, x̂j0) ≤ d(xk, x̂j), for j = 1, . . . , J .

xK

...

xk

...

x2

x1

x̂J0

...

x̂j0

...

x̂20

x̂10

✟✟✟✟✟✟✟✟✟✟✟✟✯ d(xK , x̂j0) ≤ d(xK , x̂j),∀j✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚✚❃
d(xk, x̂10) ≤ d(xk, x̂j),∀j

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅❘ d(x2, x̂J0) ≤ d(x2, x̂j),∀j

 d(x1, x̂20) ≤ d(x1, x̂j),∀j

c) For dmin ≤ D ≤ D′ ≤ dmax, the set PD ∈ PD′ because the set PD′ admits transition
probability matrices for which the average distortion can attain D′ while the set PD includes
only those matrices with average distortion smaller or equal to D.

As the allowable distortion D increases, the set of D-admissible transition probability matrices
PD, satisfying the condition E[d(X, X̂)] ≤ D, increases. This provides more matrices over
which the average mutual information I(X; X̂) can be minimized. Therefore:

R(D′) = min
PD′

I(X; X̂) (4.3)
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R(D′) = min
PD′

K∑
k=1

J∑
j=1

p(xk)p(x̂j |xk) logb

[
p(x̂j |xk)∑K

l=1 p(xl)p(x̂j |xl)

]
(4.4)

R(D′) ≤ min
PD∈PD′

K∑
k=1

J∑
j=1

p(xk)p(x̂j |xk) logb

[
p(x̂j |xk)∑K

l=1 p(xl)p(x̂j |xl)

]
(4.5)

R(D′) ≤ min
PD∈PD′

I(X; X̂) (4.6)

d) The maximum distortion dmax is defined as the minimum distortion D for which the mutual
information is null between the input X and its reproduction X̂; i.e., I(X; X̂) = 0. Therefore,
at this rate, there is no transfer of information and X̂ is independent of X. The transition
probabilities p(x̂j |xk) are then equal to the marginal probabilities p(x̂j).

The expected (or average) distortion E[d(X, X̂)] is:

E[d(X, X̂)] =
K∑

k=1

J∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j) (4.7)

E[d(X, X̂)] =
K∑

k=1

J∑
j=1

p(xk)p(x̂j)d(xk, x̂j) (4.8)

E[d(X, X̂)] =
J∑

j=1

p(x̂j)
K∑

k=1

p(xk)d(xk, x̂j) (4.9)

The maximum distortion dmax is the smallest distortion D with zero information transfer 1:

dmax = min
j=1,...,J

K∑
k=1

p(xk)d(xk, x̂j) (4.10)

that is, choosing the reproducing letter to minimize the distortion D.

e) We now proove that the rate distortion function R(D) is a convex ∪ function of the distortion
D. This is done in two steps: first, the distortion D is shown to be a convex set, and secondly,
we show that R(D) is indeed a convex ∪ function of D.

i) Let’s define two transition probability matrices P′ and P′′ such that:

P′ = {p′(x̂j |xk)} ⇒ D′ and R(D′)
P′′ = {p′′(x̂j |xk)} ⇒ D′′ and R(D′′)

that is:

P′ ∈ PD′ =


P′ :

K∑
k=1

J∑
j=1

p(xk)p′(x̂j |xk)d(xk, x̂j) ≤ D′




P′′ ∈ PD′′ =


P′′ :

K∑
k=1

J∑
j=1

p(xk)p′′(x̂j |xk)d(xk, x̂j) ≤ D′′




1Note that there can be greater rates at which I(X; X̂) = 0, but here we are interested only in the smallest rate.
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As seen before, the set of transition probability matrices {P} is a convex set, thus we
can choose another matrix P as:

p(x̂j |xk) = λp′(x̂j |xk) + (1− λ)p′′(x̂j |xk) (4.11)

by definition of a convex set, where λ ∈ [0, 1]. If we take D equal to the expected
distortion E[d(X, X̂)]:

d(X, X̂) =
K∑

k=1

J∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j) (4.12)

d(X, X̂) =
K∑

k=1

J∑
j=1

p(xk)
[
λp′(x̂j |xk) + (1− λ)p′′(x̂j |xk)

]
d(xk, x̂j) (4.13)

d(X, X̂) = λ
K∑

k=1

J∑
j=1

p(xk)p′(x̂j |xk)d(xk, x̂j)

+ (1− λ)
K∑

k=1

J∑
j=1

p(xk)p′′(x̂j |xk)d(xk, x̂j) (4.14)

d(X, X̂) = λd′(X, X̂) + (1− λ)d′′(X, X̂) (4.15)

For the pseudo-channels for which d(X, X̂) = D then:

D = λD′ + (1− λ)D′′ (4.16)

ii) We consider now the convexity of the rate distortion function R(D) itself. The mutual
information I(X; X̂) is a convex ∪ function over the convex set of transition probabilities’
matrices.

R(D) = min
PD

I(X; X̂)

Let P′ = {p′(x̂j |xk)} be a D′-admissible pseudo-channel (or reproduction channel) with
mutual information I ′(X; X̂) = R(D′), and P′′ = {p′′(x̂j |xk)} a D′′-admissible channel
with I ′′(X; X̂) = R(D′′). Construct another transition probability matrix P as follows:

P = λP′ + (1− λ)P′′

or equivalently:

p(x̂j |xk) = λp′(x̂j |xk) + (1− λ)p′′(x̂j |xk)

This new reproduction channel P is then D = λD′ + (1 − λ)D′′ admissible. Therefore
the rate distortion function is:

R(D) = min
PD

I(X; X̂) ≤ I(X; X̂) (4.17)
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But the mutual information I(X; X̂) is a convex ∪, function over the convex set of
transition matrices {P}, that is:

I(X; X̂) ≤ λI ′(X; X̂) + (1− λ)I ′′(X; X̂)

and therefore;

R(D) = R(λD′ + (1− λ)D′′) (4.18)
R(D) ≤ I(X; X̂) (4.19)
R(D) ≤ λI ′(X; X̂) + (1− λ)I ′′(X; X̂) (4.20)
R(D) ≤ λR(D′) + (1− λ)R(D′′) (4.21)

The rate distortion function R(D) is a convex ∪ function, and a decreasing function over the
convex set of distortion criterion D, from dmin to dmax.

dmin D′ D D′′ dmax R

R(D)

R(D′)

R(D)

R(D′′)

Figure 4.1: Convexity of the rate distortion function R(D).

QED
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Example (Rate distortion function):

In general, the computation of the rate distortion function requires an iterative algorithm such
as the Blahut-Arimoto algorithm. For this example, however, because of the many symmetries, it
is possible to find a closed-form expression for the rate-distortion function.

Consider a ternary source of information X characterized with the input symbol distribution:
p(x1) = p(x2) = p(x3) = 1

3 , that is X is an equiprobable source. Then the source entropy H(X),
expressed in shannons, is given by:

H(X) = −
3∑

i=1

p(xi) log2 p(xi)

H(X) = −3
[(

1
3

)
log2

(
1
3

)]
H(X) = 1.584 (Shannons)

This source of information is to be compressed by a source compression code to reduce the rate
needed to transmit it over a communication channel. At the receiving end, a source compression
decoder reproduces, with some amount of distortion the information. As shown on Figure 4.2, the
reproduction X̂ is binary instead of ternary to reduce its maximum entropy H(X̂) to 1 shannon
instead of 1.584, hence reducing the information rate R(D).

Source
X = {x1, x2, x3}
H(X) = 1.584

x2 ✲

x3 ✲

x1 ✲

Source compression
encoder

Source compression
decoder

Pseudochannel

x̂2
✲

x̂1
✲

Reproduction
X̂ = {x̂1, x̂2}
0 ≤ H(X̂) ≤ 1

Figure 4.2: Source compression encoder and decoder, or pseudochannel, for the computation of the
rate distortion function R(D).
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As depicted on Figure 4.3, the distortion measures associated with the mapping of the source
symbols into the reproduction symbols are given in the distortion matrix D:

D =

[
d(x1, x̂1) d(x2, x̂1) d(x3, x̂1)
d(x1, x̂2) d(x2, x̂2) d(x3, x̂2)

]
=

[
1 2 1
2 1 1

]

x2 ✲
d(x2, x̂2) = 1

x̂2

x3

x1 ✲d(x1, x̂1) = 1
x̂1

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

d(x2, x̂1) = 2

�

d(x3, x̂1) = 1
✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

d(x3, x̂2) = 1

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

d(x1, x̂2) = 2

Figure 4.3: Distortion measures associated with the distortion matric D.

The minimum distortion dmin is given by:

dmin =
3∑

k=1

p(xk)d(xk, x̂j0)

dmin = p(x1)d(x1, x̂1) + p(x2)d(x2, x̂2) + p(x3) d(x3, x̂1)︸ ︷︷ ︸
or d(x3, x̂2)

dmin =
(

1
3
× 1

)
+

(
1
3
× 1

)
+

(
1
3
× 1

)
dmin = 1

The maximum distortion dmax is equal to:

dmax = min
j=1,2

3∑
k=1

p(xk)d(xk, x̂j)

dmax = min
j=1,2

{[p(x1)d(x1, x̂1) + p(x2)d(x2, x̂1) + p(x3)d(x3, x̂1)] ,

[p(x1)d(x1, x̂2) + p(x2)d(x2, x̂2) + p(x3)d(x3, x̂2)]}

dmax = min
j=1,2

{[(
1
3
× 1

)
+

(
1
3
× 2

)
+

(
1
3
× 1

)]
,

[(
1
3
× 2

)
+

(
1
3
× 1

)
+

(
1
3
× 1

)]}

dmax = min
j=1,2

(
4
3
,
4
3

)

dmax =
4
3
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Therefore, the rate distortion function R(D) is defined only in the distortion criterion range,
that is:

dmin = 1 ≤ D ≤ dmax =
4
3

We now can determine the rate distortion function as:

R(D) = min
PD

I(X; X̂)

R(D) = min
PD

3∑
k=1

2∑
j=1

p(xk)p(x̂j |xk) logb

[
p(x̂j |xk)∑3

l=1 p(xl)p(x̂j |xl)

]

where the set of admissible channels, PD, for a given allowable amount of distortion D is given by:

PD ≡


P :

3∑
k=1

2∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j) ≤ D




We need to indicate the transition probabilities associated with the (cascaded source compres-
sion encoder and decoder) pseudochannel. Figure 4.4 shows the transition probabilities:

P =

[
p(x̂1|x1) p(x̂1|x2) p(x̂1|x3)
p(x̂2|x1) p(x̂2|x2) p(x̂2|x3)

]
=

[
1− α1 α2 α3

α1 1− α2 1− α3

]

x2 ✲
p(x̂2|x2) = 1− α2

x̂2

x3

x1 ✲p(x̂1|x1) = 1− α1
x̂1

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

p(x̂1|x2) = α2

�

p(x̂1|x3) = α3

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

p(x̂2|x3) = 1− α3

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

p(x̂2|x1) = α1

Figure 4.4: Transition probability matrix P for the source compression encoder and decoder (pseu-
dochannel).
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This means that if we want to find the set of D-admissible channels, we need to search the set
of transition probability matrices over 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, and 0 ≤ α3 ≤ 1 and determine the
range over which d(X, X̂) =

∑3
k=1

∑2
j=1 p(xk)p(x̂j |xk)d(xk, x̂j) ≤ D.

d(X, X̂) =
3∑

k=1

2∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j)

d(X, X̂) = p(x1) [p(x̂1|x1)d(x1, x̂1) + p(x̂2|x1)d(x1, x̂2)] +
p(x2) [p(x̂1|x2)d(x2, x̂1) + p(x̂2|x2)d(x2, x̂2)] +
p(x3) [p(x̂1|x3)d(x3, x̂1) + p(x̂2|x3)d(x3, x̂2)]

d(X, X̂) =
1
3

[(1− α1)× 1 + α1 × 2] +
1
3

[α2 × 2 + (1− α2)× 1] +
1
3

[α3 × 1 + (1− α3)× 1]

Fortunately here, because of the symmetry in the distortion matrix D and the equiprobable
source of information, we have that for x1: if α1 = 1 then x1 contributes for 1

3 to the average
distortion d(X, X̂) while if α1 = 0 then x1 adds 2

3 to the average distortion d(X, X̂). Similarly, for
input symbol x2, the distortion contribution are respectively: 1

3 for α2 = 0 and 2
3 for α2 = 1. Then

both α1 and α2 in the expression of the transition probabilities affect equally the average distortion
d(X, X̂).

Now consider the distortion caused by the mapping of source symbol x3 into either reproduction
symbol, i.e. x̂1 or x̂2. The contribution of x3 in the average distortion d(X, X̂) is independent of
the value of α3. However, since we want to obtain the rate distortion function by minimizing the
mutual information, we have to set α3 to 1

2 such that the contribution in the expression of the
mutual information will be equal to zero:

R(D) = min
PD

I(X; X̂)

R(D) = min
PD




3∑
k=1

2∑
j=1

p(xk)p(x̂j |xk) log2

[
p(x̂j |xk)∑3

l=1 p(xl)p(x̂j |xl)

]


R(D) = min
PD

{
p(x1)

[
p(x̂1|x1) log2

p(x̂1|x1)
p(x̂1)

+ p(x̂2|x1) log2

p(x̂2|x1)
p(x̂2)

]

+p(x2)
[
p(x̂1|x2) log2

p(x̂1|x2)
p(x̂1)

+ p(x̂2|x2) log2

p(x̂2|x2)
p(x̂2)

]

+ p(x3)
[
p(x̂1|x3) log2

p(x̂1|x3)
p(x̂1)

+ p(x̂2|x3) log2

p(x̂2|x3)
p(x̂2)

]}

R(D) = min
PD

{
1
3

[
(1− α1) log2

(1− α1)
p(x̂1)

+ α1 log2

α1

p(x̂2)

]

+
1
3

[
α2 log2

α2

p(x̂1)
+ (1− α2) log2

(1− α2)
p(x̂2)

]

+
1
3

[
(1− α3) log2

(1− α3)
p(x̂1)

+ α3 log2

α3

p(x̂2)

]}
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x2 ✲
d(x2, x̂2) = 1

p(x̂2|x2) = 1− α
x̂2

x1 ✲d(x1, x̂1) = 1

p(x̂1|x1) = 1− α
x̂1

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

d(x2, x̂1) = 2
p(x̂1|x2) = α

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

d(x1, x̂2) = 2
p(x̂2|x1) = α

x3 ✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿ x̂1

� x̂2

d(x3, x̂1) = 1
p(x̂1|x3) = α

d(x3, x̂2) = 1
p(x̂2|x3) = 1− α

x2 ✲
p(x̂2|x2) = 1− α

x̂2

x3

x1 ✲p(x̂1|x1) = 1− α
x̂1

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

p(x̂1|x2) = α

�

p(x̂1|x3) = 1
2

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

p(x̂2|x3) = 1
2

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

p(x̂2|x1) = α
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Minimizing the last term of the mutual information I(X; X̂), that is over the output symbol x3

does not affect (i.e. increase or decrease) the average distortion d(X, X̂). However this is not the
case for input symbols x1 and x2. If we choose p(x̂1|x3) = (1− α3) = α3 = 1

2 then:

log2

p(x̂1|x3)
p(x̂1)

= log2

(
1
2

)
(

1
2

) = 0

By symmetry, since x1 and x2 contribute to d(X, X̂) and I(X; X̂) in a similar manner, we can
choose α1 = α2 = α and α3 = 1

2 because p(x1) = p(x2) = p(x3) = 1
3 , and then

p(x̂1) =
1
3
(1− α) +

1
3
α +

1
3

1
2

=
1
2

= p(x̂2)

The average distortion between X and X̂ can now be expressed as:

d(X, X̂) =
3∑

k=1

2∑
j=1

p(xk)p(x̂j |xk)d(xk, x̂j)

d(X, X̂) =
1
3

[(1− α)× 1 + α× 2] +
1
3

[α× 2 + (1− α)× 1] +
1
3

[(
1
2

)
× 1 +

(
1
2

)
× 1

]

d(X, X̂) =
1
3
− 1

3
α +

2
3
α +

2
3
α +

1
3
α− 1

3
α +

1
6

+
1
6

d(X, X̂) = 1 +
2
3
α

The distortion range being dmin = 1 ≤ D ≤ 4
3 = dmax and taking d(X, X̂) = D it follows that

0 ≤ α ≤ 1
2 , that is:

D = 1 +
2
3
α or equivalently α =

3
2
(D − 1)

The rate R(D) is also a function of the unique parameter α:

R(D) = min
PD

I(X; X̂)

R(D) = min
PD

{
1
3

[
(1− α1) log2

(1− α1)
p(x̂1)

+ α1 log2

α1

p(x̂2)

]
+

1
3

[
α2 log2

α2

p(x̂1)
+ (1− α2) log2

(1− α2)
p(x̂2)

]

+
1
3

[
(1− α3) log2

(1− α3)
p(x̂1)

+ α3 log2

α3

p(x̂2)

]}

R(D) = min
PD


1

3


(1− α) log2

(1− α)(
1
2

) + α log2

α(
1
2

)

 +

1
3


α log2

α(
1
2

) + (1− α) log2

(1− α)(
1
2

)



+
1
3


(

1
2

)
log2

(
1
2

)
(

1
2

) +
(

1
2

)
log2

(
1
2

)
(

1
2

)






R(D) = min
PD


1

3


(1− α) log2

(1− α)(
1
2

) + α log2

α(
1
2

)

 +

1
3


α log2

α(
1
2
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This can be simplified as:

R(D) = min
PD

I(X; X̂)

R(D) = min
PD

2
3
(1− α) log2 2(1− α) +

2
3
α log2 2α

R(D) = min
PD

2
3

[log2 2 + (1− α) log2(1− α) + α log2 α]

R(D) = min
PD

2
3

[1 + (1− α) log2(1− α) + α log2 α]

R(D) = min
PD

2
3

[1−H(α)] or

R(D) = min
PD

2
3

[
1−H

(
3
2
(D − 1)

)]
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Figure 4.5: Entropy function H(α) of a binary source.
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Then the rate distortion function R(D) is a function of the parameter α and can be expressed
with the parametric equations:

R(D) =
2
3

[1−H(α)] and D = 1 +
2
3
α for 0 ≤ α ≤ 1

2 .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
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0.3

0.4

0.5

0.6

0.7

0.8

D

R
(D

)

Figure 4.6: Rate distortion function R(D) with R(α) and D(α), 0 ≤ α ≤ 1
2 .
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4.2 Computation of the rate distortion function

The following algorithm (see 2) computes the rate distortion function R(D) iteratively. Also, see
Berger3 for an in-depth treatment of the rate distortion function.

Step 1: Initialization:

1.1: Set the rate-distortion function R(D) slope s, −∞ < s < 0.

1.2: Set the initial reproduction set distribution p(0), where p(0) = {p(0)(x̂j)}. Choose
p(0)(x̂j) �= 0 for j = 1, . . . , J and, obviously

∑J
j=1 p0(x̂j) = 1.

1.3: Compute the matrix A = {Ak,j} from the distortion matrix:

Ak,j = bsd(xk,x̂j) for k ∈ [1, . . . , K] and j ∈ [1, . . . , J ]

Step 2: Iterative algorithm:

2.1: Compute the J coefficients {cj}, for 1 ≤ j ≤ J , as:

cj =
K∑

k=1

p(xk)Ak,j∑J
l=1 p(r)(x̂l)Ak,l

2.2: Update the reproduction set distribution p(r+1):

p(r+1)(x̂j) = cjp
(r)(x̂j) for j ∈ [1, . . . , J ]

2.3: Compute the “lower value” TL as:

TL =
J∑

j=1

p(r+1)(x̂j) logb cj

2.4: Compute the “upper value” TU as:

TU =
J

max
j=1

logb cj

Step 3: Test if the difference between TU and TL is smaller than a fixed tolerance ε:

If TU − TL ≥ ε then go back to Step 2, else continue

2Blahut, R. E., “Principles and Practice of Information Theory”, Addison-Wesley, Reading, Massachusetts, 1987.
3Berger, T., “Rate Distortion Theory”, Prentice-Hall, Englewood Cliffs, N.J., 1971.
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Step 4: Distortion and rate computation:

4.1: Compute the transition probabilities of the composite source compression encoder (or
reproduction) channel P(r+1) = {p(r+1)(x̂j |xk)}, for k ∈ [1, . . . , K] and j ∈ [1, . . . , J ]:

p(r+1)(x̂j |xk) =
p(r+1)(x̂j)Ak,j∑J
l=1 p(r+1)(x̂l)Ak,l

4.2: Compute the distortion D:

D =
K∑

k=1

J∑
j=1

p(xk)p(r+1)(x̂j |xk)d(xk, x̂j)

4.3: Compute the rate distortion function R(D):

R(D) = sD −
K∑

k=1

p(xk) logb

J∑
j=1

p(r)(x̂j)Ak,j −
J∑

j=1

p(r+1)(x̂j) logb cj

Step 5: Program termination:

5.1: Change the value of s.

5.2: Go back to Step 1 or halt the program.

A flowchart of the above iterative algorithm [Bla87] is is shown on Figure 4.7.
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p(0) = {p(0)(x̂j)}
s ∈ (−∞, 0]

❄

Ak,j = bsd(xk,x̂j)

❄ ❄

cj =
∑K

k=1
p(xk)Ak,j∑J

l=1
p(r)(x̂l)Ak,l

p(r+1)(x̂j) = cjp
(r)(x̂j)

TL =
∑J

j=1 p(r+1)(x̂j) logb cj

TU = maxJ
j=1 logb cj

✟✟✟✟✟✟

❍❍❍❍❍❍

❍❍❍❍❍❍

✟✟✟✟✟✟

❄
yes no

TU − TL < ε

❄

p(r+1)(x̂j |xk) = p(r+1)(x̂j)Ak,j∑J

l=1
p(r+1)(x̂l)Ak,l

D =
∑K

k=1

∑J
j=1 p(xk)p(r+1)(x̂j |xk)d(xk, x̂j)

R(D) = sD −∑K
k=1 p(xk) logb

∑J
j=1 p(r)(x̂j)Ak,j −

∑J
j=1 p(r+1)(x̂j) logb cj

Update s ∈ (−∞, 0]

✛

Figure 4.7: Iterative algorithm for computing the rate distortion function R(D) (from by “Principles
and Practice of Information Theory” Richard E. Blahut).
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4.3 Rate distortion theorem

Definition (Distortion jointly typical pair of sequences):

Given a memoryless pair of random variables (X; X̂) with a joint probability distribution
{p(x, x̂)} and a joint entropy H(X, X̂), the set of ε-distortion jointly typical pairs of sequences
TX,X̂d(ε) of blocklength N are the pairs (x, x̂) defined as:

TX(ε) ≡
{
x such that:

∣∣∣∣− 1
N

logb p(x)−H(X)
∣∣∣∣ < ε

}

TX̂(ε) ≡
{
x̂ such that:

∣∣∣∣− 1
N

logb p(x̂)−H(X̂)
∣∣∣∣ < ε

}

TXX̂(ε) ≡
{

(x, x̂) such that:
∣∣∣∣− 1

N
logb p(x, x̂)−H(X, X̂)

∣∣∣∣ < ε

}

TXX̂d(ε) ≡
{
(x, x̂) such that:

∣∣∣−d(x, x̂)− E
[
d(X, X̂)

]∣∣∣ < ε
}

4.3.1 Shannon’s rate distortion (third) theorem

Theorem (Rate distortion theorem):

For an independent identically distributed (i.i.d.) source X, with distribution p = {p(x)} and
bounded distortion measure d(x, x̂), it is possible to find a source compression code C of rate R such
that the average distortion per symbol is less than a distortion criterion D + ε1, provided that the
code rate R is larger than the rate distortion function R(D) = minPD

I(X; X̂) and the blocklength
N is sufficiently large (N ≥ N0):

R > R(D) + ε2

where PD =
{
P :

∑K
k=1

∑J
j=1 p(xk)p(x̂j |xk)d(xk, x̂j) ≤ D

}
.

Proof:

The expected distortion E
[
d(X, X̂)

]
over all codes and all transmitted vectors {X} of block-

length N is:
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E
[
d(X, X̂)

]
=

∑
(x,x̂)

p(x, x̂)d(x, x̂) (4.22)

E
[
d(X, X̂)

]
=

∑
(x,x̂)∈TX,X̂d(ε)

p(x, x̂)

︸ ︷︷ ︸
≤1

d(x, x̂)︸ ︷︷ ︸
≤D+ε

(4.23)

+
∑

(x,x̂)/∈TX,X̂d(ε)

p(x, x̂) d(x, x̂)︸ ︷︷ ︸
≤dmax

E
[
d(X, X̂)

]
≤ D + ε + Pedmax (4.24)

Pe is the probability that there does not exist a sequence x̂ which is ε-distortion typical with
any of the possible input sequences {x} of length N (random coding argument).

Let the indicator function φ(x, x̂) be defined as:

φ(x, x̂) =

{
1 if (x, x̂) ∈ TX,X̂d(ε)
0 if (x, x̂) /∈ TX,X̂d(ε)

The probability Pe can be expressed as the sum over all codebooks, or codes {C}, of the
probability of a non-ε-distortion typical sequence in a given codebook C:

Pe =
∑
SC

Pr(C)
∑

x/∈J(C)

p(x) (4.25)

where J(C) is the set of source sequences that have, at least, one codeword x̂ which is ε-distortion typical
with x. Consider a single randomly chosen codeword x:

Pr
[
(x, x̂) /∈ TX,X̂d(ε)

]
= 1−

∑
x̂

p(x̂)φ(x, x̂)

︸ ︷︷ ︸
Pr

[
(x,x̂)∈TX,X̂d(ε)

]
(4.26)

where x̂ is the reproduction sequence.

Pe =
∑
SC

Pr(C)
∑

x/∈J(C)

p(x) (4.27)

Pe =
∑
x

p(x)
∑

SC :x/∈J(C)

Pr(C) (4.28)

In the first equation, Pe is the probability of occurrence of all sequences not represented by a
codeword with a fidelity criterion D, averaged over the set of all codes SC . Th second equation
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indicates the probability of choosing a code C that does not well represent the input sequence x,
averaged over all input sequences {x}. The error probability Pe can thus be written as:

Pe =
∑
x

p(x)

[
1−

∑
x̂

p(x̂)φ(x, x̂)

]M

(4.29)

Pe =
∑
x

p(x)

[
1−

∑
x̂

p(x̂)φ(x, x̂)

]2NR

(4.30)

since there are M = 2NR independently chosen codewords {x̂}.

Consider the probability p(x̂). If (x, x̂) ∈ TX,X̂d(ε) then, by definition of ε-distortion typical
pair of sequences:

2−N [H(X)+ε] ≤ p(x) ≤ 2−N [H(X)−ε] (4.31)

2−N[H(X̂)+ε] ≤ p(x̂) ≤ 2−N[H(X̂)−ε] (4.32)

2−N[H(X,X̂)+ε] ≤ p(x, x̂) ≤ 2−N[H(X,X̂)−ε] (4.33)

The conditional probability p (x̂|x) can be expressed as:

p (x̂|x) =
p(x, x̂)
p(x)

(4.34)

p (x̂|x) =
p(x̂)
p(x̂)

p(x, x̂)
p(x)

(4.35)

p (x̂|x) ≤ p(x̂)
2−N[H(X,X̂)−ε]

2−N[H(X̂)+ε] 2−N [H(X)+ε]
(4.36)

p (x̂|x) ≤ p(x̂) 2−N[H(X,X̂)−ε−H(X̂)−ε−H(X)−ε] (4.37)

p (x̂|x) ≤ p(x̂) 2−N[−I(X;X̂)−3ε] (4.38)

p (x̂|x) ≤ p(x̂) 2N[I(X;X̂)+3ε] (4.39)

This implies that:

p(x̂) ≥ p (x̂|x) 2−N[I(X;X̂)+3ε] and therefore (4.40)∑
x̂

p(x̂)φ(x, x̂) ≥
∑
x̂

p (x̂|x) 2−N[I(X;X̂)+3ε]φ(x, x̂) (4.41)
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Then Pe becomes:

Pe ≤
∑
x

p (x)

[
1−

∑
x̂

p (x̂|x) 2−N[I(X;X̂)+3ε]φ (x, x̂)

]2NR

(4.42)

Let α be defined as 2−N[I(X;X̂)+3ε] and β be
∑

x̂ p (x̂|x)φ (x, x̂). It can be shown that:

(1− αβ)M ≤ 1− β + e−αM

Note that the product: 0 ≤ αβ ≤ 1, since 0 ≤ α = 2−N[I(X;X̂)+3ε] ≤ 1 and 0 ≤ β =
∑

x̂ p (x̂|x)φ (x, x̂) ≤
1.

(1− αβ)M = eln(1−αβ)M

(1− αβ)M = eM ln(1−αβ)

but we know that, for x > 0, lnx ≤ (x− 1), which implies, for the range of interest of the product
αβ, that:

ln (1− αβ) ≤ (1− αβ)− 1 = −αβ

(1− αβ)M = eM ln(1−αβ)

(1− αβ)M ≤ eM(−αβ)

(1− αβ)M ≤ e−Mαβ

Furthermore, as shown on Figure 4.8,

(1− αβ)M ≤ e−Mαβ ≤ 1− β + e−αM for 0 ≤ β ≤ 1

For β = 0 and β = 1:

e−Mαβ = e−Mα0 = 1 ≤ 1 + e−αM (for β = 0)
e−Mαβ = e−Mα ≤ 1− 1 + e−αM = e−αM (for β = 1)

Therefore:

Pe ≤
∑
x

p (x)

[
1−

∑
x̂

p (x̂|x) 2−N[I(X;X̂)+3ε]φ (x, x̂)

]2NR

(4.43)

Pe ≤
∑
x

p (x)

{
1−

∑
x̂

p (x̂|x)φ (x, x̂) + e
−
[
2−N[I(X;X̂)+3ε]2NR

]}
(4.44)

Pe ≤ 1 + e−2N[R−I(X;X̂)−3ε] −
∑
x

p (x)
∑
x̂

p (x̂|x)φ (x, x̂) (4.45)
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0 1 β

1 + e−αM

e−αM0 = 1

e−αM

1− β + e−αM

e−αβM

Figure 4.8: Illustration of the inequality (1− αβ)M ≤ 1− β + e−αM .

Since the joint probability p (x, x̂) = p (x) p (x̂|x);

Pe ≤ 1−
∑
x

∑
x̂

p (x, x̂)φ (x, x̂) + e−2N[R−I(X;X̂)−3ε]
(4.46)

where

1−
∑
x

∑
x̂

p (x, x̂)φ (x, x̂) = Pr
[(

X, X̂
)

/∈ TX,X̂d(ε)
]

1−
∑
x

∑
x̂

p (x, x̂)φ (x, x̂) < ε1

by definition of a ε-typical pair of sequences. Then,

Pe ≤ ε1 + e−2N[R−I(X;X̂)−3ε]︸ ︷︷ ︸
ε2

= ε′ (4.47)

The term ε2 goes to 0, as N increases to infinity, if the exponent of e, i.e. −2N[R−I(X;X̂)−3ε]
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tends towards −∞, or equivalently, if the exponent of e−2, i.e. R − I(X; X̂) − 3ε > 0. In other
words, if the rate R is greater than I(X; X̂) + 3ε (where ε can be made arbitrarily small). The
above is true for any D-admissible channel.

Choosing the channel P = {p (x̂|x)} such as to minimize the mutual information I(X; X̂), leads
to the inequality:

R > R(D) + 3ε

Then, there exists at least one code C∗ such that:

a) the average distortion d(X, X̂) is upperbounded as:

d(X, X̂) < D + ε

b) the code rate R(D) is lowerbounded by:

R > R(D) + ε′

QED
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4.3.2 Information transmission theorem

Shannon’s channel coding theorem states that the transmission of information over a noisy channel
can be as reliable as one desires, as long as the error control code rate, i.e. R1, is smaller than
the channel’s capacity C. On the other hand, the rate distortion theorem states that it is possible
to find a source compression code for which the average distortion (fidelity criterion) is arbitrarily
close to a predetermined fidelity criterion D, provided that the rate R2 of the source compression
code is greater than the value of the rate distortion function R(D) at the expected distortion level.

Figure 4.9 illustrates a communication link with source compression coding as well as channel
coding. For both source compression and channel coding theorems, the codeword blocklength N
should be sufficiently large (N ≥ N0).

✲
X

original
message

source
compression

encoder

R2 > R(D) + ε1

✲
X̂

compressed
sourceword

channel
encoder

R1 < C

✲
X̃

original
codeword

noisy
channel

I(X̃; Ỹ)

✲
Ỹ

corrupted
codeword

channel
decoder

Pe → ε

✲
Ŷ

decoded
sourceword

source
compression

decoder

D + ε2

✲
Y

decompressed
message

Figure 4.9: Illustration of the information transmission theorem.

The information transmission theorem combines these two theorems:

Theorem (Information transmission theorem):

The output sequence of a discrete memoryless source, obtained by source compression with a
rate distortion function R(D), can be reproduced with at most D average distortion at the output
of any discrete memoryless channel having a capacity C, provided that:

R(D) < C

if the blocklength N is sufficiently large (i.e., N ≥ N0).
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4.4 Problems

Problem 4.1: Consider a binary source with input distribution p = {p(x1) = α, p(x2) = 1 − α}, where
α ∈ [0, 0.5]. The distortion matrix d is given by (i.e. error probability distortion matrix):

d =
(

0 1
1 0

)

Determine the expression of the rate distortion function R(D) as a function of α and D. Draw the
R(D) as a function of D for α = 0.1, 0.2, 0.3, 0.4 and 0.5.

Problem 4.2: A binary equiprobable memoryless source X generates 4.8 kbits/s. A source compression
encoder, with a ternary reproduction alphabet X̂, is used to compress the data prior transmission.
The distortion matrix d is given by (note that an infinite distortion d(xk, x̂j) =∞ indicates that there
is no transition from xk to x̂j):

d =
(

0 ∞ 1
∞ 0 1

)

a) Express the probability transition matrix P as a function of the distortion D (the average per-
symbol distortion d(X, X̂) is used as the distortion criterion D).

b) Compute and draw the rate-distortion function R(D).

c) Determine the minimum code rate R at which the information can be transmitted if the distortion
criterion is to be kept at D ≤ 20%? What is the corresponding information transfer rate,
expressed in kbits/s?

d) Find a simple source compression encoding scheme that achieves any desired rate R at the
distortion level D determined from R = R(D).

Problem 4.3: A memoryless source X generates bits with the input symbol distribution: p(x1) = 3
4 and

p(x2) = 1
4 . A source compression encoder, with a binary reproduction alphabet X̂, is used to compress

the data prior transmission. The distortion matrix d is given by:

d =
[

d(x1, x̂1) d(x2, x̂1)
d(x1, x̂2) d(x2, x̂2)

]
=

[
0 ∞
4 0

]

where an infinite distortion, i.e., d(xk, x̂j) = ∞, indicates that there is no transition from xk to x̂j .
The transition probability matrix P is given by:

P =
[

p(x̂1|x1) p(x̂1|x2)
p(x̂2|x1) p(x̂2|x2)

]
=

[
α 0

(1− α) 1

]

a) Find the source entropy H(X).

b) Give the reproduction symbol probabilities as a function of α.

c) Find the minimum dmin and the maximum distortion dmax.

d) Give the expression for the average per-symbol distortion d(X, X̂) as a function of α.

e) Give the expression for the pseudochannel mutual information I(X; X̂) as a function of α.

f) Compute the rate-distortion function R(D).

g) Draw the rate-distortion function R(D) from (dmin − 2) ≤ D ≤ (dmax + 2).
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x2 ✲d(x2, x̂2) = 0
p(x̂2‖x2) = 1 x̂2

x1 ✲d(x1, x̂1) = 0
p(x̂1‖x1) = α

x̂1❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

d(x1, x̂2) = 4

p(x̂2‖x1) = 1− α
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Chapter 5

Multiterminal Networks and
Information Theory

In this chapter, we study two fundamental multiterminal networks: the multiple access channel
and the broadcast channel. The capacity region of these two types of networks will be derived.

5.1 Multiple Access Networks

5.1.1 Capacity Region of a Two-source Multiple Access Channel

In this section, we retrict ourselves to the simple case of a multiple access network having only two
independent sources of information. We will use this simple case to define and derive the capacity
region of a multiple access channel. Later, we will consider the more general and realistic case of a
m-user network.

Theorem (Multiple Access Channel Capacity):

The capacity region C of a memoryless multiple access channel is the closure of the convex hull
of the set of all rates R1 and R2 for which:

R1 ≤ I(X1;Y |X2),
R2 ≤ I(X2;Y |X1), and

R1 + R2 ≤ I(X1, X2;Y )

for some product distribution {(p1(x1,k), p2(x2,j)} on the input pair (X1, X2).

Proof:

The proof of this theorem is very similar to the proof of of Shannon’s channel coding theorem on
the achievability of the capacity of a single channel. We will use again the random coding argument

173
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and the expectation of probability of error over an ensemble SC = {C} of codes. Furthermore, a
decoding strategy based on jointly typical pairs of sequences will be considered for deriving a lower
bound on decoding error probabilities.

A simple multiple access communication network consisting of two information sources W1 and
W2 is depicted in Figure 5.1.

original
messages

✲
W1 channel

encoder 1
x1 ∈ C1

transmitted
codewords

✲
X1

✲
W2 channel

encoder 2
x2 ∈ C2

✲
X2

noisy
multiple access

channel
P = p(y|x1,x2)

corrupted
codeword

✲
Y channel

decoder
y ?= (x1,x2)

decoded
messages

✲
W̃1,W̃2

Figure 5.1: Simple two-source multiple access communication network.

We will assume that the messages from both sources are equiprobable to support the random
coding argument.

p(w1) =
1

M1
= 2−NR1 and p(w2) =

1
M2

= 2−NR2 (5.1)

where R1 and R2 are the code rates whereas N is the codewords’ blocklength for the two distinct
information sources.

We consider here a block code C for the two-source multiple access channel as a composite code
consisting of two component codes, C1 and C2. The first component code C1 maps each message
W 1

m1
, m1 = 1, . . . , M1, from the first source as a unique codeword c1

m of blocklength N . The
codewords are assumed binary (c1

m,n ∈ {0, 1}). Similarly, the second component code, C2, encodes
each message from the second source, W 2

m2
, as a unique codeword c2

m of blocklength N where
m2 = 1, . . . , M2:
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C1 =




c1
1
...

c1
m1
...

c1
M1




=




c1
1,1 · · · c1

1,n1
· · · c1

1,N
...

. . .
...

. . .
...

c1
m1,1 · · · c1

m1,n1
· · · c1

m1,N
...

. . .
...

. . .
...

c1
M1,1 · · · c1

M1,n1
· · · c1

M1,N




and

C2 =




c2
1
...

c2
m2
...

c2
M2




=




c2
1,1 · · · c2

1,n2
· · · c2

1,N
...

. . .
...

. . .
...

c2
m2,1 · · · c2

m2,n2
· · · c2

m2,N
...

. . .
...

. . .
...

c2
M2,1 · · · c2

M2,n2
· · · c2

M2,N




(5.2)

As mentionned previously, the decoding rule is based on the definition of jointly typical se-
quences. Again, this decoding rule is not optimal but its use simplify the derivation of the capacity
of a multiple access network. The composite codeword y received from the multiple access chan-
nel is mapped into two valid (component code) codewords (cm1 , cm2), if the triplet of sequences
(cm1 , cm2 ,y) are jointly typical, (i.e., (cm1 , cm2 ,y) ∈ TX1X2Y (δ) for a given arbitrarily small offset
δ. The decoded messages from the two information sources are then (wm1 , wm2). There are four
different types of decoding errors that may occur. These are:

• (cm1 , cm2 ,y) /∈ TX1X2Y (δ) for m1 = 1, . . . , M1 and m2 = 1, . . . , M2

• (cm′
1
, cm2 ,y) ∈ TX1X2Y (δ) for m′

1 �= m1

• (cm1 , cm′
2
,y) ∈ TX1X2Y (δ) for m′

2 �= m2

• (cm′
1
, cm′

2
,y) ∈ TX1X2Y (δ) for m′

1 �= m1 and m′
2 �= m2

The probability of a decoding error Pe|m1,m2
given messages wm1 and wm2 is determined by the

union of error events.

Pe|m1,m2
= Pr




[(cm1 , cm2 ,y) /∈ TX1X2Y (δ)]
⋃ M1⋃

m′
1
=1

m′
1
�=m1

[
(cm′

1
, cm2 ,y) ∈ TX1X2Y (δ)

]
(5.3)

M2⋃
m′

2
=1

m′
2
�=m2

[
(cm1 , cm′

2
,y) ∈ TX1X2Y (δ)

] M1⋃
m′

1
=1

m′
1
�=m1

M2⋃
m′

2
=1

m′
2
�=m2

[
(cm′

1
, cm′

2
,y) ∈ TX1X2Y (δ)

]
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Using the union bound the error decoding probability can be rewritten as the following inequal-
ity:

Pe|m1,m2
≤ Pr [(cm1 , cm2 ,y) /∈ TX1X2Y (δ)] +

M1∑
m′

1
=1

m′
1
�=m1

Pr
[
(cm′

1
, cm2 ,y) ∈ TX1X2Y (δ)

]
(5.4)

+
M2∑

m′
2
=1

m′
2
�=m2

Pr
[
(cm1 , cm′

2
,y) ∈ TX1X2Y (δ)

]
+

M1∑
m′

1
=1

m′
1
�=m1

M2∑
m′

2
=1

m′
2
�=m2

Pr
[
(cm′

1
, cm′

2
,y) ∈ TX1X2Y (δ)

]

This last expression can be written as a sum of four possible terms: ε1, ε2, ε3, and ε4. The first
term, ε1, can be made arbitraily small by the definition of jointly typical pairs of sequences and using
a sufficiently large blocklength N . Unfortunately, the three other terms are not necessarily arbitrary
small. We will show next that using random coding, the expection of each of these three terms
can be made arbitrary small on the ensemble average of the codes provided that the blocklength
N is large enough and that the individual rates obey thes conditions: R1 ≤ C1, R2 ≤ C2, and
R1 + R2 ≤ C1 + C2.

As for the case of single channels, we use the random coding construction scheme for the
ensemble of codes and determine, on this ensemble of multiaccess codes SC , the average of the error
probability. The expected error decoding probability over the ensemble of randomly chosen codes
is:

∑
SC

Pr(C) [Pe] ≤ ε1 +
M1∑

m′
1
=1

m′
1
�=m1

Pr [(x1,x2,y) ∈ TX1X2Y (δ)] +
M2∑

m′
2
=1

m′
2
�=m2

Pr [(x1,x2,y) ∈ TX1X2Y (δ)]

+
M1∑

m′
1
=1

m′
1
�=m1

M2∑
m′

2
=1

m′
2
�=m2

Pr [(x1,x2,y) ∈ TX1X2Y (δ)] (5.5)

and since the multiaccess codewords x1,x2 are not a function of the received codeword indices
m′

1, m
′
2, the above expression reduces to:

∑
SC

Pr(C) [Pe] ≤ ε1 + (M1 − 1)Pr [(x1,x2,y) ∈ TX1X2Y (δ)] + (M2 − 1)Pr [(x1,x2,y) ∈ TX1X2Y (δ)]

+(M1 − 1)(M2 − 1)Pr [(x1,x2,y) ∈ TX1X2Y (δ)] (5.6)∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR1Pr [(x1,x2,y) ∈ TX1X2Y (δ)] + 2NR2Pr [(x1,x2,y) ∈ TX1X2Y (δ)]

+2NR12NR2Pr [(x1,x2,y) ∈ TX1X2Y (δ)] (5.7)
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∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR1
∑

(x1,x2,y)∈TX1X2Y (δ)

p(x1)p(x2,y) + 2NR2
∑

(x1,x2,y)∈TX1X2Y (δ)

p(x2)p(x1,y)

+2N(R1+R2)
∑

(x1,x2,y)∈TX1X2Y (δ)

p(x1,x2)p(y) (5.8)

From the definition and properties of jointly typical pairs of sequences we know that these
probabilities are bounded as:

p(x1)≤ 2−N [H(X1)−δ]; p(x2)≤ 2−N [H(X2)−δ]; p(x1,x2)≤ 2−N [H(X1X2)−δ];
p(y)≤ 2−N [H(Y )−δ]; p(x1,y)≤ 2−N [H(X1Y )−δ]; p(x2,y)≤ 2−N [H(X2Y )−δ]

Therefore, the expected probability of decoding error in the multiple access case is:∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR1
∑

(x1,x2,y)∈TX1X2Y (δ)

2−N [H(X1)−δ]2−N [H(X2Y )−δ]

+2NR2
∑

(x1,x2,y)∈TX1X2Y (δ)

2−N [H(X2)−δ]2−N [H(X1Y )−δ]

+2N(R1+R2)
∑

(x1,x2,y)∈TX1X2Y (δ)

2−N [H(X1X2)−δ]2−N [H(Y )−δ] (5.9)

The maximum number of jointly typical pairs of sequences ‖TX1X2Y (δ)‖ ≤ 2N [H(X1X2Y )+δ] and
therefore:

∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR12N [H(X1X2Y )+δ]2−N [H(X1)−δ]2−N [H(X2Y )−δ]

+2NR22N [H(X1X2Y )+δ]2−N [H(X2)−δ]2−N [H(X1Y )−δ]

+2N(R1+R2)2N [H(X1X2Y )+δ]2−N [H(X1X2)−δ]2−N [H(Y )−δ] (5.10)

Using the relationships between joint entropies and equivocations, H(X1, X2, Y ) = H(X2) +
H(X1|X2) + H(Y |X1, X2) and H(X2, Y ) = H(X2) + H(Y |X2) and considering that the messages
from the two information sources are independent (i.e. H(X1|X2) = H(X1)), we rewrite the
previous equation as:

∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR12N [H(X2)+H(X1|X2)+H(Y |X1,X2)+δ]2−N [H(X1)−δ]2−N [H(X2)+H(Y |X2)−δ]

+2NR22N [H(X2)+H(X1|X2)+H(Y |X1,X2)+δ]2−N [H(X2)−δ]2−N [H(X1)+H(Y |X1)−δ]

+2N(R1+R2)2N [H(X2)+H(X1|X2)+H(Y |X1,X2)+δ]2−N [H(X2)+H(X1|X2)−δ]2−N [H(Y )−δ](5.11)∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR12N [H(X2)+H(X1)+H(Y |X1,X2)+δ−H(X1)+δ−H(X2)−H(Y |X2)+δ]
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+2NR22N [H(X2)+H(X1)+H(Y |X1,X2)+δ−H(X2)+δ−H(X1)−H(Y |X1)+δ]

+2N(R1+R2)2N [H(X2)+H(X1)+H(Y |X1,X2)+δ−H(X2)−H(X1)+δ−H(Y )+δ] (5.12)∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR12N [H(Y |X1,X2)−H(Y |X2)+3δ] + 2NR22N [H(Y |X1,X2)−H(Y |X1)+3δ]

+2N(R1+R2)2N [H(Y |X1,X2)−H(Y )+3δ] (5.13)

Noting that the difference in the above equivocations are (average) mutual information terms:

H(Y |X1, X2)−H(Y |X2) = −I(X1;Y |X2),
H(Y |X1, X2)−H(Y |X1) = −I(X2;Y |X1) and

H(Y |X1, X2)−H(Y ) = −I(X1, X2;Y )

the expected error decoding probability over the ensemble of codes is:

∑
SC

Pr(C) [Pe] ≤ ε1 + 2NR12N [−I(X1;Y |X2)+3δ] + 2NR22N [−I(X2;Y |X1)+3δ]

+2N(R1+R2)2N [−I(X1,X2;Y )+3δ] (5.14)∑
SC

Pr(C) [Pe] ≤ ε1 + 2−N [I(X1;Y |X2)−R1−3δ] + 2−N [I(X2;Y |X1)−R2−3δ]

+2−N [I(X1,X2;Y )−(R1+R2)−3δ] (5.15)∑
SC

Pr(C) [Pe] ≤ ε1 + ε2 + ε3 + ε4 (5.16)

As the multiple access code blocklength N increases, the term ε2 will decreases only if the rate
R1 of the first component code is smaller than I(X1;Y |X2) − 3δ, where δ is an arbitrary small
positive number. Similarly, as for the second and third sterm to vanish toward zero as N increases,
the following conditions must be met: R2 ≤ I(X2;Y |X1)− 3δ and (R1 + R2) ≤ I(X1, X2;Y )− 3δ.
If these three conditions are met than the average error decoding probability for the multiple access
code can be as low as we wish, provided that N is sufficiently large.

Therefore, there must exist at least a multiple access code C∗ or which the error performance
is at least as good as the average over the ensemble of codes. Consequently, because the error
probability Pe ≤ ε =

∑4
i=1 εi is arbitrarily small, then every pair of rates (R1 + R2) which obey

these 3 conditions will be in the capacity region of the multiple access channel.

Pe ≤ ε1 + ε2 + ε3 + ε4 = ε

QED
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Example (Capacity of a Binary Erasure Multiple Access Channel):

In this example, the multiple access channel consists of two binary sources, X1 and X2, an a
ternary information sink, or destination, Y . The ternary output is given as the sum of the two
inputs:

Y = X1 + X2

✲

✻

❅
❅

❅
❅

❅❅

R2

R1
0

0

1
2

1
2

C2 = 1

C1 = 1

11
2

11
2

����������������������������������
��
��
��
��
��
��
��

Figure 5.2: Capacity region of the binary erasure multiple access channel.

When the output Y = 0 or Y = 2, there is no ambiguity about the transmitted symbols
from both input sources: if Y = 0 this implies that both X1 and X2 are equal to zero whereas
Y = 2 ← X1 = X2 = 1. However, the output Y = 1 can be obtained either with X1 = 0 and
X2 = 1 or with X1 = 1 and X2 = 0, leading to an ambiguity about the sources.

What is the capacity C of such a binary erasure multiple access channel? If we set deliberately
X2 = 0 (or equivalently X2 = 1), then Y = X1 (or Y = X1 + 1), there is no longer any ambiguity
and the capacity of the multiple access channel simply becomes the capacity of the channel between
source X1 and sink Y , i.e. C = C1. The same applies to the second channel, from X2 to Y , if we
set X1 = 0 (or X1 = 1). By time-sharing the two channels, that is by allowing the first source X1
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to transmit at a fraction λ (0 ≤ λ ≤ 1) of the time while X2 is set to 0 and then having source X2

active for the remaining (1 − λ) of the time (i.e. while X1 = 0), the capacity of the multiaccess
channel C consists of the straight line defined by the set of points joining the two extreme points
as shown by the dotted line on Figure 5.2.

However, the capacity C is larger. Suppose that either source, for instance X1, is already
transmitting at a rate R1. From the point of view of the second channel, meaning X2 to Y , the
source X1 appears like a equiprobable binary noisy sequence superimposed over X2. The channel
between X2 and Y is similar to a standard binary erasure channel (BEC) where the probability of
obtaining an erasure symbol is equal to 1

2 whatever the symbol from source X2 is. We have seen
previously that the capacity of a binary erasure channel is given by C2 = 1 − ρ where ρ is the
transition probability from either binary input symbol to the output ternary erasure symbol. Here
ρ = 1

2 since source X1 is assumed equiprobable. This means that with this multiple access scheme
the first source is already exchanging information with the common receiver at a rate R1 = C1 = 1
and that an additionnal amount of information between source X2 and Y of rate 1

2 . As shown by
the solid line on Figure 5.2, the capacity region C of this binary erasure multiple access channel
is the closure of the convex hull of the achievable rates (R1, R2) where R1 ≤ 1, R2 ≤ 1, and
R1 + R2 ≤ 11

2 .
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5.1.2 Generalization of the Multiple Access Channel Capacity Region

Figure 5.3 illustrates a multiple access communication network with m users. Here there are m
different users who transmit independent information over the same multiple access channel. The
capacity region for the m-user multiple access communication network is again the convex hull of
all achievable rates.

✲
W1 channel

encoder 1
x1 ∈ C1

✲
X1

✲
W2 channel

encoder 2
x2 ∈ C2

✲
X2

...

✲
Wm channel

encoder m
xm ∈ Cm

✲
Xm

noisy
multiple access

channel
P = p(y|x1, . . . ,xm)

✲Y channel
decoder

y ?= (x1, . . . ,xm)
✲W̃1,W̃2, . . . ,W̃m

Figure 5.3: m-user multiple access communication network.

Consider the following partitionning of the set {1, 2, . . . , m} of all individual users: S ⊆
{1, 2, . . . , m} (the symbol ⊆ represents the set inclusion, i.e. S can be any subset of the set of
all users {1, 2, . . . , m}) and its complementary set Sc. If R(S) =

∑
i∈S Ri and the random source

X(S) = {Xi} such that i ∈ S, then one can determine the capacity region of such a m-user multiple
link.

Theorem (Capacity Region for the General Multiple Access Channel):

The capacity region C of a m-user multiple access channel is the closure of the convex hull of
the set of all rate vectors for which:

R(S) ≤ I(X(S);Y |X(Sc)), for all sets S ⊆ {1, 2, . . . , m}

for some product distribution {(p1(x1,k1), p2(x2,k2 , . . . , pm(xm,km)} on the input vector (X1, X2, . . . , Xm).

Proof:
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The proof of this generalization theorem follows the same lines of the previous proof for the
two-source case where now the number of terms in the expression of the probability of error is now
2m − 1 instead of 3 (excluding the first term ε1).

5.2 Broadcast Networks

A broadcast communication network with m-users is depicted on Figure 5.4. A single broadcast
transmitter sends information to m different users over the same broadcast channel. Here we
assume that a part of the broadcast message is intended to all users, or receivers, whereas some
other parts of the message are different and specific to each individual receivers.

✲
W0,W1, . . . ,Wm channel

encoder
x ∈ C

✲X
noisy

broadcast
channel

P = p(y0, . . . ,ym)|x)

✲
Y0,Y1 channel

decoder 1
y0,y1 =?

✲W̃0,W̃1

✲
Y0,Y2 channel

decoder 2
y0,y2 =?

✲W̃0,W̃2

...

✲
Y0,Ym channel

decoder m
y0,ym =?

✲W̃0,W̃m

Figure 5.4: Broadcast communication network with m users.

5.2.1 Capacity Region of Broadcast Networks

The capacity region for the m-user broadcast communication link is once again the convex hull of
a set of achievable rates. For the broadcast channel case, those rates are R0, R1, . . . , Rm, where R0

corresponds to the rate of the part of the message which is common to all m users and R1, . . . , Rm

represent those rates of the other message parts intended only for each receiver specifically.

Assume for a moment that the message sent by the broadcast transmitter is the same for all m
receivers and that all transmitter to receiver links are the same (i.e. they can be represented with
the same transition probability matrix). Then the problem will be equivalent to the situation where
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there is only one receiver and the capacity region of that degenerated case of broadcast channel
would be simply the capacity of a point-to-point channel as we have considered in chapter 3.

At the other extreme, assume now that there is no common part in the broadcasted message;
that is, each user receives a different message. Then the message parts can be exchanged between
the single broadcast transmitter and each receiver in the network by sharing the channel. One
obvious method is the time-sharing multiplexing scheme where the message part intended for a
given user occupies a unique timeslot in a data stream.

Here we are interested in a more general broadcast network situation where part of the broadcast
message is common to all users whereas there are also distinct messages, or parts, intended for each
receiver. In this later case, a larger capacity region C can be obtained by exploiting the common
and specific parts of the broadcast message.

Consider here, for simplicity, a broadcast network which consists of only two receivers. The
code C of such a broadcast channel is defined as a block code of blocklength N and consisting of a
total of M = 2NR02NR12NR2 codewords.

C =




c1
...

cm
...

cM




=




c1
...

cm
...

c2N(R0+R1+R2)




=




c1,1 · · · c1,n · · · c1,N
...

. . .
...

. . .
...

cm,1 · · · cm,n · · · cm,N
...

. . .
...

. . .
...

cM,1 · · · cM,n · · · cM,N




There are M = 2N(M0,M1,M2) binary codewords of blocklength N . Both decoders must be able
to recover the common message w0. Furthermore, decoder 1 must decode its intended specific
message w1 whereas decoder 2 must decode w2. In other words, the task of decoder 1 is to recover
the information pair (w0, w1) and decoder 2 must determine the message pair (w0, w2). For this
purpose, we can rewrite the broadcast network code by differentiating the index of the common
and specific parts of the broadcasted message.

C =




c1,1 · · · c1,n · · · c1,N
...

. . .
...

. . .
...

cm,1 · · · cm,n · · · cm,N
...

. . .
...

. . .
...

cM,1 · · · cM,n · · · cM,N




=




c1,1 · · · c1,n · · · c1,N
...

. . .
...

. . .
...

c(m0,m1,m2),1 · · · c(m0,m1,m2),n · · · c(m0,m1,m2),N
...

. . .
...

. . .
...

c(M0,M1,M2),1 · · · c(M0,M1,M2),n · · · c(M0,M1,M2),N




There will be a decoding error if either one of the messages (w̃0, w̃1,or w̃2) decoded by the
receivers is in error. The capacity region of broadcast channels is known only for some special
cases: we will study the degraded broadcast network which is one of those known capacity region
cases.
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5.2.2 Capacity Region of Degraded Broadcast Networks

A degraded broadcast network is a broadcast channel which has the particular characteristic that
the broadcast channel can be represented as m cascaded noisy channels as illustrated on Figure
5.5. With that channel configuration, we see that the first receiver is better than the second, which
is a cascade of these first two channels, the third receiver gets a worse signal, and so on.

✲
W0,W1, . . . ,Wm channel

encoder
x ∈ C

✲X noisy
channel 1

P(1)

✲
noisy

channel 2
P(2)

...

✲
noisy

channel m
P(m)

✲
Y0,Y1 channel

decoder 1
y0,y1 =?

✲W̃0,W̃1

✲
Y0,Y2 channel

decoder 2
y0,y2 =?

✲W̃0,W̃2

...

✲
Y0,Ym channel

decoder m
y0,ym =?

✲W̃0,W̃m

Figure 5.5: Degraded broadcast network with m users.

Theorem (Degraded Broadcast Channel Capacity):

The capacity region C of a memoryless degraded broadcast channel is the closure of the convex
hull of the set of all rates R1 and R2 for which:

R1 ≤ I(X;Y1|U),
R2 ≤ I(U ;Y2)

for some joint distribution {(p(u)p(x|u)p(y1, y2|u)} on the input X, an auxiliary random variable
U , and the output pair (Y1, Y2).

Proof:

The proof presented here involves once more the random coding argument as well as a decoding
rule based on the definition of jointly typical pairs of sequences. Its derivation is similar to that used
in section 3.5 for point-to-point channels and section 5.1 for multiple access channels. We briefly
outline here the differences between the previous derivations and the present one for broadcast
channel.
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There is a broadcast channel decoding error the message intended for user 1 and/or user 2 is
in error. We will use the concept of protocodes to show this theorem. In the degraded broadcast
network configuration we have two channels: the first one between input X and output Y1 is in fact
a single point-to-point channel with high reliability. The other link between input X and output
Y2 consists of two cascaded channels and hence its performance is worse than the first channel.
We recall that for cascaded channels the mutual information between the input and the output
of the second channel I(X;Y2) ≤ I(X;Y1). All the codewords from the source X will be grouped
in clouds of codewords where the cloud center is called the protocodeword of that subgroup of
codewords. For the high quality broadcast link (X ⇒ Y1), decoder 1 will attempt to decode the
exact codeword transmitted by determining the transmitted protocodeword, or cloud, as well as
the actual transmitted codeword. However, for the second low-quality channel (X ⇒ Y2), decoder
2 will only try to determine the protocodeword without attempting to find the actual transmitted
codeword, hence its low reliability.

An interesting example of such a degraded broadcast network is the High Definition Television
(HDTV) for which the transmitted broadcast information will be high quality high images. Those
users having a high quality HDTV receiver will be able to receive the intended high quality images
whereas the other users with bad receivers will still be able to receive the broadcast images but with
the limitation of the regular TV receivers. The common message will be the protocodes whereas
the actual codewords will provide the additionnal image quality that can only be exploited by the
high-end HDTV receivers. For this arrangement to work properly, a broadcast channel code should
be employed.

For user 1, i.e. the single and better channel, a decoding error will occur if the triplet
(c,

m, cm,l,y1) representing the transmitted protocodeword c,
m, the transmitted codeword cm,l and

the received codeword y1 are not jointly typical. This first term in the error probability can be
made arbitrarily small, provided that the blocklength N is sufficiently large. However, there will
also be a decoding error if another triplet (c,

m′ , cm′,l′ ,y1), where either m′ �= m and l′ �= l, hap-
pens to be jointly typical with the received codeword y1. In other words, the received vector y1

is correctly decoded only if we can determine both the correct protocodeword c,
m and the actual

transmitted codeword cm,l:

Pe,y1 ≤ Pr [(c,
m, cm,l,y1) /∈ TUXY1(δ)] +

M2∑
m′=1
m′ �=m

M1∑
l′=1
l′ �=l

Pr
[
(c,

m′ , cm′,l′ ,y1) ∈ TUXY1(δ)
]

Pe,y1 ≤ ε1 +
M2∑

m′=1
m′ �=m

M1∑
l′=1
l′ �=l

Pr
[
(c,

m′ , cm′,l′ ,y1) ∈ TUXY1(δ)
]

(5.17)

For the second user (i.e. using the cascaded and thus the worse channel), an error in the
decoding process will occur only if the decoder can not recognize the transmitted protocodeword.
Again two error situations may happen: the pair (c,

m,y2) /∈ TUY2(δ) (the protocodeword c,
m and

the received vector y2 are not jointly typical), and (c,
m′ ,y2) ∈ TUY2(δ) (the received vector y2 is

jointly typical with another, and thus erroneous, protocodeword c,
m′). The first term can be made
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vanishlingly small by the properties of jointly typical sequences whereas the second term may not
converge towards zero.

Pe,y2 ≤ Pr [(c,
m,y2) /∈ TUY2(δ)] +

M2∑
m′=1
m′ �=m

Pr [(c,
m′ ,y2) ∈ TUY2(δ)]

Pe,y2 ≤ ε2 +
M2∑

m′=1
m′ �=m

Pr [(c,
m′ ,y2) ∈ TUY2(δ)] (5.18)

The error decoding probability Pe for the two-user degraded broadcast channel is then given by
the union of the above two error events and, by the union bound, can be restated as:

Pe ≤ Pe,y1 + Pe,y2 (5.19)

≤ ε1 + ε2 +
M2∑

m′=1
m′ �=m

M1∑
l′=1
l′ �=l

Pr
[
(c,

m′ , cm′,l′ ,y1) ∈ TUXY1(δ)
]
+

M2∑
m′=1
m′ �=m

Pr [(c,
m′ ,y2) ∈ TUY2(δ)]

The expected probability of error over the ensemble of codes (random coding argument) is given
by [Bla87, CT91]:

∑
SC

Pr(C) [Pe] ≤ ε1 + ε2 + 2−N [I(X;Y1|U)−R1−ε′] + 2−N [I(U ;Y2)−R2−ε′′] (5.20)

The right-hand term in the last equation can be made arbitrarily small provided that:

R1 ≤ I(X;Y1|U),
R2 ≤ I(U ;Y2)

and provided that the blocklength N of the broadcast code is sufficiently large. Then there must
exist a code for which the error decoding probability is at least as small as the average of the error
decoding probability of the ensemble of codes.

Pe ≤ ε1 + ε2 + ε3 + ε4 = ε

QED
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5.3 Problems

Problem 5.1: Find and draw the capacity regions for these following multiple access channels.

a) A multiple access channel which consists in two independent binary symmetric channels of ca-
pacities C1 = 1 Sh and C2 = 1 Sh.

b) A additive modulo-2 multiple access channel where X1 ∈ {0, 1}, X2 ∈ {0, 1}, and Y = X1 ⊕X2

(the symbol ⊕ represent the modulo-2 addition operation).

c) A multiplicative multiple access channel where X1 ∈ {−1, 1}, X2 ∈ {−1, 1}, and Y = X1 ×X2.

d) How do the capacity regions of the above three multiple access channels compare with the
capacity region of the binary erasure multiple access channel studied in class.
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