ELG 5170 Information Theory
 Course Notes

Dr. Jean-Yves Chouinard
School of Information Technology and Engineering, University of Ottawa

Contents

Contents ii
List of Figures vii
List of Tables x
1 Measure of Information 1
1.1 Self-information and source entropy 1
1.2 Joint entropy and equivocation 10
1.3 Mutual information 12
1.4 Average mutual information 14
1.5 Relationship between the entropy and the (average) mutual information 15
1.6 Inequalities concerning the entropy and (average) mutual information 19
1.7 Conditional and joint (average) mutual information 22
1.7.1 Conditional (average) mutual information 22
1.7.2 Joint (average) mutual information 24
1.7.3 Average mutual information for cascaded channels 26
1.8 Generalization over N sample spaces 29
1.8.1 Entropy of a random vector 29
1.8.2 (Average) mutual information between two random vectors 30
1.9 Relative entropy 31
1.10 Problems 34
2 Distortionless Source Coding 37
2.1 Tchebycheff Inequality and the weak law of large numbers 37
2.1.1 Tchebycheff inequality 37
2.1.2 Weak law of large numbers 37
2.2 Typical and atypical sequences 40
2.3 Shannon-McMillan theorem 44
2.4 Variable length codes (source coding) 47
2.4.1 Uniquely decodable codes 48
2.4.2 Kraft Inequality and Optimum Codes 50
2.4.2.1 Kraft Inequality for Prefix Codes 50
2.4.2.2 Kraft Inequality for Uniquely Decodable Codes 52
2.4.2.3 Lower Bound on the Average Codeword Length 55
2.4.2.4 Upper Bound on the Average Codeword Length 57
2.4.2.5 Encoding N i.i.d. source symbols 59
2.4.3 Optimum coding (Huffman code) 60
2.4.3.1 Procedure to construct a binary Huffman code 60
2.4.3.2 Non-binary Huffman codes 65
2.5 Fixed length source compaction codes (Shannon source coding theorem) 66
2.6 Discrete sources with memory 73
2.7 Properties of a stationary source: 78
2.8 Universal Source Coding 84
2.8.1 Lempel-Ziv Code 85
2.9 Problems 88
3 Channel Coding for Noisy Channels 91
3.1 Convex sets and convex functions 91
3.1.1 Convex sets 91
3.1.2 Convex functions 95
3.1.3 Convexity (\cap) of mutual information over input distributions 97
3.1.4 Convexity (\cup) of mutual information over channel transition probability ma- trices 101
3.2 Capacity of memoryless channel 102
3.2.1 Capacity of symmetric channels 102
3.2.2 Blahut-Arimoto algorithm (capacity of asymmetric channels) 106
3.3 Capacity of channels with memory 111
3.4 Jointly typical pairs of sequences 115
3.5 Channel coding theorem 119
3.5.1 Shannon's channel (second) coding theorem 119
3.5.2 Converse of the Channel Coding Theorem 127
3.6 Channel reliability function 130
3.6.1 Random coding exponent 130
3.6.2 Error bounds and channel reliability function 131
3.6.3 Error bounds on $P_{e}(N, R)$ 132
3.6.4 Channel reliability function $E^{*}(R)$ 133
3.7 Channel coding theorem revisited 135
3.7.1 Shannon's channel coding theorem (random coding exponent) 135
3.8 Problems 142
4 Rate Distortion Theory 147
4.1 Rate distortion function 147
4.2 Computation of the rate distortion function 160
4.3 Rate distortion theorem 163
4.3.1 Shannon's rate distortion (third) theorem 163
4.3.2 Information transmission theorem 169
4.4 Problems 170
5 Multiterminal Networks and Information Theory 173
5.1 Multiple Access Networks 173
5.1.1 Capacity Region of a Two-source Multiple Access Channel 173
5.1.2 Generalization of the Multiple Access Channel Capacity Region 181
5.2 Broadcast Networks 182
5.2.1 Capacity Region of Broadcast Networks 182
5.2.2 Capacity Region of Degraded Broadcast Networks 184
5.3 Problems 187
Bibliography 190

List of Figures

1.1 Example of quaternary source distributions (arbitrary, deterministic, and equiprob- able). 4
1.2 Letter distribution of standard alphabet (equiprobable, English, and French). 7
1.3 Entropy of a binary source as a function of its distribution. 9
1.4 Natural $\operatorname{logarithm}(\log (x) \leq x-1$ for $x>0)$. 20
1.5 Transmission through two cascaded channels. 26
1.6 Simultaneous transmission through two channels. 34
2.1 Variable length source encoder 47
2.2 Source codes' subdivisions. 48
2.3 Code tree (Kraft inequality): ancestors and descendants. 51
2.4 Binary Huffman code structure 62
2.5 Structure of a non-binary Huffman code 65
2.6 Fixed length source compaction encoder. 66
2.7 Rate $\frac{3}{4}$ fixed length source compaction encoder. 68
2.8 Rate $R=\frac{L}{N}$ fixed length source compaction encoder. 71
2.9 Entropy rate $H_{R}(X)$ and entropy $H(X)$ of source X. 77
2.10 Two-state Markovian source X_{n}. 82
3.1 Convex and non-convex sets. 92
3.2 Example of a 3-dimensional probability distribution. 93
3.3 Convex \cap (convex down or convex "cap") function. 96
3.4 Convex \cup (convex up or convex "cup") function. 96
3.5 Convexity (\cap) of mutual information function over the set of input symbol distribu- tions \mathcal{S}_{p}. 97
3.6 Convexity (\cup) of mutual information function over the set of transition probability matrices $\mathcal{S}_{\mathbf{P}}$. 101
3.7 Blahut-Arimoto algorithm for computing the capacity of asymmetric channels (from "Principles and Practice of Information Theory" by Richard E. Blahut). 107
3.8 Binary channel with memory. 111
3.9 Binary symmetric channel. 112
3.10 Relationship between the sets of jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$, and the sets of typical sequences $\mathcal{T}_{X}(\delta)$ and $\mathcal{T}_{Y}(\delta)$. 116
3.11 Noisy communication channel with channel coding. 119
3.12 Decoding decision regions for jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$. 122
3.13 Random coding exponent $E_{r}(R)$ for block codes for BSC with $\epsilon=10^{-2}$. 131
3.14 Channel reliability function $E^{*}(R)$. 134
4.1 Convexity of the rate distortion function $R(D)$. 151
4.2 Source compression encoder and decoder, or pseudochannel, for the computation of the rate distortion function $R(D)$. 152
4.3 Distortion measures associated with the distortion matric \mathbf{D}. 153
4.4 Transition probability matrix \mathbf{P} for the source compression encoder and decoder (pseudochannel). 154
4.5 Entropy function $H(\alpha)$ of a binary source. 158
4.6 Rate distortion function $R(D)$ with $R(\alpha)$ and $D(\alpha), 0 \leq \alpha \leq \frac{1}{2}$. 159
4.7 Iterative algorithm for computing the rate distortion function $R(D)$ (from by "Prin- ciples and Practice of Information Theory" Richard E. Blahut). 162
4.8 Illustration of the inequality $(1-\alpha \beta)^{M} \leq 1-\beta+e^{-\alpha M}$. 167
4.9 Illustration of the information transmission theorem. 169
5.1 Simple two-source multiple access communication network. 174
5.2 Capacity region of the binary erasure multiple access channel. 179
5.3 m-user multiple access communication network. 181
5.4 Broadcast communication network with m users. 182
5.5 Degraded broadcast network with m users. 184

List of Tables

1.1 Relative frequencies of letters for an equiprobable source, and English and French languages (alphabet size $=27$). 8
2.1 Typical (binary) sequences of length $N=20$: $p\left(x_{1}\right)=\frac{1}{4}, p\left(x_{2}\right)=\frac{3}{4}$ 43
2.2 Huffman code for single symbols 62
2.3 Huffman code for digram sourcewords $\mathbf{x}_{k}=\left(x_{i}, x_{j}\right)$ 64
2.4 Example of a Lempel-Ziv code. 86

Chapter 1

Measure of Information

1.1 Self-information and source entropy

Source model:

Consider a source of information that generates at each instant a message x_{i} from a set $\mathcal{X}=\left\{x_{i}\right\}$, called the source alphabet:

$$
\left\{x_{i}\right\}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

where N is the alphabet size.

Example 1 (binary source):

$$
x_{i} \in\{0,1\} \Longrightarrow \text { alphabet size } N=2
$$

Example 2 (standard English alphabet):

$$
x_{i} \in\{a, b, c, \ldots, x, y, z\} \Longrightarrow \text { alphabet size } N=26
$$

These single letters are also called monograms.

Example 3 (digrams):

$$
x_{i} \in\{a a, a b, a c, \ldots, z x, z y, z z\} \Longrightarrow \text { alphabet size } N=26^{2}
$$

Example 4 (trigrams):

$$
x_{i} \in\{a a a, a a b, a a c, \ldots, z z x, z z y, z z z\} \Longrightarrow \text { alphabet size } N=26^{3}
$$

Example 5 (US ASCII):

$$
x_{i} \in\{(0000000),(0000001), \ldots,(1111111)\} \Longrightarrow \text { alphabet size } N=128
$$

USA	Standard	Code for		Information		Exchange	(USASCII)	
$\begin{array}{lllll}b_{4} & b_{3} & b_{2} & b_{1}\end{array}$	$\begin{array}{ccc}b_{7} & b_{6} & b_{5} \\ 0 & 0 & 0\end{array}$	$\begin{array}{ccl}b_{7} & b_{6} & b_{5} \\ 0 & 0 & 1\end{array}$	$\begin{array}{ccc}b_{7} & b_{6} & b_{5} \\ 0 & 1 & 0\end{array}$	$\begin{array}{ccc} \hline b_{7} & b_{6} & b_{5} \\ 0 & 1 & 1 \end{array}$	$\begin{array}{ccc} \hline b_{7} & b_{6} & b_{5} \\ 1 & 0 & 0 \end{array}$	$\begin{array}{ccc} \hline b_{7} & b_{6} & b_{5} \\ 1 & 0 & 1 \end{array}$	$\begin{array}{ccc} \hline b_{7} & b_{6} & b_{5} \\ 1 & 1 & 0 \end{array}$	$\begin{array}{ccc} \hline b_{7} & b_{6} & b_{5} \\ 1 & 1 & 1 \end{array}$
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	NUL	DLE	SP	0	@	P		p
$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	SOH	DC1	!	1	A	Q	a	q
$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	STX	DC2	"	2	B	R	b	r
$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	ETX	DC3	\#	3	C	S	c	s
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	EOT	DC4	\$	4	D	T	d	t
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	ENQ	NAK	\%	5	E	U	e	u
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	ACK	SYN	\&	6	F	V	f	v
$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	BEL	ETB		7	G	W	g	w
$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$	BS	CAN	(8	H	X	h	x
$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	HT	EM)	9	I	Y	i	y
$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	LF	SUB	*	:	J	Z	j	z
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	VT	ESC	+	;	K	[k	\{
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	FF	FS	,	$<$	L	1	1	\|
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	CR	GS	-	$=$	M]	m	\}
$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	SO	RS		>	N	\wedge	n	\sim
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	SI	US	/	?	O	-	o	DEL

Example 6 (DES 64-bit blocks):

$$
x_{i} \in\{(000 \ldots 00),(000 \ldots 01), \ldots,(111 \ldots 11)\} \Longrightarrow \text { alphabet size } N=2^{64}
$$

This corresponds to the plaintext alphabet for the Data Encryption Standard (DES).

The less likely an event is expected to occur, the more information one obtains when this particular event happens. With each message x_{i} is associated a probability of occurrence $p\left(x_{i}\right)$. The amount of uncertainty of a particular message x_{i} is termed self-information and is defined as:

$$
\begin{equation*}
I_{X}\left(x_{i}\right)=\log _{b} \frac{1}{p\left(x_{i}\right)} \tag{1.1}
\end{equation*}
$$

$$
I_{X}\left(x_{i}\right)=-\log _{b} p\left(x_{i}\right)
$$

Note: The choice of the logarithmic base, i.e. b, determines the units of the information measure:
$b=2 \quad$ Sh (shannons) or bit (binary digit)
$b=e \quad$ logons or nats (natural units)
$b=10$ hartleys (in honor of R.V.L. Hartley, pioneer in communication and information theory)
Whether base $b=2, e$ or10, the information quantities are obviously the same. The conversion between the different bases is given by:

$$
\begin{array}{rlrr}
1 \text { logon } & =\frac{1}{\ln 2} & =\log _{2} e & = \\
1 \text { hartley } & =\frac{1.443 \mathrm{Sh}}{\log _{0_{0} 2}}=\log _{2} 10 & = & 3.322 \mathrm{Sh} \tag{1.2}\\
1 \text { hartley } & =\frac{\ln 10}{\log _{10} e}= & 2.303 \text { logons }
\end{array}
$$

A message x_{i} can take only one of the N possible values from the set of messages, or sample space \mathcal{X}, defined as the source alphabet:

$$
\begin{equation*}
\mathcal{X} \equiv\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \tag{1.3}
\end{equation*}
$$

and the sum of the probabilities of occurrence of all the messages is equal to unity:

$$
\begin{equation*}
\sum_{i=1}^{N} p\left(x_{i}\right)=1 \tag{1.4}
\end{equation*}
$$

Definition (Entropy):

The entropy $H(X)$ of a source of information X (i.e. random variable) is defined as the weighted sum (or average) of the self-information of each message x_{i} from that source:

$$
\begin{equation*}
H(X)=\sum_{i=1}^{N} p\left(x_{i}\right) I_{X}\left(x_{i}\right) \tag{1.5}
\end{equation*}
$$

$$
H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right)
$$

Example (quaternary source distribution):

As an example, lets consider the distribution of quaternary sources. Let the distribution of a quaternary source be: $p\left(x_{1}\right)=\frac{1}{2}, p\left(x_{2}\right)=p\left(x_{4}\right)=\frac{1}{8}$, and $p\left(x_{3}\right)=\frac{1}{4}$. The self-information of each message is then:

$$
\begin{array}{ll}
I_{X}\left(x_{1}\right) & =-\log _{2} \frac{1}{2}=1 S h \tag{shannon}\\
I_{X}\left(x_{2}\right)=I_{X}\left(x_{4}\right) & =-\log _{2} \frac{1}{8}=3 S h \\
I_{X}\left(x_{3}\right) & =-\log _{2} \frac{1}{4}=2 S h
\end{array}
$$

As can be seen from the above equation, the more likely the event (i.e. the message), the less uncertainty its occurrence resolves. In other words, as the probability of an event increases, its corresponding self-information decreases. The entropy of this source of information is obtained by averaging the self-information over the set of messages:

$$
H(X)=\sum_{i=1}^{4} p\left(x_{i}\right) I_{X}\left(x_{i}\right)=1.75 S h
$$

Quaternary source distribution

Figure 1.1: Example of quaternary source distributions (arbitrary, deterministic, and equiprobable).
Now, suppose that the quaternary source distribution has changed to the following: $p\left(x_{1}\right)=$ $p\left(x_{2}\right)=p\left(x_{4}\right)=0$, and $p\left(x_{3}\right)=1$. This constitutes the special case of a deterministic source where it is certain that the third symbol x_{3} will always occurs while x_{1}, x_{2} and x_{4} never occur. The self-information of symbol x_{3} is simply $I_{X}\left(x_{3}\right)=-\log _{2} 1=0 S h$ and thus the entropy $H(X)$ is also equal to $0 S h$. The observation of that source does not provide any additional information.

Finally, let the quaternary source have an equiprobable distribution, that is each symbol are produced with the same probability: $p\left(x_{1}\right)=p\left(x_{2}\right)=p\left(x_{3}\right)=p\left(x_{4}\right)=\frac{1}{4}$. the self-information is the same for the four symbols

$$
I_{X}\left(x_{1}\right)=I_{X}\left(x_{2}\right)=I_{X}\left(x_{3}\right)=I_{X}\left(x_{4}\right)=-\log _{2} \frac{1}{4}=2 S h
$$

and the entropy is simply:

$$
H(X)=2 S h
$$

An equiprobable source is the source of information which provides the most uncertainty. This result is important in cryptography: the security of a cryptosystem is increased if the choice of encryption keys is equiprobable.

Example(Standard alphabet distribution):

The entropy of English language can be determined from the frequency of occurrence of the individual letters, as a first approximation. Table 1.1 indicates the relative frequencies of letters in English and French languages including the space character (represented by \square).

$$
H_{\text {English }}(X)=-\sum_{i=1}^{27} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)=4.0755 S h
$$

By comparison, French language has a slightly lower entropy (it has slightly less uniform letter distribution).

$$
H_{\text {French }}(X)=-\sum_{i=1}^{27} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)=3.9568 S h
$$

Suppose that there exists a 27 -letter language for which each letter x_{i} is equally probable, that is $P\left(x_{i}\right)=\frac{1}{27}$ for $1 \leq i \leq 27$. Then this new source's entropy is given by:

$$
H_{\text {Equiprobable }}(X)=-\sum_{i=1}^{27}\left(\frac{1}{27}\right) \log _{2}\left(\frac{1}{27}\right)=-\log _{2}\left(\frac{1}{27}\right)=4.7549 \text { Sh }
$$

which is the highest achievable entropy for a 27 -letter alphabet.

Figure 1.2: Letter distribution of standard alphabet (equiprobable, English, and French).

Table 1.1: Relative frequencies of letters for an equiprobable source, and English and French languages (alphabet size $=27$).

Letter	Equiprobable		English language		French language	
x_{i}	$p\left(x_{i}\right)=\frac{1}{27}$	$-\log _{2} \frac{1}{27}$	$p\left(x_{i}\right)$	$-\log _{2} p\left(x_{i}\right)$	$p\left(x_{i}\right)$	$-\log _{2} p\left(x_{i}\right)$
\square	0.0370	4.7549	0.1859	2.4274	0.1732	2.5295
a	0.0370	4.7549	0.0642	3.9613	0.0690	3.8573
b	0.0370	4.7549	0.0127	6.2990	0.0068	7.2002
c	0.0370	4.7549	0.0218	5.5195	0.0285	5.1329
d	0.0370	4.7549	0.0317	4.9794	0.0339	4.8826
e	0.0370	4.7549	0.1031	3.2779	0.1428	2.8079
f	0.0370	4.7549	0.0208	5.5873	0.0095	6.7179
g	0.0370	4.7549	0.0152	6.0398	0.0098	6.6730
h	0.0370	4.7549	0.0467	4.4204	0.0048	7.7027
i	0.0370	4.7549	0.0575	4.1203	0.0614	4.0256
j	0.0370	4.7549	0.0008	10.2877	0.0024	8.7027
k	0.0370	4.7549	0.0049	7.6730	0.0006	10.7027
1	0.0370	4.7549	0.0321	4.9613	0.0467	4.4204
m	0.0370	4.7549	0.0198	5.6584	0.0222	5.4933
n	0.0370	4.7549	0.0574	4.1228	0.0650	3.9434
o	0.0370	4.7549	0.0632	3.9839	0.0464	4.4297
p	0.0370	4.7549	0.0152	6.0398	0.0261	5.2598
q	0.0370	4.7549	0.0008	10.2877	0.0104	6.5873
	0.0370	4.7549	0.0484	4.3688	0.0572	4.1278
s	0.0370	4.7549	0.0514	4.2821	0.0624	4.0023
t	0.0370	4.7549	0.0796	3.6511	0.0580	4.1078
u	0.0370	4.7549	0.0228	5.4548	0.0461	4.4391
v	0.0370	4.7549	0.0083	6.9127	0.0104	6.5873
w	0.0370	4.7549	0.0175	5.8365	0.0005	10.9658
x	0.0370	4.7549	0.0013	9.5873	0.0035	8.1584
y	0.0370	4.7549	0.0164	5.9302	0.0018	9.1178
z	0.0370	4.7549	0.0005	10.9658	0.0006	10.7027

Example (Binary source):
Consider a binary source X with $0<p\left(x_{1}\right)<1$ and $p\left(x_{2}\right)=1-p\left(x_{1}\right)$. The entropy $H(X)$ of the source is then given by (see figure 1.3):

$$
\begin{equation*}
H(X)=-\left[p\left(x_{1}\right) \log _{b} p\left(x_{1}\right)+\left(1-p\left(x_{1}\right)\right) \log _{b}\left(1-p\left(x_{1}\right)\right)\right] \tag{1.6}
\end{equation*}
$$

Figure 1.3: Entropy of a binary source as a function of its distribution.

1.2 Joint entropy and equivocation

Consider now two random variables X and Y having a joint probability density function (pdf) $p(x, y)$ (note that X and Y may happen to be independent). The joint entropy $H(X Y)$ of X and Y is defined as:

$$
\begin{equation*}
H(X Y)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log _{b} p(x, y) \tag{1.7}
\end{equation*}
$$

where \mathcal{X} and \mathcal{Y} are the sample spaces of X and Y respectively.

The conditional entropy $H(X \mid Y)$, or equivocation, of a source X, given the observation of Y is defined as:

$$
\begin{equation*}
H(X \mid Y)=-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i} \mid y_{j}\right) \tag{1.9}
\end{equation*}
$$

The equivocation $H(X \mid Y)$, or equivalently $H_{Y}(X)$, represents the remaining amount of uncertainty (or information) about X after the observation of Y.

Theorem (Chain Rule):
The joint entropy $H(X Y)$ of a pair of random variables X and Y is equal to the sum of the entropy of X, that is $H(X)$, and the conditional entropy (or remaining uncertainty) of Y, given the observation of X.

$$
\begin{equation*}
H(X Y)=H(X)+H(Y \mid X) \tag{1.10}
\end{equation*}
$$

Proof:

Consider the sum $H(X)+H(Y \mid X)$:

$$
\begin{align*}
H(X)+H(Y \mid X)= & -\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right) \\
& -\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(y_{j} \mid x_{i}\right) \tag{1.11}\\
= & -\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i}\right) \\
& -\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(y_{j} \mid x_{i}\right) \tag{1.12}\\
= & -\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right)\left[\log _{b} p\left(x_{i}\right)+\log _{b} p\left(y_{j} \mid x_{i}\right)\right] \tag{1.13}\\
= & -\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b}\left[p\left(x_{i}\right) p\left(y_{j} \mid x_{i}\right)\right] \tag{1.14}\\
H(X)+H(Y \mid X)= & -\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i}, y_{j}\right) \tag{1.15}
\end{align*}
$$

Therefore

$$
\begin{equation*}
H(X Y)=H(X)+H(Y \mid X) \tag{1.16}
\end{equation*}
$$

QED

Theorem (Chain Rule Generalization):
Let $\bar{X}=X_{1}, X_{2}, \ldots, X_{N}$ be a random vector then the chain rule can be expressed as:

$$
\begin{equation*}
H\left(X_{1}, \ldots, X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \tag{1.17}
\end{equation*}
$$

1.3 Mutual information

Let X and Y be two random variables defined over a joint sample space $\mathcal{X} Y$:

$$
\begin{align*}
\mathcal{X} & =\left\{x_{1}, \ldots, x_{N}\right\} \tag{1.18}\\
\mathcal{Y} & =\left\{y_{1}, \ldots, y_{M}\right\} \tag{1.19}
\end{align*}
$$

For instance, x_{i} can be a symbol at the input of a communication channel while y_{j} represents the outcome from the channel, or the output symbol. The joint probability of both events: "input symbol is x_{i} " and "output symbol is y_{j} " is the probability of the joint event $\left(x_{i}, y_{j}\right)$. One may raise the following question: "How much information does the observation of a particular output symbol y_{j} from the channel provide about the input symbol x_{i} generated by the source?".

Before the observation of y_{j}, the probability of occurrence of the symbol x_{i} is simply $p\left(x_{i}\right)$ which is called the "a priori" probability. Upon reception of y_{j}, the probability that the symbol x_{i} was transmitted, given y_{j}, is the "a posteriori" probability $p\left(x_{i} \mid y_{j}\right)$.

This conditional probability $p\left(x_{i} \mid y_{j}\right)$ is also called the "backward transition probability" of the channel (for input symbol x_{i} and output symbol y_{j}). The additional information provided about the event x_{i} by the observation of the output symbol is given by:

$$
\begin{align*}
I\left(x_{i} ; y_{j}\right) & =I\left(x_{i}\right)-I\left(x_{i} \mid y_{j}\right) \tag{1.20}\\
I\left(x_{i} ; y_{j}\right) & =-\log _{b} p\left(x_{i}\right)-\left[-\log _{b} p\left(x_{i} \mid y_{j}\right)\right] \tag{1.21}
\end{align*}
$$

$$
\begin{equation*}
I\left(x_{i} ; y_{j}\right)=\log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \tag{1.22}
\end{equation*}
$$

Then $I\left(x_{i} ; y_{j}\right)$ is the additional information provided by the occurrence of y_{j} about x_{i}. Consider now the inverse case where one wants to find the additional information about the outcome y_{j} given that the specific symbol x_{i} has been transmitted through the channel.

$$
\begin{align*}
I\left(y_{j} ; x_{i}\right) & =I\left(y_{j}\right)-I\left(y_{j} \mid x_{i}\right) \tag{1.23}\\
I\left(y_{j} ; x_{i}\right) & =-\log _{b} p\left(y_{j}\right)-\left[-\log _{b} p\left(y_{j} \mid x_{i}\right)\right] \tag{1.24}
\end{align*}
$$

Therefore

$$
\begin{equation*}
I\left(y_{j} ; x_{i}\right)=\log _{b} \frac{p\left(y_{j} \mid x_{i}\right)}{p\left(y_{j}\right)} \tag{1.25}
\end{equation*}
$$

Note that since the joint probability of $\left(x_{i}, y_{j}\right)$ can be expressed as:

$$
\begin{equation*}
p\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) p\left(y_{j} \mid x_{i}\right)=p\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right) \tag{1.26}
\end{equation*}
$$

then

$$
\begin{align*}
I\left(y_{j} ; x_{i}\right) & =\log _{b} \frac{p\left(y_{j} \mid x_{i}\right)}{p\left(y_{j}\right)} \tag{1.27}\\
I\left(y_{j} ; x_{i}\right) & =\log _{b} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)} \tag{1.28}\\
I\left(y_{j} ; x_{i}\right) & =\log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \tag{1.29}
\end{align*}
$$

Therefore the expression for the additional information:

$$
\begin{equation*}
I\left(x_{i} ; y_{j}\right)=I\left(y_{j} ; x_{i}\right) \tag{1.30}
\end{equation*}
$$

is called mutual information between events x_{i} and y_{j}, due to its symmetrical behavior.

1.4 Average mutual information

Definition (Average mutual information):
The average mutual information is defined as the weighted sum of the mutual information between each pair of input and output events x_{i} and y_{j} :

$$
\begin{equation*}
I(X ; Y)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) I\left(x_{i} ; y_{j}\right) \tag{1.31}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
I(X ; Y)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \tag{1.32}
\end{equation*}
$$

The average mutual information is a measure of the interdependence between the two random variables X and Y. Note that we can express the average mutual information as a function of the sets of joint probabilities $p\left(x_{i}, y_{j}\right)$ and marginal probabilities $p\left(x_{i}\right)$ and $p\left(y_{j}\right)$:

$$
\begin{equation*}
I(X ; Y)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)} \tag{1.33}
\end{equation*}
$$

1.5 Relationship between the entropy and the (average) mutual information

The entropy of a source X, or its uncertainty, is denoted as:

$$
\begin{equation*}
H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right) \tag{1.34}
\end{equation*}
$$

where N is the size of the sample space \mathcal{X}. As seen previously, $H(X)$ represents the entropy of the source of information X prior to any observation.

On the other hand, the conditional entropy $H(X \mid Y)$, or equivocation, of this same source X given the observation of Y (e.g. output from a communication channel) is defined as:

$$
\begin{equation*}
H(X \mid Y)=-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i} \mid y_{j}\right) \tag{1.35}
\end{equation*}
$$

which indicates the remaining amount of information about the source X after the observation of Y. Consider the difference between these two entropy measures: the entropy $H(X)$ and the equivocation $H(X \mid Y)$.

$$
\begin{align*}
& H(X)-H(X \mid Y)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right)-\left[-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i} \mid y_{j}\right)\right] \tag{1.36}\\
& H(X)-H(X \mid Y)=-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i}\right)+\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} p\left(x_{i} \mid y_{j}\right) \tag{1.37}\\
& H(X)-H(X \mid Y)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right)\left[\log _{b} p\left(x_{i} \mid y_{j}\right)-\log _{b} p\left(x_{i}\right)\right] \tag{1.38}\\
& H(X)-H(X \mid Y)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \tag{1.39}\\
& H(X)-H(X \mid Y)=I(X ; Y) \tag{1.40}
\end{align*}
$$

Therefore, the mutual information $I(X ; Y)$ between the two random variables X and Y is equal to the entropy $H(X)$ minus the equivocation (or remaining information in X given $Y) H(X \mid Y)$.

Theorem ((Average) Mutual Information):
Let $\mathcal{X Y}$ be a joint sample space. The (average) mutual information $I(X ; Y)$ between the two random variables X and Y satisfies:

$$
\begin{equation*}
I(X ; Y) \geq 0 \tag{1.41}
\end{equation*}
$$

with equality, if and only if, the X and Y are statistically independent.

Proof:

Consider the inequality $I(X ; Y) \geq 0$, or equivalently, $-I(X ; Y) \leq 0$. By definition of the (average) mutual information,

$$
\begin{align*}
& -I(X ; Y)=-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \tag{1.42}\\
& -I(X ; Y)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b} \frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.43}\\
& -I(X ; Y)=\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \ln \frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.44}
\end{align*}
$$

If we consider only the events which have a non-zero probability of occurrence (i.e., the probable events), then:

$$
\begin{equation*}
p\left(x_{i}\right)>0 \quad \text { and } \quad p\left(x_{i} \mid y_{j}\right)>0 \quad \text { and thus } \quad p\left(x_{i}, y_{j}\right)>0 ; \quad \forall i, j \tag{1.45}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}>0 ; \quad \forall i, j \tag{1.46}
\end{equation*}
$$

Since the natural logarithm $\ln x \leq(x-1)$, for $x>0$, then for each pair $\left(x_{i}, y_{j}\right)$,

$$
\begin{equation*}
\ln \frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)} \leq\left[\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}-1\right] \tag{1.47}
\end{equation*}
$$

a) If the random variables X and Y are independent then $p\left(x_{i} \mid y_{j}\right)=p\left(x_{i}\right), \forall i, j$ which implies that:

$$
\begin{align*}
& -I(X ; Y)=\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \ln \frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.48}\\
& -I(X ; Y)=\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \ln \frac{p\left(x_{i}\right)}{p\left(x_{i}\right)} \tag{1.49}\\
& -I(X ; Y)=\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \ln 1 \tag{1.50}\\
& -I(X ; Y)=0 \tag{1.51}
\end{align*}
$$

1.5. RELATIONSHIP BETWEEN THE ENTROPY AND THE (AVERAGE) MUTUAL INFORMATION17
and therefore:

$$
\begin{equation*}
I(X ; Y)=0 \quad \text { if and only if } X \text { and } Y \text { are independent } \tag{1.52}
\end{equation*}
$$

$$
\begin{equation*}
I(X ; Y)=0 \tag{1.53}
\end{equation*}
$$

b) If X and Y are dependent from each other, then

$$
\begin{align*}
& -I(X ; Y)=\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \ln \frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.54}\\
& -I(X ; Y)<\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right)\left[\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}-1\right] \tag{1.55}
\end{align*}
$$

but since the joint probability $p\left(x_{i}, y_{j}\right)=p\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)$, the above inequality can be expressed as:

$$
\begin{align*}
& -I(X ; Y)<\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right)\left[\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}-1\right] \tag{1.56}\\
& -I(X ; Y)<\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M} p\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)\left[\frac{p\left(x_{i}\right)}{p\left(x_{i} \mid y_{j}\right)}-1\right] \tag{1.57}\\
& -I(X ; Y)<\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M}\left[\frac{p\left(x_{i}\right) p\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i} \mid y_{j}\right)}-p\left(y_{j}\right) p\left(x_{i} \mid y_{j}\right)\right] \tag{1.58}\\
& -I(X ; Y)<\left(\log _{b} e\right) \sum_{i=1}^{N} \sum_{j=1}^{M}\left[p\left(x_{i}\right) p\left(y_{j}\right)-p\left(x_{i}, y_{j}\right)\right] \tag{1.59}\\
& -I(X ; Y)<\left(\log _{b} e\right)\left[\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}\right) p\left(y_{j}\right)-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right)\right] \tag{1.60}\\
& -I(X ; Y)<\left(\log _{b} e\right)\left[\sum_{i=1}^{N} p\left(x_{i}\right) \sum_{j=1}^{M} p\left(y_{j}\right)-\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right)\right] \tag{1.61}\\
& -I(X ; Y)<\left(\log _{b} e\right)[(1 \times 1)-1]=0 \tag{1.62}
\end{align*}
$$

Therefore:

$$
\begin{equation*}
I(X ; Y)>0 \quad \text { when } X \text { and } Y \text { are dependent } \tag{1.63}
\end{equation*}
$$

The average mutual information $I(X ; Y)$ is equal to the difference between the entropy $H(X)$ and the equivocation $H(X \mid Y)$:

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y) \tag{1.64}
\end{equation*}
$$

Note that, since $I(X ; Y)$ is always positive or equal to 0 :

$$
\begin{equation*}
H(X)-H(X \mid Y) \geq 0 \tag{1.65}
\end{equation*}
$$

which results in:

$$
\begin{equation*}
H(X) \geq H(X \mid Y) \quad \text { with equality when } X \text { and } Y \text { are independent } \tag{1.66}
\end{equation*}
$$

Then, the entropy of $X, H(X)$, is always larger or equal to the equivocation of X given $Y, H(X \mid Y)$.

1.6 Inequalities concerning the entropy and (average) mutual information

Theorem (Entropy upper bound):
Let \mathcal{X} be a sample space consisting of N possible outcomes: $\left\{x_{1}, \ldots, x_{N}\right\}$, then:

$$
\begin{equation*}
H(X) \leq \log _{b} N \tag{1.67}
\end{equation*}
$$

with equality, if and only if, the outcomes are equiprobable.

Proof:

Consider the difference $H(X)-\log _{b} N$:

$$
\begin{equation*}
H(X)-\log _{b} N=\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} \frac{1}{p\left(x_{i}\right)}-\log _{b} N \tag{1.68}
\end{equation*}
$$

since $\sum_{i=1}^{N} p\left(x_{i}\right)=1$ and the term $\log _{b} N$ is constant, the above expression can be rewritten as:

$$
\begin{align*}
H(X)-\log _{b} N & =-\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right)-\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} N \tag{1.69}\\
H(X)-\log _{b} N & =\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} \frac{1}{N p\left(x_{i}\right)} \tag{1.70}
\end{align*}
$$

Converting to a natural logarithm;

$$
\begin{equation*}
H(X)-\log _{b} N=\left(\log _{b} e\right) \sum_{i=1}^{N} p\left(x_{i}\right) \ln \frac{1}{N p\left(x_{i}\right)} \tag{1.71}
\end{equation*}
$$

The natural logarithm can be expanded as:

$$
\begin{equation*}
\ln x=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\ldots \tag{1.72}
\end{equation*}
$$

For $x>0, \ln x \leq(x-1)$ with equality if $x=1$ (see Figure 1.4).
Therefore, since

$$
\begin{equation*}
\ln \frac{1}{N p\left(x_{i}\right)} \leq\left[\frac{1}{N p\left(x_{i}\right)}-1\right] \tag{1.73}
\end{equation*}
$$

Figure 1.4: Natural \log arithm $(\log (x) \leq x-1 \quad$ for $x>0)$.
then

$$
\begin{align*}
H(X)-\log _{b} N & =\left(\log _{b} e\right) \sum_{i=1}^{N} p\left(x_{i}\right) \ln \frac{1}{N p\left(x_{i}\right)} \tag{1.74}\\
& \leq\left(\log _{b} e\right) \sum_{i=1}^{N} p\left(x_{i}\right)\left[\frac{1}{N p\left(x_{i}\right)}-1\right] \tag{1.75}\\
& \leq\left(\log _{b} e\right)\left[\sum_{i=1}^{N} \frac{1}{N}-\sum_{i=1}^{N} p\left(x_{i}\right)\right] \tag{1.76}\\
& \leq\left(\log _{b} e\right)[1-1] \tag{1.77}\\
H(X)-\log _{b} N & \leq 0 \tag{1.78}
\end{align*}
$$

or

$$
\begin{equation*}
H(X) \leq \log _{b} N \tag{1.79}
\end{equation*}
$$

QED

1.6. INEQUALITIES CONCERNING THE ENTROPY AND (AVERAGE) MUTUAL INFORMATION21

Note that if the source is equiprobable, then $p\left(x_{i}\right)=\frac{1}{N}$, for all i, and therefore:

$$
\begin{equation*}
\ln \frac{1}{N p\left(x_{i}\right)}=\ln 1=(x-1)=0 \tag{1.80}
\end{equation*}
$$

which implies that:

$$
\begin{equation*}
H(X)=\log _{b} N \tag{1.81}
\end{equation*}
$$

The entropy $H(X)$ of a source can be increased by increasing the probability of an unlikely outcome x_{i} at the expense of a more probable outcome x_{j}.

1.7 Conditional and joint (average) mutual information

1.7.1 Conditional (average) mutual information

Let x_{i}, y_{j} and z_{k} be a set of specific outcomes in a joint sample space $\mathcal{X Y Z}$. Then the conditional mutual information $I\left(x_{i} ; y_{j} \mid z_{k}\right)$ between the events x_{i} and y_{j}, given z_{k}, is defined as:

$$
\begin{equation*}
I\left(x_{i} ; y_{j} \mid z_{k}\right) \equiv \log _{b} \frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i} \mid z_{k}\right)} \tag{1.82}
\end{equation*}
$$

Note: The condition of occurrence of event z_{k} affects both outcomes x_{i} and y_{j}. Thus the probability $p\left(x_{i}\right)$ becomes $p\left(x_{i} \mid z_{k}\right)$ while the conditional probability $p\left(x_{i} \mid y_{j}\right)$ now becomes $p\left(x_{i} \mid y_{j}, z_{k}\right)$. Also, the conditional mutual information $I\left(x_{i} ; y_{j} \mid z_{k}\right)$ can be expressed as the difference between $I\left(x_{i} \mid z_{k}\right)$, the conditional self-information of x_{i} given z_{k} before the occurrence of y_{j}, and $I\left(x_{i} \mid y_{j}, z_{k}\right)$ which denotes the conditional self-information of x_{i} (still given z_{k}) after the occurrence of event y_{j} :

$$
\begin{equation*}
I\left(x_{i} ; y_{j} \mid z_{k}\right)=I\left(x_{i} \mid z_{k}\right)-I\left(x_{i} \mid y_{j}, z_{k}\right) \tag{1.83}
\end{equation*}
$$

The above result is demonstrated as follows:

$$
\begin{align*}
I\left(x_{i} \mid z_{k}\right)-I\left(x_{i} \mid y_{j}, z_{k}\right) & =-\log _{b} p\left(x_{i} \mid z_{k}\right)-\left[-\log _{b} p\left(x_{i} \mid y_{j}, z_{k}\right)\right] \tag{1.84}\\
& =\log _{b} \frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i} \mid z_{k}\right)} \tag{1.85}\\
I\left(x_{i} \mid z_{k}\right)-I\left(x_{i} \mid y_{j}, z_{k}\right) & =I\left(x_{i} ; y_{j} \mid z_{k}\right) \tag{1.86}
\end{align*}
$$

Theorem ((Average) Conditional Mutual Information):
Let $\mathcal{X Y Z}$ be a joint sample space. Then the average conditional mutual information $I(X ; Y \mid Z)$ between the X and Y random variables, given Z, is greater or equal to zero:

$$
\begin{equation*}
I(X ; Y \mid Z) \geq 0 \tag{1.87}
\end{equation*}
$$

with equality, if and only if, conditional on each outcome z_{k}, X and Y are statistically independent, that is if:

$$
\begin{equation*}
p\left(x_{i}, y_{j} \mid z_{k}\right)=p\left(x_{i} \mid z_{k}\right) p\left(y_{j} \mid z_{k}\right), \quad \text { for all } i, j, k \tag{1.88}
\end{equation*}
$$

Note that all $p\left(z_{k}\right)>0$. The proof of this theorem can be demonstrated in a similar manner than for theorem 2, by adding the conditioning on Z.

Consider the (average) conditional mutual information:

$$
\begin{align*}
I(X ; Y \mid Z) & =\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} p\left(x_{i}, y_{j}, z_{k}\right) \log _{b}\left[\frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i} \mid z_{k}\right)}\right] \tag{1.89}\\
I(X ; Y \mid Z) & =\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} p\left(x_{i}, y_{j}, z_{k}\right) \log _{b} p\left(x_{i} \mid y_{j}, z_{k}\right) \\
& -\sum_{i=1}^{N} \sum_{k=1}^{L} p\left(x_{i}, z_{k}\right) \log _{b} p\left(x_{i} \mid z_{k}\right) \tag{1.90}
\end{align*}
$$

Then, the (average) conditional mutual information $I(X ; Y \mid Z)$ can be expressed as the difference of 2 equivocations (i.e. $H(X \mid Z)$ and $H(X \mid Y Z)$) of X :

$$
\begin{equation*}
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y Z) \tag{1.91}
\end{equation*}
$$

and since $I(X ; Y \mid Z) \geq 0$, this implies that:

$$
\begin{equation*}
H(X \mid Z) \geq H(X \mid Y Z) \tag{1.92}
\end{equation*}
$$

with equality if $I(X ; Y \mid Z)=0$, that is if, conditionally on Z, the random variables X and Y are statistically independent. Conditioning of X over the joint sample space $\mathcal{Y} \mathcal{Z}$ instead of \mathcal{Z} alone reduces the uncertainty about X.

Also, by averaging the conditional mutual information $I\left(x_{i}, y_{j} \mid z_{k}\right)$ over the $\mathcal{X Y Z}$ joint sample space, one obtains the average conditional mutual information $I(X ; Y \mid Z)$:

$$
\begin{align*}
I(X ; Y \mid Z) & =\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} p\left(x_{i}, y_{j}, z_{k}\right) I\left(x_{i}, y_{j} \mid z_{k}\right) \tag{1.93}\\
I(X ; Y \mid Z) & =\sum_{i=1}^{N} \sum_{k=1}^{L} p\left(x_{i}, z_{k}\right) I\left(x_{i} \mid z_{k}\right) \\
& -\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} p\left(x_{i}, y_{j}, z_{k}\right) I\left(x_{i} \mid y_{j}, z_{k}\right) \tag{1.94}
\end{align*}
$$

or once again:

$$
\begin{equation*}
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z) \tag{1.95}
\end{equation*}
$$

Remark:

Even if both entropies (or equivocations) $H(X \mid Z)$ and $H(X \mid Y, Z)$ as well as the average conditional mutual information $I(X ; Y \mid Z)$ are expressed using the same units, they have different meanings:
$H(X \mid Z)$: average uncertainty remaining in X after the observation in Z
$H(X \mid Y Z)$: average uncertainty remaining in X after the observation in both Z and Y
$I(X ; Y \mid Z)$: average amount of uncertainty in X resolved by the observation in Y

1.7.2 Joint (average) mutual information

Now lets go back to the $\mathcal{X Y \mathcal { Z }}$ joint sample space where $x_{i} \in \mathcal{X}, y_{j} \in \mathcal{Y}$ and $z_{k} \in \mathcal{Z}$.

Theorem ((Average) Mutual Information (over three sets)):
The mutual information $I\left(x_{i} ; y_{j}, z_{k}\right)$ between the event $x_{i} \in \mathcal{X}$ and the pair of events $\left(y_{j}, z_{k}\right) \in$ $\mathcal{Y Z}$ is equal to the sum of the mutual information $I\left(x_{i} ; y_{j}\right)$ between the events x_{i} and y_{j} and the conditional mutual information $I\left(x_{i} ; z_{k} \mid y_{j}\right)$ between x_{i} and z_{k}, given that y_{j} has occurred:

$$
\begin{equation*}
I\left(x_{i} ; y_{j}, z_{k}\right)=I\left(x_{i} ; y_{j}\right)+I\left(x_{i} ; z_{k} \mid y_{j}\right) \tag{1.96}
\end{equation*}
$$

or, equivalently:

$$
\begin{equation*}
I\left(x_{i} ; y_{j}, z_{k}\right)=I\left(x_{i} ; z_{k}\right)+I\left(x_{i} ; y_{j} \mid z_{k}\right) \tag{1.97}
\end{equation*}
$$

Proof:

Write the expressions for the (average) mutual information terms in the sum:

$$
\begin{align*}
I\left(x_{i} ; y_{j}\right) & =\log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \tag{1.98}\\
I\left(x_{i} ; z_{k} \mid y_{j}\right) & =\log _{b} \frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.99}
\end{align*}
$$

Therefore, using the properties of the logarithms, the sum becomes:

$$
\begin{align*}
I\left(x_{i} ; y_{j}\right)+I\left(x_{i} ; z_{k} \mid y_{j}\right) & =\log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)}+\log _{b} \frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.100}\\
I\left(x_{i} ; y_{j}\right)+I\left(x_{i} ; z_{k} \mid y_{j}\right) & =\log _{b} \frac{p\left(x_{i} \mid y_{j}\right)}{p\left(x_{i}\right)} \frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i} \mid y_{j}\right)} \tag{1.101}\\
I\left(x_{i} ; y_{j}\right)+I\left(x_{i} ; z_{k} \mid y_{j}\right) & =\log _{b} \frac{p\left(x_{i} \mid y_{j}, z_{k}\right)}{p\left(x_{i}\right)} \tag{1.102}\\
I\left(x_{i} ; y_{j}\right)+I\left(x_{i} ; z_{k} \mid y_{j}\right) & =I\left(x_{i} ; y_{j}, z_{k}\right) \tag{1.103}
\end{align*}
$$

QED

The average of the mutual information $I\left(x_{i} ; y_{j}, z_{k}\right)$ over the entire joint sample space $\mathcal{X Y Z}$ results in the average mutual information $I(X ; Y Z)$ between the single sample space \mathcal{X} and the joint sample space $\mathcal{Y Z}$:

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} p\left(x_{i}, y_{j}, z_{k}\right) I\left(x_{i} ; y_{j}, z_{k}\right)=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) I\left(x_{i} ; y_{j}\right)+\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} p\left(x_{i}, y_{j}, z_{k}\right) I\left(x_{i} ; z_{k} \mid y_{j}\right) \tag{1.104}
\end{equation*}
$$

or

$$
\begin{equation*}
I(X ; Y Z)=I(X ; Y)+I(X ; Z \mid Y) \tag{1.105}
\end{equation*}
$$

where $I(X ; Y Z)$ is the average mutual information between X and $Y Z, I(X ; Y)$ the average mutual information between X and Y, and $I(X ; Z \mid Y)$ is the additional average mutual information between X and Z given Y.

We know that the conditional average mutual information $I(X ; Z \mid Y)$ is always greater or equal to zero (with equality if and only if, conditional on Y, X and Z are independent). The average mutual information $I(X ; Y Z)$ should then be greater or at least equal to $I(X ; Y)$.

For instance, one may consider a broadcast network for which the channel consists in a single source of information, e.g. X, and a number of receivers, say Y and Z. The message content from the source may have a common message intended for both receivers and some specific messages intended solely to each user independently of the other. The average mutual information term $I(X ; Y Z)$ represent the overall average mutual information between the source and the two receivers, whereas the $I(X ; Y)$ term represent the average mutual information between X and Y, that is the common message and the specific message for this specific link. Finally, the remaining conditional average mutual information $I(X ; Z \mid Y)$ represents only the information contents that is specific to the second receiver Z regardless of the common message sent to both users.

1.7.3 Average mutual information for cascaded channels

Another interesting example for the computation of joint (average) mutual information is for a cascaded channels for which the output of a channel in the chain depends uniquely on the preceeding regardless of the previous channels in that channel chain. A simple cascaded channel of only two channels is depicted in figure 1.5).

Figure 1.5: Transmission through two cascaded channels.
The output Y of the second channel depends entirely on its input Z, which itself depends only on its input X. Then for all i, j, and k, the conditional probability of the output symbol y_{j} given both inputs x_{i} and $z_{k}, p\left(y_{j} \mid x_{i}, z_{k}\right)=p\left(y_{j} \mid z_{k}\right)$. Multiplying both sides of the equality by $p\left(x_{i} \mid z_{k}\right)$ leads to:

$$
\begin{align*}
p\left(y_{j} \mid x_{i}, z_{k}\right) & =p\left(y_{j} \mid z_{k}\right) \tag{1.106}\\
p\left(y_{j} \mid x_{i}, z_{k}\right) p\left(x_{i} \mid z_{k}\right) & =p\left(x_{i} \mid z_{k}\right) p\left(y_{j} \mid z_{k}\right) \tag{1.107}\\
p\left(x_{i}, y_{j} \mid z_{k}\right) & =p\left(x_{i} \mid z_{k}\right) p\left(y_{j} \mid z_{k}\right) \tag{1.108}
\end{align*}
$$

which implies that, conditionnally on the outcome z_{k}, each input x_{i} and output y_{j} are statistically independent. Then, by the Theorem on (Average) Conditional Mutual Information, we have that the average conditional mutual information between X and Y, given Z is equal to zero:

$$
I(X ; Y \mid Z)=0
$$

Intuitively, one may expect that the average mutual information $I(X ; Y)$ between the input X and output Y of the cascaded channels can not be greater than through either channel, that is $I(X ; Z)$ or $I(Z ; Y)$. Consider the average mutual information $I(X ; Y Z)$ between the input X and the two channels' outputs $Y Z$.

$$
\begin{align*}
I(X ; Y Z) & =I(X ; Y)+I(X ; Z \mid Y) \tag{1.109}\\
I(X ; Y Z) & =I(X ; Z)+I(X ; Y \mid Z) \tag{1.110}
\end{align*}
$$

Since, conditionnally on the output of the first channel Z, X and Y are independent we have that $I(X ; Y \mid Z)=0$ but the term $I(X ; Z \mid Y) \geq 0$ and

$$
\begin{align*}
I(X ; Y)+I(X ; Z \mid Y) & =I(X ; Z)+I(X ; Y \mid Z) \tag{1.111}\\
I(X ; Y)+I(X ; Z \mid Y) & =I(X ; Z) \tag{1.112}\\
I(X ; Y) & =I(X ; Z)-I(X ; Z \mid Y) \tag{1.113}\\
I(X ; Y) & \leq I(X ; Z) \tag{1.114}
\end{align*}
$$

Or considering $I(Y ; X Z)$, we obtain:

$$
\begin{align*}
I(Y ; X Z) & =I(Y ; X)+I(Y ; Z \mid X) & & \text { or } \tag{1.115}\\
I(Y ; X Z) & =I(Y ; Z)+I(Y ; X \mid Z) & & \text { where } I(Y ; X \mid Z)=0 \tag{1.116}\\
I(Y ; X)+I(Y ; Z \mid X) & =I(Y ; Z) & & \tag{1.117}\\
I(Y ; X) & =I(Y ; Z)-I(Y ; Z \mid X) & & \text { where } I(Y ; Z \mid X) \geq 0 \tag{1.118}\\
I(Y ; X) & \leq I(Y ; Z) & & \tag{1.119}
\end{align*}
$$

By the "commutativity property" of the average mutual information:

$$
\begin{equation*}
I(X ; Y) \leq I(X ; Z) \quad \text { and } \quad I(X ; Y) \leq I(Z ; Y) \tag{1.120}
\end{equation*}
$$

In terms of entropies, the above can be restated as:

$$
\begin{align*}
I(X ; Y) & \leq I(X ; Z) \tag{1.121}\\
H(X)-H(X \mid Y) & \leq H(X)-H(X \mid Z) \tag{1.122}\\
-H(X \mid Y) & \leq-H(X \mid Z) \tag{1.123}\\
H(X \mid Y) & \geq H(X \mid Z) \tag{1.124}
\end{align*}
$$

The uncertainty (unresolved information) about the source X given the observation of the output of the first channel, i.e. $H(X \mid Z)$ is smaller than given the observation of the second channel (cascaded channel) output Y.

$$
\begin{equation*}
H(X \mid Z) \leq H(X \mid Y) \tag{1.125}
\end{equation*}
$$

The conclusion is that the remaining uncertainty about the source X never decreases as we go further from the input through a series of cascaded channels. In our example, the second channel (it could even be a data processor such as an error correction decoder, the first channel being the noisy channel) cannot increases the average mutual information $I(X ; Y)$ between the input X and cascaded channel output Y ! Note however, that even if the mutual information decreases, the second channel can represent the available information at the output of the first channel (e.g. noisy channel), i.e. Z, in a more useful format at the output of the second channel and hence increasing the overall reliability of the cascaded channels without increasing the average mutual information.

1.8 Generalization over N sample spaces

1.8.1 Entropy of a random vector

Consider N sample spaces forming the joint sample space (or joint ensemble) ($\left.\mathcal{X}_{1}, \ldots, \mathcal{X}_{N}\right)$; in other words, we consider an N-dimensional random vector (X_{1}, \ldots, X_{N}). The probability of occurrence of a particular string of events $\left(x_{1}, \ldots, x_{N}\right)$ is given by:

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{N} \mid x_{1}, \ldots, x_{N-1}\right) \tag{1.126}
\end{equation*}
$$

The amount of self-information of this specific sequence of events $\left(x_{1}, \ldots, x_{N}\right)$ is then equal to:

$$
\begin{align*}
I\left(x_{1}, \ldots, x_{N}\right) & =-\log _{b} p\left(x_{1}, \ldots, x_{N}\right) \tag{1.127}\\
I\left(x_{1}, \ldots, x_{N}\right) & =-\log _{b}\left[p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{N} \mid x_{1}, \ldots, x_{N-1}\right)\right] \tag{1.128}\\
I\left(x_{1}, \ldots, x_{N}\right) & =-\log _{b} p\left(x_{1}\right)-\log _{b} p\left(x_{2} \mid x_{1}\right)-\log _{b} p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots-\log _{b} p\left(x_{N} \mid x_{1}, \ldots,\left(\mathbb{1}_{\mathcal{A}} 29\right)\right) \tag{A}
\end{align*}
$$

Then,

$$
I\left(x_{1}, \ldots, x_{N}\right)=I\left(x_{1}\right)+I\left(x_{2} \mid x_{1}\right)+I\left(x_{3} \mid x_{1}, x_{2}\right)+\ldots+I\left(x_{N} \mid x_{1}, \ldots, x_{N-1}\right)
$$

This result indicates that the self-information of a string $\left(x_{1}, \ldots, x_{N}\right)$ is equal to the sum of the self-information of the first symbol in the string, namely x_{1}, the conditional self-information of the second symbol x_{2}, given symbol x_{1}, and so on up to the conditional self-information of the last symbol x_{N}, given the previous substring of events (or symbols) (x_{1}, \ldots, x_{N-1}).

The average of the self-information over all possible strings or symbols in the joint sample space $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{N}\right)$, results in the entropy of the random vectors source:

$$
H\left(X_{1}, \ldots, X_{N}\right)=\sum_{k_{1}=1}^{K_{1}} \sum_{k_{2}=1}^{K_{2}} \ldots \sum_{k_{N}=1}^{K_{N}} p\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{N}}\right) I\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{N}}\right)
$$

or equivalently,

$$
H\left(X_{1}, \ldots, X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

This result is also known as the chain rule for the entropy of a random vector.

1.8.2 (Average) mutual information between two random vectors

Consider now two random vectors of dimension N and M respectively: $\left(X_{1}, \ldots, X_{N}\right)$ and $\left(Y_{1}, \ldots, Y_{M}\right)$ defined on two joint ensembles $\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{N}\right)$ and $\left(\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{M}\right)$. The (average) mutual information $I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{M}\right)$ between these two random vectors is:

$$
I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{M}\right)=H\left(X_{1}, \ldots, X_{N}\right)-H\left(X_{1}, \ldots, X_{N} \mid Y_{1}, \ldots, Y_{M}\right)
$$

which says that the (average) mutual information $I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{M}\right)$ is the difference between the joint entropy of the source $H\left(X_{1}, \ldots, X_{N}\right)$ and the equivocation of the source given the observation of the output random vector $H\left(X_{1}, \ldots, X_{N} \mid Y_{1}, \ldots, Y_{M}\right)$. But the joint entropy $H\left(X_{1}, \ldots, X_{N}\right)$ can be expressed as:

$$
\begin{equation*}
H\left(X_{1}, \ldots, X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \tag{1.130}
\end{equation*}
$$

while the equivocation $H\left(X_{1}, \ldots, X_{N} \mid Y_{1}, \ldots, Y_{M}\right)$ is given by:

$$
\begin{align*}
H\left(X_{1}, \ldots, X_{N} \mid Y_{1}, \ldots, Y_{M}\right)= & H\left(X_{1} \mid Y_{1}, \ldots, Y_{M}\right)+H\left(X_{2} \mid X_{1}, Y_{1}, \ldots, Y_{M}\right)+H\left(X_{3} \mid X_{1}, X_{2}, Y_{1}, \ldots, Y_{M}\right)+\ldots \\
& +H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}, Y_{1}, \ldots, Y_{M}\right) \tag{1.131}
\end{align*}
$$

The difference between the two terms is the (average) mutual information $I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{M}\right)$:

$$
\begin{align*}
I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{M}\right)= & H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \\
& -H\left(X_{1} \mid Y_{1}, \ldots, Y_{M}\right)-H\left(X_{2} \mid X_{1}, Y_{1}, \ldots, Y_{M}\right)-H\left(X_{3} \mid X_{1}, X_{2}, Y_{1}, \ldots, Y_{M}\right) \\
& -\ldots-H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}, Y_{1}, \ldots, Y_{M}\right) \tag{1.132}
\end{align*}
$$

Or in (average) mutual information terms:

$$
I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{M}\right)=I\left(X_{1} ; Y_{1}, \ldots, Y_{M}\right)+I\left(X_{2} ; Y_{1}, \ldots, Y_{M} \mid X_{1}\right)+\ldots+I\left(X_{N} ; Y_{1}, \ldots, Y_{M} \mid X_{1}, \ldots, X_{N-1}\right)
$$

The above result is known as the chain rule for the (average) mutual information between these two random vectors $I\left(X_{1}, \ldots, X_{N}\right)$ and $\left(Y_{1}, \ldots, Y_{M}\right)$.

1.9 Relative entropy

Consider a sample space \mathcal{X} and a random variable X with two different distributions $p(X)=\left\{p\left(x_{i}\right)\right\}$ and $q(X)=\left\{q\left(x_{i}\right)\right\}$ for $i=1, \ldots, N$

Definition (Relative entropy):

The relative entropy $D[p(X) \| q(X)]$ between two distributions $p(X)$ and $q(X)$ is defined as the expectation of the logarithm of the ratio of the distributions:

$$
\begin{equation*}
D[p(X) \| q(X)]=\mathcal{E}\left[\log _{b} \frac{p(X)}{q(X)}\right] \tag{1.133}
\end{equation*}
$$

In terms of probabilities of each outcome, the relative entropy $D[p(X) \| q(X)]$ becomes:

$$
D[p(X) \| q(X)]=\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b}\left[\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right]
$$

The relative entropy is a measure of the distance between the two distributions (or probability mass function) $p(X)$ and $q(X)$. It is also known as the Kullback-Leibler distance. The concept of relative entropy is used in the Maximum a Posteriori (MAP) decoding techniques.

Note that if the two distributions are identical, i.e. $p(X)=q(X)$, or $p\left(x_{i}\right)=q\left(x_{i}\right) \quad \forall i$, then the relative entropy $D[p(X) \| q(X)]=0$, since the term $\log _{b}\left[\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right]=\log _{b} 1=0$ for all i.

Example 1(relative entropy):

Consider the following quaternary distributions $p(X)$ and $q(X)$ of the random variable X : $p\left(x_{1}\right)=p\left(x_{2}\right)=p\left(x_{3}\right)=p\left(x_{4}\right)=\frac{1}{4}$, and $q\left(x_{1}\right)=\frac{1}{2}, q\left(x_{2}\right)=\frac{1}{4}$, and $q\left(x_{3}\right)=q\left(x_{4}\right)=\frac{1}{8}$. The relative entropy (in $S h$) between those distributions is:

$$
\begin{aligned}
& D[p(X) \| q(X)]=\sum_{i=1}^{4} p\left(x_{i}\right) \log _{2}\left[\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right] \\
& D[p(X) \| q(X)]=\frac{1}{4} \log _{2}\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2}
\end{array}\right]+\frac{1}{4} \log _{2}\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]+\frac{1}{4} \log _{2}\left[\frac{\frac{1}{4}}{\frac{1}{8}}\right]+\frac{1}{4} \log _{2}\left[\frac{\frac{1}{4}}{\frac{1}{8}}\right]
\end{aligned}
$$

$$
\begin{aligned}
D[p(X) \| q(X)] & =\frac{1}{4}\left[\log _{2} \frac{1}{2}+\log _{2} 1+\log _{2} 2+\log _{2} 2\right] \\
D[p(X) \| q(X)] & =\frac{1}{4} S h
\end{aligned}
$$

Now let's consider the relative entropy $D[q(X) \| p(X)]$ between $q(X)$ and $p(X)$:

$$
\begin{aligned}
& D[q(X) \| p(X)]=\sum_{i=1}^{4} q\left(x_{i}\right) \log _{2}\left[\frac{q\left(x_{i}\right)}{p\left(x_{i}\right)}\right] \\
& D[q(X) \| p(X)]=\frac{1}{2} \log _{2}\left[\frac{\frac{1}{2}}{\frac{1}{4}}\right]+\frac{1}{4} \log _{2}\left[\frac{\frac{1}{4}}{\frac{1}{4}}\right]+\frac{1}{8} \log _{2}\left[\frac{\frac{1}{8}}{\frac{1}{4}}\right]+\frac{1}{8} \log _{2}\left[\frac{\frac{1}{8}}{\frac{1}{4}}\right] \\
& D[q(X) \| p(X)]=\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 1+\frac{1}{8} \log _{2} \frac{1}{2}+\frac{1}{8} \log _{2} \frac{1}{2} \\
& D[q(X) \| p(X)]
\end{aligned}
$$

Note that here $D[p(X) \| q(X)]=D[q(X) \| p(X)]=0.250$ Sh.

Example 2(relative entropy):

For this second example, $p(X)$ and $q(X)$ are two distributions of a binary random variable X where: $p\left(x_{1}\right)=p\left(x_{2}\right)=\frac{1}{2}$ and $q\left(x_{1}\right)=\frac{1}{4}$ and $q\left(x_{2}\right)=\frac{3}{4}$. The relative entropy $D[p(X) \| q(X)]$ is:

$$
\begin{aligned}
D[p(X) \| q(X)] & =\sum_{i=1}^{2} p\left(x_{i}\right) \log _{2}\left[\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right] \\
D[p(X) \| q(X)] & =\frac{1}{2} \log _{2}\left[\frac{\frac{1}{2}}{\frac{1}{4}}\right]+\frac{1}{2} \log _{2}\left[\frac{\frac{1}{2}}{\frac{3}{4}}\right]=\frac{1}{2} \log _{2} 2+\log _{2} \frac{2}{3} \\
D[p(X) \| q(X)] & =0.208 S h
\end{aligned}
$$

whereas:

$$
\begin{aligned}
& D[q(X) \| p(X)]=\sum_{i=1}^{2} q\left(x_{i}\right) \log _{2}\left[\frac{q\left(x_{i}\right)}{p\left(x_{i}\right)}\right] \\
& D[q(X) \| p(X)]=\frac{1}{4} \log _{2}\left[\frac{\frac{1}{4}}{\frac{1}{2}}\right]+\frac{3}{4} \log _{2}\left[\frac{\frac{3}{4}}{\frac{1}{2}}\right]=\frac{1}{4} \log _{2} \frac{1}{2}+\frac{3}{4} \log _{2} \frac{3}{2} \\
& D[q(X) \| p(X)]=0.189 S h
\end{aligned}
$$

In general, as in this second example, $D[p(X) \| q(X)] \neq D[q(X) \| p(X)]$.

The relative entropy $D[p(X Y) \| p(X) p(Y)]$ between the joint distribution $p(X Y)$ of two random variables X and Y and the product of their marginal distributions $p(X)$ and $p(Y)$ gives the (average) mutual information $I(X ; Y)$ between the two random variables:

$$
D[p(X Y) \| p(X) p(Y)]=\sum_{i=1}^{N} \sum_{j=1}^{M} p\left(x_{i}, y_{j}\right) \log _{b}\left[\frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}\right]=I(X ; Y)
$$

1.10 Problems

Problem 1.1: A dishonest gambler has a loaded die which turns up the number 1 with a probability of 0.4 and the numbers 2 to 6 with a probability of 0.12 each. Unfortunately (or fortunately) he left the loaded die in a box with 2 honest dice and could not tell them apart. He picks at random one die from the box, rolls it once, and the number 1 appears.
a) What is the probability that he picked up the loaded die?
b) He rolls the same die once more and it comes up 1 again. What is the probability that he has picked the loaded die after the second rolling?
c) Repeat parts a) and b) but assuming this time that the first outcome was a 4 and the second outcome was 1.

Problem 1.2: A source of information produces letters from a three-symbol alphabet $X=\left\{x_{0}, x_{1}, x_{2}\right\}$ with a probability assignment $p\left(x_{0}\right)=p\left(x_{1}\right)=1 / 4$ and $p\left(x_{2}\right)=1 / 2$. Each source letter x_{i} is directly transmitted through two different channels simultaneously with outputs y_{j} and z_{k} for which the transition probabilities $p\left(y_{j} \mid x_{i}\right)$ and $p\left(z_{k} \mid x_{i}\right)$ are as indicated in figure 1.6 shown below. Note that this could be considered as a single channel with output $\left(y_{j}, z_{k}\right)$.
a) Write the channel transition matrix for each channel.
b) Calculate the following entropies: $H(X), H(Y), H(Z)$ and $H(Y Z)$.
c) Calculate the mutual information expressions: $I(X ; Y), I(X ; Z), I(X ; Y \mid Z)$ and $I(X ; Y Z)$.
d) Interpret the mutual information expressions.

Figure 1.6: Simultaneous transmission through two channels.
Problem 1.3: A ternary source of information $X \equiv\left\{x_{0}, x_{1}, x_{2}\right\}$ is to be transmitted through a noisy communication channel. The channel probability transition matrix \mathbf{P} is given by:

$$
\mathbf{P}=\left(\begin{array}{cccc}
1 / 2 & 1 / 4 & 0 & 1 / 4 \\
0 & 1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 0 & 1 / 2 & 1 / 4
\end{array}\right)
$$

If the source letters are generated with the probabilities $p\left(x_{0}\right)=p\left(x_{2}\right)=\frac{1}{4}$ and $p\left(x_{1}\right)=\frac{1}{2}$, find the output letter probabilities $p\left(y_{j}\right)$ and the average mutual information $I(X ; Y)$.

Problem 1.4: A source of information generates the symbols $\left\{a_{0}, \cdots, a_{k}, \cdots, a_{7}\right\}$ with the following probability:

$$
p\left(a_{k}\right)=\binom{7}{k} \eta^{k}(1-\eta)^{7-k}
$$

a) Find the source entropy $H(X)$ for $\eta=1 / 4$.
b) If η is changed to $1 / 2$, what is the new value the entropy $H(X)$?

Problem 1.5: Let U, V, W, X, Y, and Z be random variables.
a) Show that

$$
I(X Y ; U V W)=I(X Y ; U \mid V W)+I(X Y ; V \mid W)+I(X Y ; W)
$$

b) Do the conditions, $I(V ; Y Z \mid U X)=0$ and $I(X ; U Z \mid V Y)=0$, imply that $I(Z ; X V \mid U Y) \stackrel{?}{=} 0$? Justify your answer.
Problem 1.6:
(derived from Gallager)
In Ottawa, a radio station weatherman's record is as follows: out of the 15% of the time when it actually rains, the weatherman predicts "rain" 12% of the time and "no rain" 3% of the time. The remaining 85% of the time, when it doesn't rain, the weatherman's prediction are "no rain" 64% of the time and "rain" 21% of the time.
A clever ELG-5170 Information Theory graduate student notices that the weatherman's predictions are correct 76% of the time. However, by predicting "no rain" all the time, he (or she) can achieve a higher success rate of 85% ! The graduate student explains the situation to the weatherman's boss and applies for the job. However, the weatherman's boss, who is also an information theorist, decides to not hire the graduate student. Why?

Problem 1.7: Consider two statistical experiments represented by the random variables X and Y, where the sample space of X is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and the sample space of Y is $\left(y_{1}, y_{2}, y_{3}\right)$. The joint probability $\operatorname{matrix} \mathbf{P}=\left\{p\left(x_{i}, y_{j}\right)\right\}_{\substack{i=1,2,3,4 \\ j=1,2,3}}$ for these 2 experiments is:

$$
\mathbf{P}=\left[\begin{array}{llll}
p\left(x_{1}, y_{1}\right) & p\left(x_{2}, y_{1}\right) & p\left(x_{3}, y_{1}\right) & p\left(x_{4}, y_{1}\right) \\
p\left(x_{1}, y_{2}\right) & p\left(x_{2}, y_{2}\right) & p\left(x_{3}, y_{2}\right) & p\left(x_{4}, y_{2}\right) \\
p\left(x_{1}, y_{3}\right) & p\left(x_{2}, y_{3}\right) & p\left(x_{3}, y_{3}\right) & p\left(x_{4}, y_{3}\right)
\end{array}\right]=\left[\begin{array}{cccc}
\frac{3}{32} & \frac{1}{32} & \frac{1}{32} & \frac{7}{32} \\
\frac{1}{32} & \frac{3}{32} & \frac{3}{32} & \frac{1}{32} \\
\frac{7}{32} & \frac{1}{32} & \frac{1}{32} & \frac{3}{32}
\end{array}\right]
$$

a) How much information do we receive if someone tells us the outcome resulting from X and Y ?
b) How much information do we receive if someone tells us the outcome of Y ?
c) How much information do we receive if someone tells us the outcome of X if we already know the outcome of Y ?

Chapter 2

Distortionless Source Coding

2.1 Tchebycheff Inequality and the weak law of large numbers

2.1.1 Tchebycheff inequality

Consider a random variable X having the input symbol distribution $\left\{p\left(x_{k}\right)\right\}$, an expectation η_{X} and a variance σ_{X}^{2}, that is:

$$
\begin{gather*}
\eta_{X} \equiv E[X]=\sum_{k=1}^{K} p\left(x_{k}\right) \times x_{k} \tag{2.1}\\
\sigma_{X}^{2} \equiv E\left[\left(X-\eta_{X}\right)^{2}\right]=\sum_{k=1}^{K} p\left(x_{k}\right) \times\left(x_{k}-\eta_{X}\right)^{2} \tag{2.2}
\end{gather*}
$$

Definition (Tchebycheff inequality):
The Tchebycheff inequality states that:

$$
\operatorname{Pr}\left\{\left|X-\eta_{X}\right| \geq \delta\right\} \leq \frac{\sigma_{X}^{2}}{\delta^{2}}
$$

2.1.2 Weak law of large numbers

Let $\bar{X}=X_{1}, \ldots, X_{n}, \ldots, X_{N}$ be a sequence of independent, identically distributed (i.i.d.) random variables with expectation η_{X} and variance σ_{X}^{2}. Define a new random variable Y_{N} which is the
sample mean of the random sequence \bar{X} :

$$
\begin{equation*}
Y_{N} \equiv \frac{1}{N} \sum_{n=1}^{N} X_{n} \tag{2.3}
\end{equation*}
$$

The mean $\eta_{Y_{N}}$ of this new random variable is then given by:

$$
\begin{align*}
\eta_{Y_{N}} & =E\left[Y_{N}\right]=E\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right] \tag{2.4}\\
& =\frac{1}{N} E\left[\sum_{n=1}^{N} X_{n}\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} E\left[X_{n}\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} \eta_{X} \\
\eta_{Y_{N}} & =\eta_{X}
\end{align*}
$$

The variance $\sigma_{Y_{N}}^{2}$ of the sample average Y_{N} is equal to the expectation of $\left(Y_{N}-\eta_{Y_{N}}\right)^{2}$:

$$
\begin{align*}
\sigma_{Y_{N}}^{2} & =E\left[\left(Y_{N}-\eta_{Y_{N}}\right)^{2}\right] \tag{2.5}\\
& =E\left[\left(\frac{1}{N} \sum_{n=1}^{N} X_{n}-\eta_{X}\right)^{2}\right] \\
& =\frac{1}{N^{2}} E\left[\sum_{n=1}^{N}\left(X_{n}-\eta_{X}\right)^{2}\right] \\
\sigma_{Y_{N}}^{2} & =\frac{\sigma_{X}^{2}}{N}
\end{align*}
$$

Applying the Tchebycheff inequality:

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right]-\eta_{X}\right| \geq \delta\right\} \leq \frac{\sigma_{X}^{2}}{N \delta^{2}} \tag{2.6}
\end{equation*}
$$

As N tends towards infinity, the right side of the above inequality approaches zero.

Definition (Weak Law of Large Numbers):
The weak law of large numbers stipulates that the sample average or sample mean of the random sequence \bar{X} approaches the statistical mean η_{X} with high probability:

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left\{\left|\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right]-\eta_{X}\right| \geq \delta\right\}=0
$$

or equivalently:

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left\{\left|\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right]-\eta_{X}\right|<\delta\right\}=1
$$

2.2 Typical and atypical sequences

Definition (Typical and atypical sequences):
Consider a memoryless source X having the input symbol distribution $\left\{p\left(x_{k}\right)\right\}, k=1, \ldots, K$, and an entropy $H(X)$. Let \mathbf{x} be a vector of blocklength $N: \mathbf{x}=\left(x_{k 1}, \cdots, x_{k N}\right)$. For any number $\delta>0$, the set $\mathcal{T}_{X}(\delta)$ of typical sequences of blocklength N is defined as:

$$
\mathcal{T}_{X}(\delta) \equiv\left\{\mathbf{x} \text { such that: }\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-\mathbf{H}(\mathbf{X})\right|<\delta\right\}
$$

The remaining vectors of length N form a complementary set; the set $\mathcal{T}_{X}^{c}(\delta)$ of atypical sequences:

$$
\mathcal{T}_{X}^{c}(\delta) \equiv\left\{\mathbf{x}:\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-\mathbf{H}(\mathbf{X})\right| \geq \delta\right\}
$$

Example (Typical sequences:):
Consider a binary source, or random variable, $X=\left\{x_{i}\right\}$ with the probabilities $p\left(x_{1}\right)=1 / 4$ and $p\left(x_{2}\right)=3 / 4$. The source entropy $H(X)$, expressed in Shannons (or bits), is then equal to:

$$
\begin{align*}
H(X) & =-\sum_{i=1}^{2} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right) \tag{2.7}\\
& =-\left[(1 / 4) \log _{2}(1 / 4)+(3 / 4) \log _{2}(3 / 4)\right] \\
H(X) & =0.811 S h
\end{align*}
$$

Now if the experiment is repeated twice, that is if the source generates two binary symbols; the outcomes will be all possible pairs $X_{1}, X_{2}=\left\{\left(x_{i}, x_{j}\right)\right\}$. Since the random variables X_{1} and X_{2} are independent and also identically distributed (i.i.d.) then the probability of each pair $p\left(x_{i}, x_{j}\right)$ is equal to the product of the marginal probabilities:

$$
\begin{align*}
p\left(x_{1}, x_{1}\right) & =p\left(x_{1}\right) p\left(x_{1}\right)=1 / 4 \times 1 / 4=1 / 16 \tag{2.8}\\
p\left(x_{1}, x_{2}\right) & =p\left(x_{1}\right) p\left(x_{2}\right)=1 / 4 \times 3 / 4=3 / 16 \\
p\left(x_{2}, x_{1}\right) & =p\left(x_{2}\right) p\left(x_{1}\right)=3 / 4 \times 1 / 4=3 / 16 \\
p\left(x_{2}, x_{2}\right) & =p\left(x_{2}\right) p\left(x_{2}\right)=3 / 4 \times 3 / 4=9 / 16
\end{align*}
$$

For $N=3$ (i.e. considering sequences of information of length 3), the probabilities of each sequence $p\left(x_{i}, x_{j}, x_{k}\right)$ is:

$$
\begin{align*}
p\left(x_{1}, x_{1}, x_{1}\right) & =p\left(x_{1}\right) p\left(x_{1}\right) p\left(x_{1}\right)=1 / 64 \tag{2.9}\\
p\left(x_{1}, x_{1}, x_{2}\right) & =p\left(x_{1}\right) p\left(x_{1}\right) p\left(x_{2}\right)=3 / 64 \\
p\left(x_{1}, x_{2}, x_{1}\right) & =p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{1}\right)=3 / 64 \\
p\left(x_{1}, x_{2}, x_{2}\right) & =p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{2}\right)=9 / 64 \\
p\left(x_{2}, x_{1}, x_{1}\right) & =p\left(x_{2}\right) p\left(x_{1}\right) p\left(x_{1}\right)=3 / 64 \\
p\left(x_{2}, x_{1}, x_{2}\right) & =p\left(x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)=9 / 64 \\
p\left(x_{2}, x_{2}, x_{1}\right) & =p\left(x_{2}\right) p\left(x_{2}\right) p\left(x_{1}\right)=9 / 64 \\
p\left(x_{2}, x_{2}, x_{2}\right) & =p\left(x_{2}\right) p\left(x_{2}\right) p\left(x_{2}\right)=27 / 64
\end{align*}
$$

Note that six sequences of symbols have a probability $p\left(x_{i}, x_{j}, x_{k}\right)=3 / 64$ or $9 / 64$, out of the $2^{N}=8$ possible sequences of length 3 . For sequences to be termed typical sequences, their probability of occurrence must be in the following range:

$$
b^{-N[H(X)+\delta]} \leq p(\mathbf{x}) \leq \mathbf{b}^{-\mathbf{N}[\mathbf{H}(\mathbf{X})-\delta]}
$$

where $N=3, b=2, H(X)$ is the source entropy (per symbol), δ an arbitrarily small positive number, and \mathbf{x} is a specific sequence of length N :

$$
\begin{align*}
2^{-3[H(X)+\delta]} & \leq p\left(x_{i}, x_{j}, x_{k}\right) \leq 2^{-3[H(X)-\delta]} \tag{2.10}\\
2^{-3[0.811+\delta]} & \leq p\left(x_{i}, x_{j}, x_{k}\right) \leq 2^{-3[0.811-\delta]}
\end{align*}
$$

Writing the sequences' probabilities in the form of $b^{-N[H(X) \pm \delta]}$:

$$
\begin{align*}
& p\left(x_{1}, x_{1}, x_{1}\right)=2^{-3 \times 2.000}=1 / 64 \tag{2.11}\\
& p\left(x_{1}, x_{1}, x_{2}\right)=2^{-3 \times 1.472}=3 / 64 \\
& p\left(x_{1}, x_{2}, x_{1}\right)=2^{-3 \times 1.472}=3 / 64 \\
& p\left(x_{1}, x_{2}, x_{2}\right)=2^{-3 \times 0.943}=9 / 64 \\
& p\left(x_{2}, x_{1}, x_{1}\right)=2^{-3 \times 1.472}=3 / 64 \\
& p\left(x_{2}, x_{1}, x_{2}\right)=2^{-3 \times 0.943}=9 / 64 \\
& p\left(x_{2}, x_{2}, x_{1}\right)=2^{-3 \times 0.943}=9 / 64 \\
& p\left(x_{2}, x_{2}, x_{2}\right)=2^{-3 \times 0.415}=27 / 64
\end{align*}
$$

There are thus three sequences $\left(\left(x_{1}, x_{2}, x_{2}\right),\left(x_{2}, x_{1}, x_{2}\right)\right.$ and $\left.\left(x_{2}, x_{2}, x_{1}\right)\right)$ that have a probability of
 choose to be arbitrarily small), as typical sequences.

For $N=20$, there is a single sequence having only the symbol x_{1} in it, 20 sequences with one occurrence of $x_{2},\binom{N}{2}$ sequences with two occurences of x_{2}, and so on.

$$
\binom{N}{n} \equiv \frac{N!}{(N-n)!n!}
$$

The probability of each sequence of length N depends on the number n of occurrences of each symbol x_{1} :

$$
p(\mathbf{x})=\mathbf{p}\left(\mathbf{x}_{\mathbf{1}}\right)^{\mathbf{n}} \mathbf{p}\left(\mathbf{x}_{\mathbf{2}}\right)^{\mathbf{N}-\mathbf{n}}
$$

Table 1 indicates the number of sequences as a function of the number n of occurrences of symbol x_{1}, along with the probability of each of these sequences and and total probability of all sequences having symbol $x_{1} n$ times.

The total probability of occurrence of all typical sequences is high; for instance for $2 \leq n \leq 8$, the exponent in the probability expression of the individual sequences ranges from 0.573 to 1.049 while $H(X)=0.811$. Thus for $\delta \leq .238$, the total probability of the occurrence of typical sequences is close to 94% (i.e. total probability is equal to 0.93478 for $2 \leq n \leq 8$).

Note also that for $n=5$, the probability of each sequence consisting of $n=5$ occurrences of the binary symbol x_{1} is equal to $2^{-20 \times 0.811}$, which is exactly equal to $b^{-N[H(X)]}$. That is, for $\delta=0$, the total probability of all sequences with $n=5$ is already 20% (i.e. 0.20233 for $n=5$). For these sequences, there are $n=5$ occurrences of the x_{1} in the 20 -symbol vector, which represent the actual distribution of each individual symbol: $\left\{p\left(x_{1}\right)=1 / 4, p\left(x_{2}\right)=3 / 4\right\}$.

Table 2.1: Typical (binary) sequences of length $N=20: p\left(x_{1}\right)=\frac{1}{4}, p\left(x_{2}\right)=\frac{3}{4}$

Occurrences of x_{1} n	Number of sequences $\binom{N}{n}$	Probability of each sequence $p\left(x_{1}\right)^{n} p\left(x_{2}\right)^{N-n}$	Probability of all sequences $\binom{N}{n} p\left(x_{1}\right)^{n} p\left(x_{2}\right)^{N-n}$
0	1	$3,171 \times 10^{-3}=2^{-20 \times 0,415}$	0,003171
1	20	$1,057 \times 10^{-3}=2^{-20 \times 0,494}$	0,021141
2	190	$3,524 \times 10^{-4}=2^{-20 \times 0,574}$	0,066948
3	1140	$1,175 \times 10^{-4}=2^{-20 \times 0,653}$	0,133896
4	4845	$3,915 \times 10^{-5}=2^{-20 \times 0,732}$	0,189685
5	15504	$1,305 \times 10^{-5}=2^{-20 \times 0,811}$	0,202331
6	38760	$4,350 \times 10^{-6}=2^{-20 \times 0,891}$	0,168609
7	77520	$1,450 \times 10^{-6}=2^{-20 \times 0,970}$	0,112406
8	125970	$4,833 \times 10^{-7}=2^{-20 \times 1,049}$	0,060887
9	167960	$1,611 \times 10^{-7}=2^{-20 \times 1,128}$	0,027061
10	184756	$5,370 \times 10^{-8}=2^{-20 \times 1,208}$	0,009922
11	167960	$1,790 \times 10^{-8}=2^{-20 \times 1,287}$	0,003007
12	125970	$5,967 \times 10^{-9}=2^{-20 \times 1,366}$	0,000752
13	77520	$1,989 \times 10^{-9}=2^{-20 \times 1,445}$	0,000154
14	38760	$6,630 \times 10^{-10}=2^{-20 \times 1,525}$	0,000026
15	15504	$2,210 \times 10^{-10}=2^{-20 \times 1,604}$	0,000003
16	4845	$7,367 \times 10^{-11}=2^{-20 \times 1,683}$	0,000000
17	1140	$2,456 \times 10^{-11}=2^{-20 \times 1,762}$	0,000000
18	190	$8,185 \times 10^{-12}=2^{-20 \times 1,842}$	0,000000
19	20	$2,728 \times 10^{-12}=2^{-20 \times 1,921}$	0,000000
20	1	$9,095 \times 10^{-13}=2^{-20 \times 2,000}$	0,000000

2.3 Shannon-McMillan theorem

Theorem (Shannon-McMillan theorem for typical sequences:):
Given a memoryless source of entropy $H(X)$ and an arbitrary positive number δ, a blocklength $N \geq N_{0}$ can be choosen sufficiently large such that the set of all K^{N} possible vectors $\{\mathbf{x}\}$ can be partitioned into a set of typical (or likely) sequences $\mathcal{T}_{X}(\delta)$, and a complementary set of atypical (or unlikely) sequences $\mathcal{T}_{X}^{c}(\delta)$ having the following properties:
a) The probability that a particular sequence \mathbf{x} of blocklength N belongs to the set of atypical sequences $\mathcal{T}_{X}^{c}(\delta)$ is upperbounded as:

$$
\operatorname{Pr}\left[\mathbf{x} \in \mathcal{T}_{X}^{c}(\delta)\right]<\epsilon
$$

b) If a sequence \mathbf{x} is in the set of typical sequences $\mathcal{T}_{X}(\delta)$ then its probability of occurrence $p(\mathbf{x})$ is approximately equal to $b^{-N H(X)}$, that is:

$$
b^{-N[H(X)+\delta]}<p(\mathbf{x})<b^{-N[H(X)-\delta]}
$$

c) The number of typical, or likely, sequences $\left\|\mathcal{T}_{X}(\delta)\right\|$ is bounded by:

$$
(1-\epsilon) b^{N[H(X)-\delta]}<\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]}
$$

Proof:

a) $P\left[\mathrm{x} \in \mathcal{T}_{X}^{c}(\delta)\right]<\epsilon$:

By the Asymptotic Equipartition Property (AEP), the set of atypical sequences $\in \mathcal{T}_{X}^{c}(\delta)$ is upperbound as:

$$
\begin{align*}
P\left[\mathbf{x} \in \mathcal{T}_{X}^{c}(\delta)\right] & =P\left[\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|>\delta\right] \tag{2.12}\\
P\left[\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|>\delta\right] & <\frac{\sigma_{X}^{2}}{N \delta^{2}} \\
P\left[\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|>\delta\right] & <\epsilon \\
P\left[\mathbf{x} \in \mathcal{T}_{X}^{c}(\delta)\right] & <\epsilon
\end{align*}
$$

b) $b^{-N[H(X)+\delta]}<p(\mathbf{x})<b^{-N[H(X)-\delta]}$:

If \mathbf{x} is in the set of typical sequences $\mathcal{T}_{X}(\delta)$, we have by definition that:

$$
\begin{equation*}
\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|<\delta \tag{2.13}
\end{equation*}
$$

or, for N sufficiently large (i.e., $N \geq N_{0}$):

$$
\begin{equation*}
-\delta<-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)<\delta \tag{2.14}
\end{equation*}
$$

or, adding $H(X)$ everywhere:

$$
\begin{equation*}
H(X)-\delta<-\frac{1}{N} \log _{b} p(\mathbf{x})<H(X)+\delta \tag{2.15}
\end{equation*}
$$

Multiplying by $-N$ (and changing the inequality signs accordingly):

$$
\begin{equation*}
-N[H(X)-\delta]>\log _{b} p(\mathbf{x})>-N[H(X)+\delta] \tag{2.16}
\end{equation*}
$$

Raising to the power b (i.e., logarithmic base used for computing the entropy):

$$
\begin{equation*}
b^{-N[H(X)-\delta]}>b^{\log _{b} p(\mathbf{x})}=p(\mathbf{x})>b^{-N[H(X)+\delta]} \tag{2.17}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
b^{-N[H(X)+\delta]}<p(\mathbf{x})<b^{-N[H(X)-\delta]} \tag{2.18}
\end{equation*}
$$

for $\mathbf{x} \in \mathcal{T}_{X}(\delta)$, which happens with a probability greater or equal to $(1-\epsilon)$, for $N \geq N_{0}$.
c) Number of typical sequences, $\left\|\mathcal{T}_{X}(\delta)\right\|$:

$$
(1-\epsilon) b^{N[H(X)-\delta]}<\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]}
$$

i) The sum of probabilities of typical sequences is less than 1 (definition of a probability space):

$$
\begin{equation*}
\sum_{\mathbf{x} \in \mathcal{T}_{X}(\delta)} b^{-N[H(X)+\delta]}<\sum_{\mathbf{x} \in \mathcal{T}_{X}(\delta)} p(\mathbf{x}) \leq \sum_{i=1}^{K^{N}} p(\mathbf{x})=1 \tag{2.19}
\end{equation*}
$$

where $b^{-N[H(X)+\delta]}$ is the minimum probability of occurrence that a typical sequence can have. Since the term $b^{-N[H(X)+\delta]}$ is constant then:

$$
\begin{equation*}
\sum_{\mathbf{x} \in \mathcal{T}_{X}(\delta)} b^{-N[H(X)+\delta]}=\left\|\mathcal{T}_{X}(\delta)\right\| b^{-N[H(X)+\delta]}<1 \tag{2.20}
\end{equation*}
$$

which implies that:

$$
\begin{equation*}
\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]} \tag{2.21}
\end{equation*}
$$

ii) The sum of probabilities of all typical sequences is also lowerbounded by $(1-\epsilon)$ (definition of typical sequences and Asymptotic Equipartition Property):

$$
\begin{equation*}
(1-\epsilon)<\sum_{\mathbf{x} \in \mathcal{T}_{X}(\delta)} p(\mathbf{x})<\sum_{\mathbf{x} \in \mathcal{T}_{X}(\delta)} b^{-N[H(X)-\delta]} \tag{2.22}
\end{equation*}
$$

since $b^{-N[H(X)-\delta]}$ is the highest probability of occurrence of a typical sequence. Then

$$
\begin{equation*}
(1-\epsilon)<\sum_{\mathbf{x} \in \mathcal{T}_{X}(\delta)} b^{-N[H(X)-\delta]}=\left\|\mathcal{T}_{X}(\delta)\right\| b^{-N[H(X)-\delta]} \tag{2.23}
\end{equation*}
$$

Therefore, the number of typical sequences, $\left\|\mathcal{T}_{X}(\delta)\right\|$, is lowerbounded as:

$$
\begin{gather*}
\frac{(1-\epsilon)}{b^{-N[H(X)-\delta]}}<\left\|\mathcal{T}_{X}(\delta)\right\| \tag{2.24}\\
\left\|\mathcal{T}_{X}(\delta)\right\|>(1-\epsilon) b^{N[H(X)-\delta]} \tag{2.25}
\end{gather*}
$$

Combining the upper and lower bounds:

$$
\begin{equation*}
(1-\epsilon) b^{N[H(X)-\delta]}<\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]} \tag{2.26}
\end{equation*}
$$

QED

2.4 Variable length codes (source coding)

Consider a source code \mathcal{C} which encodes each different source symbol (or sourceword) with a unique codeword. To be able to retrieve the original information at the receiver (i.e. information sink), all codewords should be uniquely decodable. It is desirable to minimize the average codeword length.

Figure 2.1: Variable length source encoder.
The source $X=\left\{x_{1}, \ldots, x_{k}, \ldots, x_{K}\right\}, K$ being the source alphabet size, is characterized by its letter distribution: $\mathbf{p}=\left\{p\left(x_{1}\right), \ldots, p\left(x_{k}\right), \ldots, p\left(x_{K}\right)\right\}$ and its entropy $H(X)$.

The variable length source code \mathcal{C} is a set of codewords $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}, \ldots, \mathbf{c}_{K}\right\}$ which consists each in l_{k} symbols taken from an output alphabet $Y=\left\{y_{1}, \ldots, y_{j}, \ldots, y_{J}\right\}$. In other words, the $l^{\text {th }}$ element of the $k^{\text {th }}$ codeword $c_{k, l} \in\left\{y_{1}, \ldots, y_{J}\right\}$ (where $1 \leq l \leq l_{k}$):

Source		Codeword
Symbol	Codeword	Length

x_{1}	$\mathbf{c}_{1}=\left(c_{1,1}, c_{1,2}, \ldots, c_{1, l}, \ldots, c_{1, l_{1}}\right)$	l_{1}
x_{2}	$\mathbf{c}_{2}=\left(c_{2,1}, c_{2,2}, \ldots, c_{2, l}, \ldots, c_{2, l_{2}}\right)$	l_{2}
\vdots	\vdots	\vdots
x_{k}	$\mathbf{c}_{k}=\left(c_{k, 1}, c_{k, 2}, \ldots, c_{k, l}, \ldots, c_{k, l_{k}}\right)$	l_{k}
\vdots	\vdots	\vdots
x_{K}	$\mathbf{c}_{K}=\left(c_{K, 1}, c_{K, 2}, \ldots, c_{K, l}, \ldots, c_{K, l_{K}}\right)$	l_{K}

The expected code length $L(\mathcal{C})$ of the variable length source code is determined by the source symbols distribution \mathbf{p} and the length of the individual codewords.

$$
\begin{equation*}
L(\mathcal{C})=\sum_{k=1}^{K} p\left(x_{k}\right) l_{k} \tag{2.27}
\end{equation*}
$$

2.4.1 Uniquely decodable codes

The transmission of data from an information source (e.g. transmitter) to an information sink (e.g. receiver) is generally in the form of a continuous data stream; at the receiving end, one should be able to reconstruct without any ambiguity the source symbol sequence from the received sequence of codewords. However, some conditions must be imposed on the choice of the set of codewords, or code \mathcal{C}, to insure that a received sequence would uniquely determine the original transmitted information sequence generated from the source X. The ensemble (or universe) of all possible codes $\{\mathcal{C}\}$ can be subdivided into smaller sets of codes:

Figure 2.2: Source codes' subdivisions.
a) Prefix code:

A code is called a prefix code, or sometimes instantaneous code, if no codeword \mathbf{c}_{k} is a prefix of any other codeword $\mathbf{c}_{k^{\prime}}$ in the code \mathcal{C}. For instance, the code \mathcal{C}_{1} is a prefix code:

$$
\mathcal{C}_{1}=\{0,10,110,111\}
$$

b) Uniquely decodable code:

A code is called a uniquely decodable code if each possible sequence of codewords can be produced only by a unique sequence of source symbols.

$$
\mathcal{C}_{2}=\{0,01,011,0111\}
$$

The code \mathcal{C}_{2} is not a prefix code: the codeword $\mathbf{c}_{1}=(0)$ is a prefix of $\mathbf{c}_{2}=(01), \mathbf{c}_{3}=(011)$ and $\mathbf{c}_{4}=$ (0111). Nevertheless, there is no ambiguity in the decoding process for such a code. The received sequence " 001110100110 " for instance corresponds to the source symbol sequence " $x_{1}, x_{4}, x_{2}, x_{1}, x_{3}, x_{1}$ " and no other one.
c) Non-singular code:

The only condition for a non-singular code is that all codewords in such a code is different from the other codewords, i.e. $\mathbf{c}_{k} \neq \mathbf{c}_{k^{\prime}}$ if $k \neq k^{\prime}$.

$$
\mathcal{C}_{3}=\{0,1,00,11\}
$$

Here, code \mathcal{C}_{3} is neither prefix code nor a uniquely decodable code. The received string " 01000110111 " can be decoded in many ways as " $x_{1}, x_{2}, x_{1}, x_{1}, x_{1}, x_{2}, x_{2}, x_{1}, x_{2}, x_{2}, x_{2}$ " or " $x_{1}, x_{2}, x_{3}, x_{1}, x_{4}, x_{1}, x_{2}, x_{4} "$, etc.

d) All possible codes:

Here, one considers all possible mappings from the set of K symbols $\left\{x_{1}, \ldots, x_{K}\right\}$ into K codewords $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{K}\right\}$, and this without any conditions.

$$
\mathcal{C}_{4}=\{0,10,11,10\}
$$

Both source letters x_{2} and x_{4} are encoded with the same string " 10 ".

2.4.2 Kraft Inequality and Optimum Codes

2.4.2.1 Kraft Inequality for Prefix Codes

Theorem (Kraft Inequality for Prefix Codes)

A prefix code \mathcal{C}, with K codewords $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}, \ldots, \mathbf{c}_{K}\right\}$ of lengths $l_{1}, \ldots, l_{k}, \ldots, l_{K}$ and using an alphabet of size J, must satisfy the following inequality (Kraft Inequality):

$$
\sum_{k=1}^{K} J^{-l_{k}} \leq 1
$$

Proof:

A prefix code \mathcal{C} can be represented as a tree where each branch of the tree represents a symbol from a codeword, and a codeword is represented by a path from the root to a leaf (see Figure 2.3).

For a prefix code, no codeword can be the prefix of another codeword. On the tree, because of this prefix condition, no branch (i.e., no codeword, or part of a codeword) extends beyond a given leaf (that is from a shorter codeword). In other words, a given ancestor codeword (leaf) disables all descendants codewords (branches).

Let the lengths $l_{1} \leq \ldots \leq l_{k} \leq \ldots \leq l_{K}$. If the length of a first codeword \mathbf{c}_{1} is $l_{1}=1$, then one of the J branches at level 1 in the code tree is disabled. Thus, a fraction J^{-1}, or $J^{-l_{1}}$, of the total number of branches in the tree is disabled. Now, if a second codeword \mathbf{c}_{2} of the same length $l_{2}=1$ is used, then an additional fraction $J^{-l_{2}}=J^{-1}$ is disabled in the code tree.

A codeword \mathbf{c}_{k} of length l_{k} once chosen will result in another $J^{-l_{k}}$ of the code tree to be again disabled. Since the prefix code \mathcal{C} consists in the K codewords $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}, \ldots, \mathbf{c}_{K}\right\}$, of respective lengths $l_{1}, \ldots, l_{k}, \ldots, l_{K}$, then, once all codewords are used, the sum of the fractions of the branches of the code tree will be given by:

$$
\begin{equation*}
\sum_{k=1}^{K} J^{-l_{k}} \leq 1 \tag{2.28}
\end{equation*}
$$

the sum of fractions of the total number of branches being less or at most equal to unity.

Figure 2.3: Code tree (Kraft inequality): ancestors and descendants.

QED

2.4.2.2 Kraft Inequality for Uniquely Decodable Codes

To be able to decode without ambiguity the codewords one does not necessarily need to chose a prefix code. We have seen that the larger set of uniquely decodable codes can be used for source compaction coding. Since the set of uniquely decodable codes contains the set of prefix codes, then it seems that one can contruct a more efficient code due to its greater flexibility. However, quite surprisingly, a uniquely decodable code still need to satisfy the Kraft inequality.

Theorem (Uniquely Decodable Code):

A uniquely decodable code \mathcal{C}, defined on an alphabet of size J, with K codewords having the lengths $l_{1}, \ldots, l_{k}, \ldots, l_{K}$, must satisfy the Kraft inequality:

$$
\sum_{k=1}^{K} J^{-l_{k}} \leq 1
$$

Proof: Consider a string of N concatenated codewords (i.e., sequence of codewords). Assume that the lengths of the codewords are arranged in a ascending order:

$$
\begin{equation*}
l_{1} \leq \ldots \leq l_{k} \leq \ldots \leq l_{K} \tag{2.29}
\end{equation*}
$$

Consider the following sum over each of the K codewords, for all N codewords in the sequence:

$$
\begin{align*}
\left(\sum_{k=1}^{K} J^{-l_{k}}\right)^{N}= & \underbrace{\sum_{k_{1}=1}^{K} J^{-l_{k_{1}}}}_{\text {first codeword }} \underbrace{\sum_{k_{2}=1}^{K} J^{-l_{k_{2}}}}_{\text {second codeword }} \ldots \underbrace{\sum_{k_{N}=1}^{K} J^{-l_{k_{N}}}}_{\text {last codeword }} \tag{2.30}\\
\left(\sum_{k=1}^{K} J^{-l_{k}}\right)^{N}= & \underbrace{\sum_{k_{1}=1}^{K} \sum_{k_{2}=1}^{K} \ldots \sum_{k_{N}=1}^{K}}_{\text {sum over all possible sequences }} \underbrace{J^{-\left(l_{\left.k_{1}+l_{k_{2}}+\ldots+l_{k_{N}}\right)}^{K}\right.}}_{\text {all strings of } N \text { codewords }}
\end{align*}
$$

The exponent of J, ignoring the minus sign $(-)$, represents the total length of a particular sequence of codewords:

$$
\begin{equation*}
l_{k_{1}}+l_{k_{2}}+\ldots+l_{k_{N}} \tag{2.32}
\end{equation*}
$$

Since the codewords are arranged according to their respective lengths, then the minimum and maximum of the exponent is given by:

$$
\begin{align*}
l_{\text {min }}=\min \left[l_{k_{1}}+l_{k_{2}}+\ldots+l_{k_{N}}\right] & =N l_{1} \tag{2.33}\\
l_{\text {max }}=\max \left[l_{k_{1}}+l_{k_{2}}+\ldots+l_{k_{N}}\right] & =N l_{K} \tag{2.34}
\end{align*}
$$

Thus the total length l of a particular sequence of codewords ranges from $l_{\min }=N l_{1}$ to $l_{\max }=$ $N l_{K}$:

$$
\begin{equation*}
l_{\min }=N l_{1} \leq l \leq N l_{K}=l_{\max } \tag{2.35}
\end{equation*}
$$

Let the parameter A_{l} be an enumerator indicating the number of sequences of N codewords for which the total length is exactly l. We can then write that:

$$
\begin{equation*}
\sum_{k_{1}=1}^{K} \sum_{k_{2}=1}^{K} \ldots \sum_{k_{N}=1}^{K} J^{-\left(l_{k_{1}}+l_{k_{2}}+\ldots+l_{k_{N}}\right)}=\sum_{l=l_{\min }}^{l_{\max }} A_{l} J^{-l} \tag{2.36}
\end{equation*}
$$

Now, since code \mathcal{C} is a uniquely decodable code, there is a maximum number of distincts sequences of length l which is equal to:

$$
\begin{equation*}
\max \left(A_{l}\right)=J^{l} \tag{2.37}
\end{equation*}
$$

thus $A_{l} \leq J^{l}$ and:

$$
\begin{align*}
&\left(\sum_{k=1}^{K} J^{-l_{k}}\right)^{N}=\sum_{l=l_{\min }}^{l_{\max }} A_{l} J^{-l} \tag{2.38}\\
&\left(\sum_{k=1}^{K} J^{-l_{k}}\right)^{N} \leq \sum_{l=l_{\min }}^{l_{\max }} J^{l} J^{-l} \tag{2.39}\\
&\left(\sum_{k=1}^{K} J^{-l_{k}}\right)^{N} \leq l_{\max }-l_{\min }+1 \tag{2.40}\\
&\left(\sum_{k=1}^{K} J^{-l_{k}}\right)^{N} \leq N\left(l_{K}-l_{1}\right)+1 \tag{2.41}
\end{align*}
$$

Taking the N th root on both sides:

$$
\begin{equation*}
\sum_{k=1}^{K} J^{-l_{k}} \leq\left[N\left(l_{K}-l_{1}\right)+1\right]^{1 / N} \tag{2.42}
\end{equation*}
$$

Choosing the sequence length N to be arbitrary large, i.e. $N \rightarrow \infty$ or $1 / N \rightarrow 0$:

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left[N\left(l_{K}-l_{1}\right)+1\right]^{1 / N}=1 \tag{2.43}
\end{equation*}
$$

and therefore,

$$
\sum_{k=1}^{K} J^{-l_{k}} \leq 1
$$

2.4.2.3 Lower Bound on the Average Codeword Length

In this section, we consider a uniquely decodable (source) code \mathcal{C} and determine a lower bound on its average, or expected, codeword length $L(\mathcal{C})$.

Let X be a memoryless source of alphabet size K having the distribution: $\mathbf{p}(x)=\left\{p\left(x_{1}\right), \ldots\right.$, $\left.p\left(x_{k}\right), \ldots, p\left(x_{K}\right)\right\}$. This source of information is to be represented by a variable length code \mathcal{C} $=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}, \ldots, \mathbf{c}_{K}\right\}$, where each component $c_{k, l} \in\{0, \ldots, J-1\}$, i.e. taken from an alphabet of size J.

Theorem (Lower Bound on the Average Codeword Length):
The average codeword length $L(\mathcal{C})$ of a uniquely decodable code \mathcal{C} is lower bounded by the source entropy $H(X)$:

$$
L(\mathcal{C}) \log _{b} J \geq H(X) \quad \text { or equivalently: } \quad L(\mathcal{C}) \geq \frac{H(X)}{\log _{b} J}
$$

where b is the logarithmic base used to compute the source entropy $H(X)$.

Proof:

If the theorem statement is true then:

$$
\begin{align*}
L(\mathcal{C}) \log _{b} J-H(X) & \geq 0 \quad \text { or } \tag{2.44}\\
H(X)-L(\mathcal{C}) \log _{b} J & \leq 0 \quad \text { or using natural logarithms: } \tag{2.45}\\
\left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J] & \leq 0 \tag{2.46}
\end{align*}
$$

By definition, the entropy $H(X)$ and the average codeword lenght $L(\mathcal{C})$ are:

$$
\begin{equation*}
H(X)=-\sum_{k=1}^{K} p\left(x_{k}\right) \ln p\left(x_{k}\right) \quad \text { and } \quad L(\mathcal{C})=\sum_{k=1}^{K} p\left(x_{k}\right) l_{k} \tag{2.47}
\end{equation*}
$$

The left-hand side of the previous inequality becomes:

$$
\begin{align*}
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J]=\left(\log _{b} e\right)\left[-\sum_{k=1}^{K} p\left(x_{k}\right) \ln p\left(x_{k}\right)-\left(\sum_{k=1}^{K} p\left(x_{k}\right) l_{k}\right) \ln J\right] \tag{2.48}\\
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J]=\left(\log _{b} e\right)\left[\sum_{k=1}^{K} p\left(x_{k}\right)\left(-\ln p\left(x_{k}\right)-l_{k} \ln J\right)\right] \tag{2.49}
\end{align*}
$$

$$
\begin{align*}
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J]=\left(\log _{b} e\right)\left[\sum_{k=1}^{K} p\left(x_{k}\right)\left(\ln J^{-l_{k}}-\ln p\left(x_{k}\right)\right)\right] \tag{2.50}\\
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J]=\left(\log _{b} e\right)\left[\sum_{k=1}^{K} p\left(x_{k}\right) \ln \left(\frac{J^{-l_{k}}}{p\left(x_{k}\right)}\right)\right] \tag{2.51}
\end{align*}
$$

Since the alphabet size J and the probabilities $\left\{p\left(x_{k}\right)\right\}$ are always positive, then the ratio $\frac{J^{-l_{k}}}{p\left(x_{k}\right)}$ is also positive. Since for $x \geq 0, \ln x \leq x-1$, then

$$
\begin{equation*}
\ln \left[\frac{J^{-l_{k}}}{p\left(x_{k}\right)}\right] \leq\left[\frac{J^{-l_{k}}}{p\left(x_{k}\right)}-1\right] \quad \text { for } k=1, \ldots, K \tag{2.52}
\end{equation*}
$$

and therefore,

$$
\begin{align*}
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J] \leq\left(\log _{b} e\right)\left[\sum_{k=1}^{K} p\left(x_{k}\right)\left[\frac{J^{-l_{k}}}{p\left(x_{k}\right)}-1\right]\right] \tag{2.53}\\
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J] \leq\left(\log _{b} e\right)\left[\sum_{k=1}^{K} J^{-l_{k}}-\sum_{k=1}^{K} p\left(x_{k}\right)\right] \tag{2.54}
\end{align*}
$$

Since the variable length code (\mathcal{C}) is uniquely decodable, it must satisfies the Kraft inequality, i.e. $\sum_{k=1}^{K} J^{-l_{k}} \leq 1$. On the other hand, by definition, the sum of probabilities $\sum_{k=1}^{K} p\left(x_{k}\right)=1$, and thus,

$$
\begin{align*}
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J] \leq\left(\log _{b} e\right)[\underbrace{\sum_{k=1}^{K} J^{-l_{k}}}_{\leq 1}-\underbrace{\sum_{k=1}^{K} p\left(x_{k}\right)}_{=1}] \tag{2.55}\\
& \left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J] \leq\left(\log _{b} e\right)[\underbrace{\sum_{k=1}^{K} J^{-l_{k}}-\sum_{k=1}^{K} p\left(x_{k}\right)}_{\leq 0}] \tag{2.56}
\end{align*}
$$

$$
\begin{equation*}
\left(\log _{b} e\right)[H(X)-L(\mathcal{C}) \ln J] \leq 0 \tag{2.57}
\end{equation*}
$$

Therefore, for any logarithmic base b :

$$
\begin{equation*}
H(X)-L(\mathcal{C}) \log _{b} J \leq 0 \tag{2.58}
\end{equation*}
$$

and the average codeword length is larger or equal to the source entropy:

$$
\begin{equation*}
L(\mathcal{C}) \geq \frac{H(X)}{\log _{b} J} \tag{2.59}
\end{equation*}
$$

2.4.2.4 Upper Bound on the Average Codeword Length

In the previous section, we have seen that the average codeword length $L(\mathcal{C})$ of a uniquely decodable source compaction code \mathcal{C} is larger or equal to the entropy $H(X)$ of the source X. In this section, we show that it is always possible to construct a uniquely decodable with an average codeword length which is arbitrarily close to the source's entropy.

Theorem (Upper Bound on the Average Codeword Length):

Given a memoryless source $X=\left\{x_{1}, \ldots, x_{k}, \ldots, x_{K}\right\}$, it is possible to construct a uniquely decodable code \mathcal{C} for which the average codeword length $L(\mathcal{C})$ is upper bounded by:

$$
L(\mathcal{C})<\frac{H(X)}{\log _{b} J}+1
$$

Proof:

For this proof, we can choose the (J-ary) Shannon code construction where each codeword has a specific length l_{k} such that:

$$
\begin{equation*}
l_{k}=\left\lceil-\log _{J} p\left(x_{k}\right)\right\rceil \tag{2.60}
\end{equation*}
$$

or, by definition of the ceiling function ${ }^{1}$:

$$
\begin{equation*}
-\log _{J} p\left(x_{k}\right) \leq l_{k}=\left\lceil-\log _{J} p\left(x_{k}\right)\right\rceil<-\log _{J} p\left(x_{k}\right)+1 \tag{2.61}
\end{equation*}
$$

We must ensure that the code is uniquely decodable. Does it satisfy the Kraft inequality? From the above inequality, we know that:

$$
\begin{align*}
l_{k} & \geq-\log _{J} p\left(x_{k}\right) \quad \text { or } \tag{2.62}\\
-l_{k} & \leq \log _{J} p\left(x_{k}\right) \tag{2.63}
\end{align*}
$$

Raising J by the left and right hand sides of the inequality,

$$
\begin{equation*}
J^{-l_{k}} \leq J^{\log _{J} p\left(x_{k}\right)}=p\left(x_{k}\right) \quad \text { for } k=1, \ldots, K \tag{2.64}
\end{equation*}
$$

[^0]Summing over the set of source symbols:

$$
\begin{equation*}
\sum_{k=1}^{K} J^{-l_{k}} \leq \sum_{k=1}^{K} p\left(x_{k}\right)=1 \tag{2.65}
\end{equation*}
$$

This implies that the code satisfies the Kraft inequality and can then be represented as a prefix code or a uniquely decodable code.

Now consider that for the Shannon code, we also have:

$$
\begin{equation*}
l_{k}<-\log _{J} p\left(x_{k}\right)+1 \tag{2.66}
\end{equation*}
$$

Averaging on both sides of this inequality over all source symbols, i.e. for $k=1, \ldots, K$:

$$
\begin{align*}
\sum_{k=1}^{K} p\left(x_{k}\right) l_{k} & <\sum_{k=1}^{K} p\left(x_{k}\right)\left[-\log _{J} p\left(x_{k}\right)+1\right] \tag{2.67}\\
\sum_{k=1}^{K} p\left(x_{k}\right) l_{k} & <-\sum_{k=1}^{K} p\left(x_{k}\right) \log _{J} p\left(x_{k}\right)+\sum_{k=1}^{K} p\left(x_{k}\right) \tag{2.68}\\
L(\mathcal{C}) & <H(X)+1 \tag{2.69}
\end{align*}
$$

where the entropy $H(X)$ is the entropy of the source X expressed using base J. Converted to an arbitry base b, one obtains:

$$
\begin{equation*}
L(\mathcal{C})<\frac{H(X)}{\log _{b} J}+1 \tag{2.70}
\end{equation*}
$$

QED

Thus, a uniquely decodable code is lower bounded and upper bounded as:

2.4.2.5 Encoding N i.i.d. source symbols

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}, \ldots, X_{N}\right)$ be a sequence of N independent and identically distributed (i.i.d.) random variables (or a N-dimensional random vector) of entropy:

$$
\begin{equation*}
H(\mathbf{X})=H\left(X_{1}\right)+\ldots+H\left(X_{n}\right)+\ldots+H\left(X_{N}\right)=N H\left(X_{n}\right)=N H(X) \tag{2.71}
\end{equation*}
$$

The average codeword length needed to represent the random vector \mathbf{X} of alphabet size K^{N} (i.e. $\left\{x_{1}, \ldots, x_{K}, x_{K+1}, \ldots, x_{K^{N}}\right\}$). The average (concatenated) codeword length $L_{N}(\mathcal{C})$ is N times the average codeword length of the code use to encode a single source $X_{n}, L(\mathcal{C})$:

$$
\begin{equation*}
L_{N}(\mathcal{C})=N L(\mathcal{C}) \tag{2.72}
\end{equation*}
$$

The average concatenated codeword length is bounded by:

$$
\begin{align*}
\frac{H(\mathbf{X})}{\log _{b} J} & \leq L_{N}(\mathcal{C}) \tag{2.73}
\end{align*}<\frac{H(\mathbf{X})}{\log _{b} J}+1 \quad \text { or } \quad \begin{cases}\frac{N H(X)}{\log _{b} J} & \leq N L(\mathcal{C})\end{cases}
$$

Then, dividing both sides of the equation by N,

$$
\frac{H(X)}{\log _{b} J} \leq L(\mathcal{C})<\frac{H(X)}{\log _{b} J}+\frac{1}{N}
$$

where the average codeword length $L(\mathcal{C})$ per source symbol can be made arbitrary close to the entropy per symbol $H(X)$ by increasing the number of symbols N being encoded, hence reducing the ratio $\frac{1}{N}$.

2.4.3 Optimum coding (Huffman code)

Consider a source $X=\left\{x_{1}, \cdots, x_{K}\right\}$ with a distribution $\mathbf{p}(x)=\left\{p\left(x_{1}\right), \cdots, p\left(x_{K}\right)\right\}$. The problem of source coding is to minimize the average codeword length $L(\mathcal{C})$ of a uniquely decodable code \mathcal{C} :

$$
\begin{array}{ccccc}
x_{1} & \Rightarrow & \mathbf{c}_{1} & = & \left(c_{1,1}, \ldots, c_{1, l_{1}}\right) \tag{2.75}\\
\vdots & & \vdots & & \vdots \\
x_{k} & \Rightarrow & \mathbf{c}_{k} & = & \left(c_{k, 1}, \ldots, c_{k, l_{k}}\right) \\
\vdots & & \vdots & & \vdots \\
x_{K} & \Rightarrow & \mathbf{c}_{K} & = & \left(c_{K, 1}, \ldots, c_{K, l_{K}}\right)
\end{array}
$$

where l_{k} is, as previously, the length of the codeword $\mathbf{c}_{\mathbf{k}}$ used to represent the symbol x_{k} and M the codeword symbol alphabet size. The problem consists in minimizing the expected length of the code for a given input distribution $\mathbf{p}(\mathbf{x})$.

$$
\begin{equation*}
\min _{\{\mathcal{C}\}} L(\mathcal{C})=\min _{\{\mathcal{C}\}} \sum_{k=1}^{K} p\left(x_{k}\right) l_{k} \tag{2.76}
\end{equation*}
$$

Let the distribution of the source symbols be arranged in a decreasing order of probability:

$$
\begin{equation*}
p\left(x_{1}\right) \geq p\left(x_{2}\right) \geq \ldots \geq p\left(x_{k}\right) \ldots \geq p\left(x_{K-1}\right) \geq p\left(x_{K}\right) \tag{2.77}
\end{equation*}
$$

The source symbols are to be encoded using a prefix code (and thus a uniquely decodable code) where the length of the codewords are l_{1}, \ldots, l_{K}.

If for $k<j$, which means that $p\left(x_{k}\right) \geq p\left(x_{j}\right)$, the length $l_{k}>l_{j}$ (which is not wanted), then one can exchange the 2 codewords. The improvement, or reduction, ΔL in the average codeword length, due to this permutation of codewords, is equal to:

$$
\begin{align*}
\Delta L & =\left[p\left(x_{k}\right) l_{j}+p\left(x_{j}\right) l_{k}\right]-\left[p\left(x_{k}\right) l_{k}+p\left(x_{j}\right) l_{j}\right] \tag{2.78}\\
& =\left[p\left(x_{j}\right)-p\left(x_{k}\right)\right]\left[l_{k}-l_{j}\right] \\
\Delta L & \leq 0
\end{align*}
$$

If the original code was already an optimum code then $\Delta L=0$.

2.4.3.1 Procedure to construct a binary Huffman code

a) Arrange the source symbols in order of decreasing probabilities:

$$
p\left(x_{1}\right) \geq p\left(x_{2}\right) \geq \ldots \geq p\left(x_{k}\right) \ldots \geq p\left(x_{K-1}\right) \geq p\left(x_{K}\right)
$$

For instance:

$$
p(" \mathrm{E} ") \approx 10.3 \% \geq p(" \mathrm{~T} ") \approx 7.96 \% \geq \ldots \geq p(" \mathrm{Z} ") \approx 0.05 \%
$$

b) Assign a " 1 " (or " 0 ") to the last digit of the $K^{\text {th }}$ codeword \mathbf{c}_{K} and a " 0 " (or " 1 ") to the last digit of codeword \mathbf{c}_{K-1}. Then the 2 codewords \mathbf{c}_{K} and \mathbf{c}_{K-1} have the same codeword length $l_{K}=l_{K-1}$.

$$
\begin{aligned}
\mathbf{c}_{K-1} & \Rightarrow\left(c_{K-1,1}, \ldots, c_{K-1, l_{(K-1)}-1}, 0\right) \\
\mathbf{c}_{K} & \Rightarrow\left(c_{K, 1}, \ldots, c_{K, l_{K}-1}, 1\right)
\end{aligned}
$$

c) Form a new source X^{\prime} where $x_{k}^{\prime}=x_{k}$ for $k=1,2, \ldots, K-2$, and create a new "pseudosymbol" $x_{K-1}^{\prime}=x_{K-1} \cup x_{K}$. The resulting new distribution \mathbf{p}^{\prime} is then given by:

$$
\begin{aligned}
p\left(x_{k}^{\prime}\right) & =p\left(x_{k}\right) \quad \text { for } 1 \leq k \leq K-2 \text { and } \\
p\left(x_{K-1}^{\prime}\right) & =p\left(x_{K-1}\right)+p\left(x_{K}\right)
\end{aligned}
$$

d) Rearrange the new set of probabilities (or distribution) such as:

$$
p\left(x_{1}^{\prime}\right) \geq \ldots \geq p\left(x_{k}^{\prime}\right) \ldots \geq p\left(x_{K-1}^{\prime}\right)
$$

e) Repeat steps 2 to 5 until all original source symbols $\left\{x_{k}\right\}$ have been encoded.

Example (Huffman code for single symbols):

Consider a source $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ characterized with the following distribution $\mathbf{p}(x)$: $p\left(x_{1}\right)=0.35, p\left(x_{2}\right)=0.22, p\left(x_{3}\right)=0.18, p\left(x_{4}\right)=0.15$ and $p\left(x_{5}\right)=0.10$. The entropy $H(X)$ of this source of information is then equal to:

$$
H(X)=-\sum_{k=1}^{5} p\left(x_{k}\right) \log _{2} p\left(x_{k}\right)=2.1987 S h
$$

This source can be encoded using a binary Huffman code. Table 2.2 and Figure 2.4 shown below, indicate the resulting codewords $\left\{\mathbf{c}_{k}=\left(c_{k, 1}, \cdots, c_{k, l_{k}}\right)\right\}$ along with the codeword length l_{k} for this particular source of information.

The average codeword length L is equal to:

$$
L=\sum_{k=1}^{5} p\left(x_{k}\right) l_{k}=2.25 \text { bits/source symbol }
$$

providing a variable-length source code efficiency ξ of 97.7% :

$$
\xi=\frac{H(X)}{L}=\frac{2.1987 \mathrm{Sh}}{2.25 \mathrm{bits}}=97.7 \%
$$

Figure 2.4: Binary Huffman code structure

Table 2.2: Huffman code for single symbols

Symbol x_{k}	Probability $p\left(x_{k}\right)$	Codeword $\mathbf{c}_{k}=\left(c_{k, 1}, \cdots, c_{k, l_{k}}\right)$	Length l_{k}
x_{1}	$p\left(x_{1}\right)=0.35$	0	0
x_{2}	$p\left(x_{2}\right)=0.22$	1	0
x_{3}	$p\left(x_{3}\right)=0.18$	1	1
x_{4}	$p\left(x_{4}\right)=0.15$	0	1
x_{5}	$p\left(x_{5}\right)=0.10$	0	1

Example (Huffman code for pairs of symbols):

Let now construct another binary Huffman code, but this time to encode pairs of source symbols \mathbf{x}_{k} (i.e., digrams): $\mathbf{x}_{k} \equiv\left(x_{i}, x_{j}\right)$. The entropy $H(\mathbf{X})$ of the source of digrams is now:

$$
H(\mathbf{X})=-\sum_{k=1}^{25} p\left(\mathbf{x}_{k}\right) \log _{2} p\left(\mathbf{x}_{k}\right)=4.3974 \text { Sh } / \text { digram }=2.1987 \text { Sh/source symbol }
$$

while the average codeword length L becomes (see table 2.3 on next page):

$$
L=\sum_{k=1}^{25} p\left(\mathbf{x}_{k}\right) l_{k}=4.4196 \text { bits/digram }=2.2098 \text { bits/source symbol }
$$

The Huffman code efficiency ξ has then increased to the ratio:

$$
\xi=\frac{H(\mathbf{X})}{L}=\frac{4.3974 \text { Sh } / \text { digram }}{4.4196 \text { bits } / \text { digram }}=99.5 \%
$$

Table 2.3: Huffman code for digram sourcewords $\mathbf{x}_{k}=\left(x_{i}, x_{j}\right)$

Sourceword $\mathbf{x}_{k}=\left(x_{i}, x_{j}\right)$	Probability $p\left(\mathbf{x}_{k}\right)=p\left(x_{i}\right) p\left(x_{j}\right)$	Codeword $c_{k}=\left(c_{k, 1}, \cdots, c_{k, l_{k}}\right)$	Length l_{k}
$\mathbf{x}_{1}=\left(x_{1}, x_{1}\right)$	0.1225	100	3
$\mathbf{x}_{2}=\left(x_{1}, x_{2}\right)$	0.0770	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	4
$\mathbf{x}_{3}=\left(x_{2}, x_{1}\right)$	0.0770	$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	4
$\mathbf{x}_{4}=\left(x_{1}, x_{3}\right)$	0.0630	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	4
$\mathbf{x}_{5}=\left(x_{3}, x_{1}\right)$	0.0630	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	4
$\mathbf{x}_{6}=\left(x_{1}, x_{4}\right)$	0.0525	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	4
$\mathbf{x}_{7}=\left(x_{4}, x_{1}\right)$	0.0525	$1 \begin{array}{llll}1 & 1 & 0 & 0\end{array}$	4
$\mathbf{x}_{8}=\left(x_{2}, x_{2}\right)$	0.0484	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	4
$\mathbf{x}_{9}=\left(x_{2}, x_{3}\right)$	0.0396	$\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}$	5
$\mathbf{x}_{10}=\left(x_{3}, x_{2}\right)$	0.0396	$0 \begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}$	5
$\mathbf{x}_{11}=\left(x_{1}, x_{5}\right)$	0.0350	$\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}$	5
$\mathbf{x}_{12}=\left(x_{5}, x_{1}\right)$	0.0350	$\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$	5
$\mathbf{x}_{13}=\left(x_{2}, x_{4}\right)$	0.0330	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	5
$\mathbf{x}_{14}=\left(x_{4}, x_{2}\right)$	0.0330	$\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$	5
$\mathbf{x}_{15}=\left(x_{3}, x_{3}\right)$	0.0324	$1 \begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}$	5
$\mathbf{x}_{16}=\left(x_{3}, x_{4}\right)$	0.0270	$1 \begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}$	5
$\mathbf{x}_{17}=\left(x_{4}, x_{3}\right)$	0.0270	$\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}$	5
$\mathbf{x}_{18}=\left(x_{4}, x_{4}\right)$	0.0225	$\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}$	5
$\mathbf{x}_{19}=\left(x_{2}, x_{5}\right)$	0.0220	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$	5
$\mathbf{x}_{20}=\left(x_{5}, x_{2}\right)$	0.0220	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	6
$\mathbf{x}_{21}=\left(x_{3}, x_{5}\right)$	0.0180	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$	6
$\mathbf{x}_{22}=\left(x_{5}, x_{3}\right)$	0.0180	$\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}$	6
$\mathbf{x}_{23}=\left(x_{4}, x_{5}\right)$	0.0150	$\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 1\end{array}$	6
$\mathbf{x}_{24}=\left(x_{5}, x_{4}\right)$	0.0150	$\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 0\end{array}$	6
$\mathbf{x}_{25}=\left(x_{5}, x_{5}\right)$	0.0100	$\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 1\end{array}$	6

2.4.3.2 Non-binary Huffman codes

Let $X=\left\{x_{1}, \cdots, x_{K}\right\}$ be the source of information with the distribution $\mathbf{p}(x)=\left\{p\left(x_{1}\right), \cdots, p\left(x_{K}\right)\right\}$ and let the codeword symbol alphabet size $M \neq 2$. A non-binary Huffman code \mathcal{C} can be contructed as indicated below on Figure 2.5. Note that, this time, since the number of source symbols K may not be exactly equal to $c(M-1)+M$, where c is an arbitrary integer.

$$
\begin{aligned}
& \begin{aligned}
& p\left(x_{M}\right)^{(1)} \longrightarrow p\left(x_{M}\right)^{(2)} \xrightarrow{0} \xrightarrow{0} p\left(x_{M}\right)^{(3)} \xrightarrow{M-1} \\
& p\left(x_{M+1}\right)^{(1)} \longrightarrow p\left(x_{M+1}\right)^{(2)} \longrightarrow \begin{array}{l}
1 \\
p\left(x_{M+2}\right)^{(1)} \\
\longrightarrow p\left(x_{M+2}\right)^{(2)} \longrightarrow \\
\vdots \\
\vdots
\end{array} \quad \vdots
\end{aligned} \\
& p\left(x_{2 M-1}\right)^{(1)} \xrightarrow{0} p\left(x_{2 M-1}\right)^{(2)} \xrightarrow{M-1} \\
& p\left(x_{2 M}\right)^{(1)} \xrightarrow{1} \\
& p\left(x_{2 M+1}\right)^{(1)} \xrightarrow{2} \\
& \vdots \quad \vdots \\
& p\left(x_{3 M-2}\right)^{(1)} \xrightarrow{M-1}
\end{aligned}
$$

Figure 2.5: Structure of a non-binary Huffman code

2.5 Fixed length source compaction codes (Shannon source coding theorem)

Consider a sourcewords, or sequences of information, of length N, generated by a discrete memoryless source X of independent and identically distributed (i.i.d.) random variables with of entropy $H(X)$. These sourcewords are to be Consider a sourcewords, or sequences of information, of length N, generated by a discrete memoryless source X of encoded into codewords of blocklength L where each component is taken from an alphabet of size J.

Figure 2.6: Fixed length source compaction encoder.

Theorem (Shannon Source Coding Theorem)
Consider a memoryless source X of entropy $H(X)$. It is possible to construct a fixed length source compaction code that encode sourcewords of length N into codewords of length L, having an arbitrary small block decoding failure probability P_{e}, provided that:
a) $L \log _{b} J>N H(X)$ and
b) $N \geq N_{0}$ (sufficiently large)
where b is the base of the source entropy $H(X)$.

2.5. FIXED LENGTH SOURCE COMPACTION CODES (SHANNON SOURCE CODING THEOREM)67

Proof:

The set of all K^{N} sourcewords can be partionned into the sets of typical sequences, i.e. $\mathcal{T}_{X}(\delta)$, and the set of non typical, or unlikely, sequences $\mathcal{T}_{X}^{c}(\delta)$. The number of typical sequences $\left\|\mathcal{T}_{X}(\delta)\right\|$ is bounded as:

$$
\begin{equation*}
(1-\epsilon) b^{N[H(X)-\delta]}<\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]} \tag{2.79}
\end{equation*}
$$

The maximum number of possible codewords of length L is J^{L} whereas the number of typical sequences of the information source X is upper bounded by $b^{N[H(X)+\delta]}$.

If, as required by the theorem, the alphabet size J and the codeword length L are such that $L \log _{b} J>N H(X)$, then, raising b by both terms of the inequality:

$$
\begin{align*}
L \log _{b} J & >N H(X) \quad \text { implies that } \tag{2.80}\\
b^{L \log _{b} J} & >b^{N H(X)} \tag{2.81}\\
J^{L} & >b^{N H(X)} \tag{2.82}
\end{align*}
$$

The parameter δ that defines the typical sequences, can be chosen such that both sides are equal (by allowing a sufficient number of sequences to be considered as typical:

$$
\begin{equation*}
\underbrace{J^{L}}_{\text {codewords }} \geq \underbrace{b^{N[H(X)+\delta]}}_{\text {typical sequences }} \tag{2.83}
\end{equation*}
$$

hence providing a unique codeword for each typical sequence, the number of which can not be greater that $b^{N[H(X)+\delta]}$.

Therefore, the set of non encodable sequences (sourcewords) is contained in the set of atypical sequences $\mathcal{T}_{X}^{c}(\delta)$. For N sufficiently large, i.e. $N \geq N_{0}$, the probability that a source sequence is in the set of atypical sequences $\mathcal{T}_{X}^{c}(\delta)$ is smaller than ϵ. Therefore the probability of having a sourceword that is not typical, or the probability of an error decoding failure can be made arbitrary small: $P_{e} \leq \epsilon$.

Example (Fixed Length Source Compaction Encoder):
Let X represent a memoryless source of information with the probabilities $p\left(x_{1}\right)=0.1$ and $p\left(x_{2}\right)=0.9$. Its entropy $H(X)$ is:

$$
\begin{aligned}
& H(X)=-\sum_{i=1}^{2} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)=-\left[(0.1) \log _{2}(0.1)+(0.9) \log _{2}(0.9)\right] \\
& H(X)=0.4690 \quad \text { (Shannons) }
\end{aligned}
$$

Figure 2.7: Rate $\frac{3}{4}$ fixed length source compaction encoder.
Suppose that we use the fixed length source compaction encoder depicted on Figure 2.7 to encode N-bit sourcewords into L bits binary codewords, where $N=4$ and $L=3$, hence resulting in a rate $\frac{3}{4}$ source encoder. We note that the condition of Shannon source coding theorem is satisfied, that is:

$$
H(X)=0.4690 \leq \frac{L}{N}=\frac{3}{4}=0.75 \quad(\text { with } K=J=2)
$$

There are $2^{4}=16$ possible sourcewords of length 4 . However, there are only $2^{3}=8$ possible codewords of length L.

2.5. FIXED LENGTH SOURCE COMPACTION CODES (SHANNON SOURCE CODING THEOREM)69

We can partition the 16 sourcewords into a set of 7 typical sequences $\mathcal{T}_{X}(\delta)$ which will be assigned to a unique codeword and a set of 9 non typical sequences $\mathcal{T}_{X}^{c}(\delta)$ which will be represented by a default codeword. The probabilities of the sourcewords are, in increasing order:

$$
\begin{array}{rlrl}
p\left(x_{1}\right)^{4} & =0.0001 & & \binom{4}{4}=1 \text { sourceword } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right) & =0.0009 & \binom{4}{3}=4 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{2} & =0.0081 & & \binom{4}{2}=6 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{3} & =0.0729 & & \binom{4}{1}=4 \text { sourcewords } \\
p\left(x_{2}\right)^{4} & =0.6561 & & \binom{4}{0}=1 \text { sourceword }
\end{array}
$$

The probability $1-P_{e}$ of faithful decoding, or of transmitting a sourceword which is in the set of typical sequence is:

$$
\begin{aligned}
& 1-P_{e}=\underbrace{\binom{4}{0}}_{1} p\left(x_{2}\right)^{4}+\underbrace{\binom{4}{1}}_{4} p\left(x_{1}\right) p\left(x_{2}\right)^{3}+\underbrace{\min \left(\binom{4}{2}, 2\right)}_{2} p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{2} \\
& 1-P_{e}=0.6561+(4 \times 0.0729)+(2 \times 0.0081)=9.6390 \times 10^{-1}
\end{aligned}
$$

The decoding error probability P_{e} is then equal to 3.6100×10^{-2} or 3.61%.
Now, let the sourceword blocklength be increased from $N=4$ to $N=8$ and the codeword blocklength increased from $L=3$ to $L=6$, thus keeping the code rate $R=\frac{6}{8}=0.75$ as before. The entropy per source symbol $H(X)$ remains the same as well, that is $H(X)=0.4690$.

There are now $2^{8}=2568$-bit sourcewords to be encoded into $2^{6}=646$-bit codewords. A unique 6 -bit codeword is assigned to each of the 63 most likely sourcewords, or typical sequences (in $\mathcal{T}_{X}(\delta)$), and the remaining 193 sourcewords (atypical sequences in $\mathcal{T}_{X}^{c}(\delta)$) are encoded into the default 6 -bit codeword. The probabilities of the 8 -bit sourcewords are:

$$
\begin{aligned}
p\left(x_{1}\right)^{8} & =1.0000 \times 10^{-8} & \binom{8}{8}=1 \text { sourceword } \\
p\left(x_{1}\right)^{7} p\left(x_{2}\right) & =9.0000 \times 10^{-8} & \binom{8}{7}=8 \text { sourcewords } \\
p\left(x_{1}\right)^{6} p\left(x_{2}\right)^{2} & =8.1000 \times 10^{-7} & \binom{8}{6}=28 \text { sourcewords } \\
p\left(x_{1}\right)^{5} p\left(x_{2}\right)^{3} & =7.2900 \times 10^{-6} & \binom{8}{5}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{4} p\left(x_{2}\right)^{4} & =6.5610 \times 10^{-5} & \binom{8}{4}=70 \text { sourcewords } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right)^{5} & =5.9049 \times 10^{-4} & \binom{8}{3}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{6} & =5.3144 \times 10^{-3} & \binom{8}{2}=28 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{7} & =4.7830 \times 10^{-2} & \binom{8}{1}=8 \text { sourcewords } \\
p\left(x_{2}\right)^{8} & =4.3047 \times 10^{-1} & \binom{8}{0}=1 \text { sourceword }
\end{aligned}
$$

The faithful decoding probability $1-P_{e}$ is then:

$$
\begin{aligned}
1-P_{e}= & \underbrace{\binom{8}{0}}_{1} p\left(x_{2}\right)^{8}+\underbrace{\binom{8}{1}}_{8} p\left(x_{1}\right) p\left(x_{2}\right)^{7}+\underbrace{\binom{8}{2}}_{28} p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{6} \\
& +\underbrace{\min \left(\binom{8}{3}, 26\right)}_{26} p\left(x_{1}\right)^{3} p\left(x_{2}\right)^{5} \\
1-P_{e}= & 4.3047 \times 10^{-1}+\left(8 \times 4.7830 \times 10^{-2}\right)+\left(28 \times 5.3144 \times 10^{-3}\right) \\
& +\left(26 \times 5.9049 \times 10^{-4}\right) \\
1-P_{e}= & 9.7726 \times 10^{-1}
\end{aligned}
$$

The decoding error probability P_{e} is then equal to 2.2739×10^{-2} or 2.2739%. Therefore, for the same source entropy $H(X)=0.4690$ and the same code rate $R=\frac{L}{N}=\frac{6}{8}=\frac{3}{4}=0.75$, the decoding error probability decreased from $P_{e}=3.61 \%$ to $P_{e}=2.2739 \%$ by increasing the sourceword blocklength from $N=4$ to $N=8$.

Theorem (Converse of the Source Coding Theorem)
Let $\epsilon>0$. Given a memoryless source X of entropy $H(X)$, a codeword alphabet size J and a codeword length L, if:
a) $L \log _{b} J<N H(X)$ and
b) $N \geq N_{0}$
then the probability of decoding failure P_{e} is lower bounded by:

$$
P_{e}>1-\epsilon
$$

2.5. FIXED LENGTH SOURCE COMPACTION CODES (SHANNON SOURCE CODING THEOREM)71

Example (Fixed Length Source Compaction Encoder Revisited):

Let X be a memoryless source of information but this times with the following probabilities $p\left(x_{1}\right)=0.3$ and $p\left(x_{2}\right)=0.7$. The new source entropy $H(X)$ is:

$$
\begin{aligned}
& H(X)=-\sum_{i=1}^{2} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)=-\left[(0.3) \log _{2}(0.3)+(0.7) \log _{2}(0.7)\right] \\
& H(X)=0.88129 \quad \text { (Shannons) }
\end{aligned}
$$

Suppose that the sourcewords are again encoded with the same source compaction encoder of rate $R=\frac{L}{N}=0.75$ (see Figure 2.8) as was used in the previous example (where the source entropy was only 0.4690 bits). Therefore,

$$
R=\frac{L}{N}=0.75<H(X)=0.88129
$$

and this code do not satisfy the condition of the source coding theorem.

Figure 2.8: Rate $R=\frac{L}{N}$ fixed length source compaction encoder.
If we encode the N-bit sourcewords into L bits binary codewords with $N=4$ and $L=3$, and partition the 16 sourcewords into the set of 7 typical sequences $\mathcal{T}_{X}(\delta)$ and the set of 9 non typical sequences $\mathcal{T}_{X}^{c}(\delta)$, then the probabilities of the sourcewords will be:

$$
\begin{array}{rlrl}
p\left(x_{1}\right)^{4} & =2.4010 \times 10^{-1} & & \binom{4}{4}=1 \text { sourceword } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right) & =1.0290 \times 10^{-1} & \binom{4}{3}=4 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{2} & =4.4100 \times 10^{-2} & \binom{4}{2}=6 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{3} & =1.8900 \times 10^{-2} & \binom{4}{1}=4 \text { sourcewords } \\
p\left(x_{2}\right)^{4} & =8.1000 \times 10^{-3} & \binom{4}{0}=1 \text { sourceword }
\end{array}
$$

and the probability $1-P_{e}$ is in that case given by:

$$
\begin{aligned}
& 1-P_{e}=p\left(x_{2}\right)^{4}+\left(4 \times p\left(x_{1}\right) p\left(x_{2}\right)^{3}\right)+\left(2 \times p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{2}\right) \\
& 1-P_{e}=2.4010 \times 10^{-1}+\left(4 \times 1.0290 \times 10^{-1}\right)+\left(2 \times 4.4100 \times 10^{-2}\right) \\
& 1-P_{e}=7.3990 \times 10^{-1}
\end{aligned}
$$

leading to a decoding error probability P_{e} of 2.6010×10^{-1} or 26.01%.
Increasing the sourceword blocklength to $N=8$ and the codeword blocklength to $L=6$, for the same code rate $R=\frac{6}{8}=0.75$, the 8 -bit sourceword probabilities become:

$$
\begin{aligned}
p\left(x_{1}\right)^{8} & =6.5610 \times 10^{-5} & \binom{8}{8}=1 \text { sourceword } \\
p\left(x_{1}\right)^{7} p\left(x_{2}\right) & =1.5309 \times 10^{-4} & \binom{8}{7}=8 \text { sourcewords } \\
p\left(x_{1}\right)^{6} p\left(x_{2}\right)^{2} & =3.5721 \times 10^{-4} & \binom{8}{6}=28 \text { sourcewords } \\
p\left(x_{1}\right)^{5} p\left(x_{2}\right)^{3} & =8.3349 \times 10^{-4} & \binom{8}{5}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{4} p\left(x_{2}\right)^{4} & =1.9448 \times 10^{-3} & \binom{8}{4}=70 \text { sourcewords } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right)^{5} & =4.5379 \times 10^{-3} & \binom{8}{3}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{6} & =1.0588 \times 10^{-2} & \binom{8}{2}=28 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{7} & =2.4706 \times 10^{-2} & \binom{8}{1}=8 \text { sourcewords } \\
p\left(x_{2}\right)^{8} & =5.7648 \times 10^{-2} & \binom{8}{0}=1 \text { sourceword }
\end{aligned}
$$

The 256 8-bit sourcewords are encoded into 63 unique 6 -bit codewords and the 193 sourcewords encoded into a default codeword. The faithful decoding probability $1-P_{e}$ is then:

$$
\begin{aligned}
1-P_{e}= & 5.7648 \times 10^{-2}+\left(8 \times 2.4706 \times 10^{-2}\right)+\left(28 \times 1.0588 \times 10^{-2}\right) \\
& +\left(26 \times 4.5379 \times 10^{-3}\right) \\
1-P_{e}= & 6.6976 \times 10^{-1}
\end{aligned}
$$

and the decoding error probability $P_{e}=3.3024 \times 10^{-1}$. Therefore, by increasing the sourceword length from $N=4$ to $N=8$, the decoding error probability did increase from 26.01% to 33.024% !

2.6 Discrete sources with memory

So far, we have only considered sequences of independent, identically distributed (i.i.d.) random variables. We now consider information sources represented by random variables that are dependent from each other. The probability of a random vector, $p(\mathbf{x})$, is characterized by:

$$
\begin{equation*}
p(\mathbf{x})=p\left(x_{1}, \ldots, x_{n}, \ldots, x_{N}\right) \neq \prod_{n=1}^{N} p\left(x_{n}\right) \tag{2.84}
\end{equation*}
$$

We can represent a sequence of random variables $\left\{X_{n}\right\}_{n=1, \ldots, N}$, as a discrete-time random process. Here, we will assume that the information source can be modeled as a stationary random process.

Definition (Stationary Random Process):
A random process is said to be stationary if the joint distribution of any subset of the sequence of random variables, is invariant with respect to a time shift τ.

$$
f_{\mathbf{X}}\left(x_{1}, \ldots, x_{N} ; t_{1}, \ldots, t_{N}\right)=f_{\mathbf{X}}\left(x_{1}, \ldots, x_{N} ; t_{1}+\tau, \ldots, t_{N}+\tau\right) \quad \text { where } \tau \in \mathcal{R}
$$

For a discrete-time random process, this stationarity property can be written as:

$$
\operatorname{Pr}\left\{X_{1}=x_{1}, \ldots, X_{N}=x_{N}\right\}=\operatorname{Pr}\left\{X_{1+l}=x_{1}, \ldots, X_{N+l}=x_{N}\right\}
$$

where l is a discrete-time shift.

Definition (Markovian Random Process):

A discrete-time random process $\left\{X_{1}, \ldots, X_{n}, \ldots, X_{N}\right\}$ is termed a Markov process if, for $1 \leq$ $n \leq N$:

$$
\operatorname{Pr}\left\{X_{n+1}=x_{n+1} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}=\operatorname{Pr}\left\{X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right\}
$$

The joint probability can be rewritten from the general expression:

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right) \tag{2.85}
\end{align*}
$$

Definition (Time-invariant Markov Chain):
A Markov process, or Markov chain, is said to be time-invariant, if the conditional probabilities $\left\{p\left(x_{n+1} \mid x_{n}\right)\right\}$ do not depend on the time index, that is, if:

$$
\operatorname{Pr}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)=\operatorname{Pr}\left(X_{n+1}=x_{2} \mid X_{n}=x_{1}\right) \quad \text { for } 1 \leq n \leq N
$$

Definition (Entropy Rate):

For a source with memory, the entropy rate $H_{R}(X)$ is defined as the average information content per source symbol:

$$
H_{R}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{n}, \ldots, X_{N}\right)
$$

where the limit exists.

Example (Entropy Rate of a Memoryless Source):
Consider a memoryless source X where the random variables are, by definition, independent but not necessarily identically distributed. The entropy rate $H_{R}(X)$ is:

$$
\begin{equation*}
H_{R}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{n}, \ldots, X_{N}\right) \tag{2.86}
\end{equation*}
$$

Using the chain rule for the entropy:

$$
\begin{align*}
H_{R}(X) & =\lim _{N \rightarrow \infty} \frac{1}{N}\left[H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right)\right] \\
& =\lim _{N \rightarrow \infty} \frac{1}{N}\left[H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{N}\right)\right] \tag{2.87}\\
H_{R}(X) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} H\left(X_{n}\right) \quad \text { (independence of variables) }
\end{align*}
$$

Therefore,

$$
H_{R}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} H\left(X_{n}\right)
$$

Note that the limit may, or may not, exist.
a) if the random variables $\left\{X_{n}\right\}_{n=1, \ldots, N}$ are identically distributed, then the entropy $H\left(X_{n}\right)$ will be the same for all n.

$$
X_{n} \leadsto X \Rightarrow \mathbf{p}(x)=\left\{p\left(x_{k}\right)\right\} \quad \text { (unique distribution) }
$$

The entropy rate $H_{R}(X)$ for the independent, identically distributed random variables case is:

$$
\begin{aligned}
H_{R}(X) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} H\left(X_{n}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} H(X) \\
& =\lim _{N \rightarrow \infty} \frac{N}{N} H(X) \\
H_{R}(X) & =H(X)
\end{aligned}
$$

The entropy rate $H_{R}(X)$ of a memoryless source of i.i.d. random variables is simply the entropy $H(X)$ of the random variable X.
b) if the random variables $\left\{X_{n}\right\}_{n=1, \ldots, N}$ are not identically distributed, the limit may not exist. For instance, consider the following binary distribution $\mathbf{p}(x)=\left\{p\left(x_{1, n}\right), p\left(x_{2, n}\right)\right\}$:

$$
p\left(x_{1, n}\right)= \begin{cases}0.5 & \text { for } \quad 2 k^{\prime}<\log _{b} \log _{b} n \leq 2 k^{\prime}+1 \\ 0.0 & \text { for } \quad 2 k^{\prime}+1<\log _{b} \log _{b} n \leq 2 k^{\prime}+2\end{cases}
$$

where k^{\prime} is a positive integer.
i) for $2<n \leq 4: p\left(x_{1}\right)=0.5, p\left(x_{2}\right)=0.5$ and $H\left(X_{3}\right)=H\left(X_{4}\right)=1 S h$;
ii) for $4<n \leq 16$: $p\left(x_{1}\right)=0.0, p\left(x_{2}\right)=1.0$ and $H\left(X_{5}\right)=\ldots=H\left(X_{16}\right)=0 S h$;
iii) for $16<n \leq 256: p\left(x_{1}\right)=0.5, p\left(x_{2}\right)=0.5$ and $H\left(X_{17}\right)=\ldots=H\left(X_{256}\right)=1 \mathrm{Sh}$;
iv) for $256<n \leq 65,536: p\left(x_{1}\right)=0.0, p\left(x_{2}\right)=1.0$ and $H\left(X_{257}\right)=\ldots=H\left(X_{65,536}\right)=0$ Sh; and so on.

For this specific distribution, we observe that the running average of the entropy $H\left(X_{n}\right)$, as n increases, oscillates from $H\left(X_{n}\right)=0 S h$ to $H\left(X_{n}\right)=1 S h$. Then

$$
H_{R}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} H\left(X_{n}\right)
$$

does not converge (see Figure 2.9). Then the entropy rate $H_{R}(X)$ is not defined on this particular distribution.

$n=$	0	$\log _{2} n=$	$-\infty$	$\log _{2} \log _{2} n=$	\emptyset
$n=$	1	$\log _{2} n=$	0.000000	$\log _{2} \log _{2} n=$	$-\infty$
$n=$	2	$\log _{2} n=$	1.000000	$\log _{2} \log _{2} n=$	0.000000
$n=$	3	$\log _{2} n=$	1.584963	$\log _{2} \log _{2} n=$	0.664449
$n=$	4	$\log _{2} n=$	2.000000	$\log _{2} \log _{2} n=$	1.000000
$n=$	5	$\log _{2} n=$	2.321928	$\log _{2} \log _{2} n=$	1.215323
$n=$	6	$\log _{2} n=$	2.584963	$\log _{2} \log _{2} n=$	1.370143
$n=$	7	$\log _{2} n=$	2.807355	$\log _{2} \log _{2} n=$	1.489211
$n=$	8	$\log _{2} n=$	3.000000	$\log _{2} \log _{2} n=$	1.584963
$n=$	15	$\log _{2} n=$	3.906891	$\log _{2} \log _{2} n=$	1.966021
$n=$	16	$\log _{2} n=$	4.000000	$\log _{2} \log _{2} n=$	2.000000
$n=$	17	$\log _{2} n=$	4.087463	$\log _{2} \log _{2} n=$	2.031206
$n=$	32	$\log _{2} n=$	5.000000	$\log _{2} \log _{2} n=$	2.321928
$n=$	64	$\log _{2} n=$	6.000000	$\log _{2} \log _{2} n=$	2.584963
$n=$	128	$\log _{2} n=$	7.000000	$\log _{2} \log _{2} n=$	2.807355
$n=$	255	$\log _{2} n=$	7.994353	$\log _{2} \log _{2} n=$	2.998981
$n=$	256	$\log _{2} n=$	8.000000	$\log _{2} \log _{2} n=$	3.000000
$n=$	257	$\log _{2} n=$	8.005625	$\log _{2} \log _{2} n=$	3.001014
$n=$	65,535	$\log _{2} n=$	15.999978	$\log _{2} \log _{2} n=$	3.999998
$n=$	65, 536	$\log _{2} n=$	16.000000	$\log _{2} \log _{2} n=$	4.000000
$n=$	65, 537	$\log _{2} n=$	16.000022	$\log _{2} \log _{2} n=$	4.000002

Figure 2.9: Entropy rate $H_{R}(X)$ and entropy $H(X)$ of source X.

2.7 Properties of a stationary source:

Consider a stationary source of information X.

Property I:

$$
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \leq H\left(X_{N-1} \mid X_{1}, \ldots, X_{N-2}\right)
$$

Proof:

$$
H\left(X_{N-1} \mid X_{1}, \ldots, X_{N-2}\right)=H\left(X_{N} \mid X_{2}, \ldots, X_{N-1}\right)
$$

by stationarity (time-shift $l=1$). But

$$
H\left(X_{N} \mid X_{2}, \ldots, X_{N-1}\right) \geq H\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right)
$$

On the right hand side of the inequality, the uncertainty about X_{N} is reduced, or at most equal, by the observation of X_{1}. Therefore, as expected:

$$
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \leq H\left(X_{N-1} \mid X_{1}, \ldots, X_{N-2}\right)
$$

Property II:

$$
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \leq \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)
$$

Proof:

Consider the entropy of the random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{N}\right)$:

$$
\begin{aligned}
& H\left(X_{1}, \ldots, X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \\
& H\left(X_{1}, \ldots, X_{N}\right)=\sum_{n=1}^{N} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
\end{aligned}
$$

but we know, from property I, that:

$$
H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \leq H\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \quad \text { for } 1 \leq n \leq N
$$

or

$$
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \leq H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

for $1 \leq n \leq N$. Summing each side over N :

$$
\begin{aligned}
\sum_{n=1}^{N} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) & \leq \sum_{n=1}^{N} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
N H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) & \leq H\left(X_{1}, \ldots, X_{N}\right) \quad \text { or } \\
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) & \leq \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)
\end{aligned}
$$

QED

Property III:

$$
\frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) \leq\left(\frac{1}{N-1}\right) H\left(X_{1}, \ldots, X_{N-1}\right)
$$

Proof: The entropy $H(\mathbf{X})$ can be expressed as the following sum of entropy and equivocation:

$$
H\left(X_{1}, \ldots, X_{N}\right)=H\left(X_{1}, \ldots, X_{N-1}\right)+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

Using property II, we obtain the inequality:

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{N}\right) & \leq H\left(X_{1}, \ldots, X_{N-1}\right)+\frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) \\
\left(\frac{N-1}{N}\right) H\left(X_{1}, \ldots, X_{N}\right) & \leq H\left(X_{1}, \ldots, X_{N-1}\right) \quad \text { or } \\
H\left(X_{1}, \ldots, X_{N}\right) & \leq\left(\frac{N}{N-1}\right) H\left(X_{1}, \ldots, X_{N-1}\right) \quad \text { or }
\end{aligned}
$$

Dividing both sides of the inequality by N :

$$
\frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) \leq\left(\frac{1}{N-1}\right) H\left(X_{1}, \ldots, X_{N-1}\right)
$$

QED

Property IV:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)=\lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

Proof: We prove this result in two steps:
a) Consider property II:

$$
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \leq \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)
$$

Since both sides of the inequality are positive and decreasing functions of the blocklength N, the limit as N goes to infinity exists. Taking the limit as $N \rightarrow \infty$, the inequality holds:

$$
\begin{aligned}
\lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) & \leq \lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) \\
\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) & \geq \lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
\end{aligned}
$$

b) Consider the $(N+l)$ terms in the entropy per symbol, where l is a positive integer indicating a discrete time-shift.

$$
\begin{aligned}
\left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N+l}\right)= & \left(\frac{1}{N+l}\right)\left[H\left(X_{1}, \ldots, X_{N-1}\right)+H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)\right. \\
& \left.+\ldots+H\left(X_{N+l} \mid X_{1}, \ldots, X_{N+l-1}\right)\right] \\
\left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N+l}\right)= & \left(\frac{1}{N+l}\right)\left[H\left(X_{1}, \ldots, X_{N-1}\right)+\sum_{n=N}^{N+l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)\right]
\end{aligned}
$$

But, since the process is a stationary process, for $N \leq n \leq N+l$, we must have, by property I:

$$
H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \geq H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Summing both sides from $n=N$ to $n=N+l$:

$$
\begin{aligned}
\sum_{n=N}^{N+l} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) & \geq \sum_{n=N}^{N+l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
(l+1) H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) & \geq \sum_{n=N}^{N+l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
\end{aligned}
$$

Then, the previous inequality can be rewritten as:

$$
\begin{aligned}
\left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N+l}\right) \leq & \left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N-1}\right) \\
& +\left(\frac{l+1}{N+l}\right) H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
\end{aligned}
$$

For $l \rightarrow \infty$:

$$
\begin{aligned}
\lim _{l \rightarrow \infty}\left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N+l}\right) \leq & \lim _{l \rightarrow \infty}\left[\left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N-1}\right)\right. \\
& \left.+\left(\frac{l+1}{N+l}\right) H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)\right]
\end{aligned}
$$

As $l \rightarrow \infty,\left(\frac{1}{N+l}\right) \rightarrow 0$ and $\left(\frac{l+1}{N+l}\right) \rightarrow 1$, while both $H\left(X_{1}, \ldots, X_{N-1}\right)$ and $H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)$ terms are finite. Thus,

$$
\lim _{l \rightarrow \infty}\left(\frac{1}{N+l}\right) H\left(X_{1}, \ldots, X_{N+l}\right) \leq H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

The above inequality holds true for any value of N. Now, taking the limit as $N \rightarrow \infty$ on both sides, yields to:

$$
\begin{aligned}
\underbrace{\lim _{N \rightarrow \infty} \lim _{l \rightarrow \infty}\left(\frac{1}{N+l}\right)}_{N+l \rightarrow \infty} H\left(X_{1}, \ldots, X_{N+l}\right) & \leq \lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right) \\
\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) & \leq \lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
\end{aligned}
$$

Then, having also that opposite inequality (from the first part of the proof):

$$
\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right) \geq \lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

This implies that:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)=\lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

which is the entropy rate $H_{R}(X)$ for a stationary source.

QED

Example (Markovian Source):
Consider a stationary binary source of information having memory, which can be represented as a time-invariant Markovian source, as shown on Figure 2.10, where the transition probabilities $0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$.

The transition probability matrix \mathbf{P} between the two states (here each state represents a binary symbol from the source, i.e., x_{1} and x_{2}) of the Markov chain is given by:

$$
\mathbf{P}=\left[\begin{array}{ll}
p\left(x_{1}^{(n+1)} \mid x_{1}^{(n)}\right) & p\left(x_{2}^{(n+1)} \mid x_{1}^{(n)}\right) \\
p\left(x_{1}^{(n+1)} \mid x_{2}^{(n)}\right) & p\left(x_{2}^{(n+1)} \mid x_{2}^{(n)}\right)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\beta & (1-\beta)
\end{array}\right]
$$

Since the distribution is assumed stationary, then the distribution at discrete time $(n+1)$ is equal to the distribution at time n, i.e,

$$
\mathbf{p}^{(n+1)}=\mathbf{p}^{(n)} \mathbf{P}=\mathbf{p}^{(n)}=\mathbf{p}
$$

Figure 2.10: Two-state Markovian source X_{n}.

Then, the stationary distribution \mathbf{p} has the following property:

$$
\begin{aligned}
\mathbf{p} & =\left[p\left(x_{1}\right), p\left(x_{2}\right)\right] \\
& =\left[p\left(x_{1}\right), p\left(x_{2}\right)\right]\left[\begin{array}{ll}
p\left(x_{1} \mid x_{1}\right) & p\left(x_{2} \mid x_{1}\right) \\
p\left(x_{1} \mid x_{2}\right) & p\left(x_{2} \mid x_{2}\right)
\end{array}\right] \\
\mathbf{p} & =\left\{\left[p\left(x_{1}\right) p\left(x_{1} \mid x_{1}\right)+p\left(x_{2}\right) p\left(x_{1} \mid x_{2}\right)\right],\left[p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)+p\left(x_{2}\right) p\left(x_{2} \mid x_{2}\right)\right]\right\}
\end{aligned}
$$

and therefore,

$$
\begin{aligned}
& p\left(x_{1}\right)=p\left(x_{1}\right)(1-\alpha)+p\left(x_{2}\right) \beta \quad \text { and } \\
& p\left(x_{2}\right)=p\left(x_{1}\right) \alpha+p\left(x_{2}\right)(1-\beta)
\end{aligned}
$$

From the first equation, since $p\left(x_{2}\right)=1-p\left(x_{1}\right)$, the probability $p\left(x_{1}\right)$ can be expressed as a function of the transition probabilities:

$$
\begin{aligned}
p\left(x_{1}\right) & =p\left(x_{1}\right)(1-\alpha)+p\left(x_{2}\right) \beta \\
p\left(x_{1}\right) & =p\left(x_{1}\right)(1-\alpha)+\left[1-p\left(x_{1}\right)\right] \beta \\
p\left(x_{1}\right) & =p\left(x_{1}\right)(1-\alpha-\beta)+\beta \\
p\left(x_{1}\right)(\alpha+\beta) & =\beta \\
p\left(x_{1}\right) & =\frac{\beta}{\alpha+\beta}
\end{aligned}
$$

Similarly, $p\left(x_{2}\right)$ is a function of the transition probabilities.

$$
\begin{aligned}
p\left(x_{2}\right) & =p\left(x_{1}\right) \alpha+p\left(x_{2}\right)(1-\beta) \\
p\left(x_{2}\right) & =\left[1-p\left(x_{2}\right)\right] \alpha+p\left(x_{2}\right)(1-\beta) \\
p\left(x_{2}\right) & =p\left(x_{2}\right)(-\alpha+1-\beta)+\alpha \\
p\left(x_{2}\right)(\alpha+\beta) & =\alpha \\
p\left(x_{2}\right) & =\frac{\alpha}{\alpha+\beta}
\end{aligned}
$$

The stationary distribution \mathbf{p} is then given by the following expressions: (which is not a function of the time index n):

$$
p\left(x_{1}\right)=\frac{\beta}{\alpha+\beta} \quad \text { and } \quad p\left(x_{2}\right)=\frac{\alpha}{\alpha+\beta}
$$

The entropy $H\left(X_{n}\right)$ of this Markovian source X_{n} (at discrete time n) is:

$$
\begin{aligned}
H\left(X_{n}\right) & =-\sum_{k=1}^{2} p\left(x_{k}\right) \log _{b} p\left(x_{k}\right) \\
H\left(X_{n}\right) & =-\left[\left(\frac{\beta}{\alpha+\beta}\right) \log _{b}\left(\frac{\beta}{\alpha+\beta}\right)+\left(\frac{\alpha}{\alpha+\beta}\right) \log _{b}\left(\frac{\alpha}{\alpha+\beta}\right)\right]
\end{aligned}
$$

or equivalently:

$$
H\left(X_{n}\right)=H\left[\left(\frac{\beta}{\alpha+\beta}\right),\left(\frac{\alpha}{\alpha+\beta}\right)\right]=H(X)
$$

Note that the entropy $H\left(X_{n}\right)=H(X)$ is not a function of the time index n.
How does the joint entropy $H\left(X_{1}, \ldots, X_{n}, \ldots\right)$ grow as a function of time n ? The answer is provided by the entropy rate function $H_{R}(X)$:

$$
H_{R}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}, \ldots, X_{N}\right)
$$

Since this process is assumed stationary, we can write that:

$$
H_{R}(X)=\lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

Furthermore, since this particular process is also a stationary Markovian process:

$$
H_{R}(X)=\lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{N-1}\right)
$$

Finally, the stationary process is time-invariant:

$$
\begin{aligned}
H_{R}(X) & =\lim _{N \rightarrow \infty} H\left(X_{N} \mid X_{N-1}\right) \\
& =\lim _{N \rightarrow \infty} H\left(X_{2} \mid X_{1}\right) \\
H_{R}(X) & =H\left(X_{2} \mid X_{1}\right)
\end{aligned}
$$

For this specific case, the entropy rate $H_{R}(X)$ is equal to the equivocation of X_{2} given X_{1} :

$$
\begin{aligned}
H_{R}(X)= & H\left(X_{2} \mid X_{1}\right) \\
H_{R}(X)= & -\sum_{k=1}^{2} \sum_{j=1}^{2} p\left(x_{k}^{(1)}\right) p\left(x_{j}^{(2)} \mid x_{k}^{(1)}\right) \log _{b} p\left(x_{j}^{(2)} \mid x_{k}^{(1)}\right) \\
H_{R}(X)= & -\sum_{k=1}^{2} p\left(x_{k}^{(1)}\right) \sum_{j=1}^{2} p\left(x_{j}^{(2)} \mid x_{k}^{(1)}\right) \log _{b} p\left(x_{j}^{(2)} \mid x_{k}^{(1)}\right) \\
H_{R}(X)= & -\left\{\left(\frac{\beta}{\alpha+\beta}\right)\left[(1-\alpha) \log _{b}(1-\alpha)+\alpha \log _{b} \alpha\right]\right. \\
& \left.+\left(\frac{\alpha}{\alpha+\beta}\right)\left[\beta \log _{b} \beta+(1-\beta) \log _{b}(1-\beta)\right]\right\}
\end{aligned}
$$

The entropy rate $H_{R}(X)$ for the stationary Markovian source is:

$$
H_{R}(X)=\underbrace{\left(\frac{\beta}{\alpha+\beta}\right)}_{p\left(x_{1}\right)} H(\alpha)+\underbrace{\left(\frac{\alpha}{\alpha+\beta}\right)}_{p\left(x_{2}\right)} H(\beta)
$$

2.8 Universal Source Coding

For a source of information X of known distribution $\mathbf{p}=\left\{p\left(x_{k}\right)\right\}_{k=1, \ldots, K}$, it is possible to design source compaction code \mathcal{C} for which the average codeword length $L(\mathcal{C})$ is close to the source entropy $H(X)$. Huffman codes, for instance, are variable-length prefix codes which make use of the source statistics to assign short codewords to those source symbols which occurs often whereas unlikely symbols are encoded with longer codewords.

Unfortunately, how can one transmit the symbols generated by a source of information of unknown statistics, i.e., for which we don't know a priori the relative frequency of each symbol? A solution for this problem consists in a coding scheme, called universal source coding, which compacts the information from X without the knowledge of the source statistics.

2.8.1 Lempel-Ziv Code

We describe here a simple source compaction coding scheme, the Lempel-Ziv algorithm, which is a universal coding algorithm. The Lempel-Ziv algorithm is used often to compact data files for which the input distribution \mathbf{p} is unknown.

Example (Lempel-Ziv coding):

Let X be a source of information for which we do not know the distribution p. Suppose that we want to source encode the following sequence S generated by the source X :

$$
S=001000101110000011011010111101 \ldots
$$

Since the sequence is binary, often the two subsequences $S_{1}=0$ and $S_{2}=1$ are already stored. We perform the Lempel-Ziv encoding process by searching the original sequence S for those new subsequences which are the shortest and identify them as such:

$$
\begin{aligned}
& S=\underbrace{00}_{S_{3}=00} 1000101110000011011010111101 \ldots \\
& S=0 \underbrace{10}_{S_{4}=10} 00101110000011011010111101 \ldots \\
& S=0010 \underbrace{001}_{S_{5}=001} 01110000011011010111101 \ldots \\
& S=001000 \underbrace{01}_{S_{6}=01} 110000011011010111101 \ldots \\
& S=001000101 \underbrace{11}_{S_{7}=11} 0000011011010111101 \ldots \\
& S=00100010111 \underbrace{000}_{S_{8}=000} 0011011010111101 \ldots \\
& S=00100010111000 \underbrace{0011}_{S_{9}=0011} 011010111101 \ldots \\
& S=001000101110000011 \underbrace{011}_{S_{10}=011} 010111101 \ldots \\
& S=001000101110000011011 \underbrace{010}_{S_{11}=010} 111101 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& S=001000101110000011011010 \underbrace{111}_{S_{12}=111} 101 \ldots \\
& S=001000101110000011011010111 \underbrace{101}_{S_{13}=101} \cdots
\end{aligned}
$$

We then proceed to complete the Lempel-Ziv encoding process by arranging the subsequences in order of occurrence, or position, in the sequence S as shown on Table 2.4.

Table 2.4: Example of a Lempel-Ziv code.

position	subsequence S_{n}	numerical representation	binary codeword	
1	S_{1}	0		
2	S_{2}	1		
3	S_{3}	00	11	0010
4	S_{4}	10	21	010
5	S_{5}	001	32	0111
6	S_{6}	01	12	0011
7	S_{7}	11	2	0101
8	S_{8}	000	31	0110
9	S_{9}	0011	52	1011
10	S_{10}	011	62	1101
11	S_{11}	010	61	110
12	S_{12}	111	72	1111
13	S_{13}	101	42	1001

The numerical representation is obtained by concatenating the previous subsequences to make longer ones. For instance, the subsequence $S_{3}=00$ is the concatenation of subsequence $S_{1}=0$ with itself, whereas the subsequence $S_{9}=0011$ is obtained from $S_{5}=001$ and $S_{2}=1$. The first part of the subsequence is called root sequence or pointer while the last part is termed innovation symbol.

The numerical representation of the subsequence is then binary encoded as shown on the last column of Table 2.4. Note that there are only two different innovation symbols, namely 1 and 2 , which are binary encoded as 0 and 1 . For the binary representation of the pointer, the standard binary representation is used, e.g., the pointer 6 is encoded as 110 .

Note that the Lempel-Ziv code is a fixed-length code, unlike the Huffman code which is a variable length code. In practice, the blocklength of a Lempel-Ziv code 12 bits long which corresponds to $2^{12}=4096$ different entries .

The decoding process should allow for the unique decoding of the coded sequence into the original source sequence S. Here the Lempel-Ziv encoded stream will be:

$$
S_{C}=00100100011100110101011010111101110011111001
$$

The source decoder uses the pointer to determine the root subsequence and appends the innovation symbol. For instance, the last codeword $c^{(11)}=1001$ as the pointer $100=4$ which represents $S_{4}=10$, and appens to it the innovation symbol $S_{2}=1$, leading to the source subsequence $S_{13}=101$.

Note: The actual compaction ratio obtained for standard English text files is about 55%.

2.9 Problems

Problem 2.1: A source produces a sequence $\bar{X}=\left\{X_{1}, \ldots, X_{N}\right\}$ of statistically independent binary digits with the probabilities $p\left(x_{1}\right)=0.995$ and $p\left(x_{2}\right)=0.005$. These digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer 1's.
a) If the codewords are all of the same length, find the minimum length required to provide the specified set of codewords.
b) Find the probability of getting a source sequence for which no codeword has been provided.
c) Use the Weak Law of Large Numbers to bound the probability of getting a sequence for which no codeword has been provided and compare with part (b).

Problem 2.2: An information source X produces statistically independent binary digits with the following probabilities: $p\left(x_{1}\right)=3 / 4$ and $p\left(x_{2}\right)=1 / 4$. Consider sequences of N binary digits, where the probability of unlikely sequences $\mathcal{T}_{X}^{c}(\delta)$ is bounded as:

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|-\frac{1}{N} \sum_{n=1}^{N} \log _{2} p\left(x_{n}\right)-H(X)\right| \geq \delta\right\} \leq \epsilon \tag{2.88}
\end{equation*}
$$

a) Using the Weak Law of Large Numbers, determine the minimum sequence length N_{0} such that for $N \geq N_{0}$ the inequality holds when $\delta=5 \times 10^{-2}$ and $\epsilon=10^{-1}$.
b) Repeat for $\delta=10^{-3}$ and $\epsilon=10^{-6}$.
c) For these two cases, find the lower and upper bounds for the number of typical sequences $\left\|\mathcal{T}_{X}(\delta)\right\|$.

Problem 2.3: For each of the following discrete memoryless sources, construct a binary and a ternary Huffman code and find the corresponding average codeword length L in each case.
a) A source X with a six-letter alphabet having these probabilities: $p\left(x_{1}\right)=.33, p\left(x_{2}\right)=.23$, $p\left(x_{3}\right)=.12, p\left(x_{4}\right)=.12, p\left(x_{5}\right)=.10$ and $p\left(x_{6}\right)=.10$.
b) A source X with a seven-letter alphabet having these probabilities: $p\left(x_{1}\right)=.35, p\left(x_{2}\right)=.20$, $p\left(x_{3}\right)=.15, p\left(x_{4}\right)=.15, p\left(x_{5}\right)=.10, p\left(x_{6}\right)=.03$ and $p\left(x_{7}\right)=.02$.
c) For the code in (b), construct two different binary Huffman codes with the same (minimum) average codeword length L but different variances. Which code is preferable in practice and why?

Problem 2.4: A source of information X generates binary sourcewords of length $n=4$ with a binomial distribution:

$$
p\left(x_{k}\right)=\binom{n}{k} p^{k} q^{n-k}, \quad \text { for } 0 \leq k \leq n .
$$

where $p\left(x_{k}\right)$ represents the probability of having a sourceword with k ones (1 's) and $n-k$ zeroes (0 's).
a) Determine the source entropy (per 4-tuples) $H(X)$ in $S h$ if $p=0.1$ and $q=0.9$.
b) Contruct a binary Huffman code \mathcal{C} for that source. What is the code efficiency ξ ?
c) Now suppose that the probabilities are changed to: $p=0.35$ and $q=0.65$. What is the entropy $H(X)$? What is the efficiency of the Huffman code?

Problem 2.5: (Computer-oriented problem)
An information source X with a five-letter alphabet $\left\{x_{1}, \ldots, x_{5}\right\}$ has the probabilities: $p\left(x_{1}\right)=.04$, $p\left(x_{2}\right)=.09, p\left(x_{3}\right)=.12, p\left(x_{4}\right)=.29$ and $p\left(x_{5}\right)=.46$.
a) Construct a binary Huffman code for this source and compare the average codeword length L with the source entropy $H(X)$.
b) Consider now a new source X^{\prime} consisting of pairs (or digrams) of the five original letters:

$$
X^{\prime} \equiv\left\{\left(x_{1}, x_{1}\right),\left(x_{1}, x_{2}\right), \cdots,\left(x_{5}, x_{5}\right)\right\}
$$

Construct a binary Huffman code for this new source X^{\prime} and compare its efficiency with the single symbol Huffman code of a). Assume independent random variables, i.e. $p\left(x_{i}, x_{j}\right)=p\left(x_{i}\right) p\left(x_{j}\right)$, $\forall i, j$.
c) Repeat b) for trigrams, i.e.:

$$
X^{\prime \prime} \equiv\left\{\left(x_{1}, x_{1}, x_{1}\right),\left(x_{1}, x_{1}, x_{2}\right), \cdots,\left(x_{5}, x_{5}, x_{5}\right)\right\}
$$

Once again, assume independence: $p\left(x_{i}, x_{j}, x_{k}\right)=p\left(x_{i}\right) p\left(x_{j}\right) p\left(x_{k}\right), \forall i, j$ and k.
Problem 2.6: A binary Markov source generates two symbols, x_{1} and x_{2}. The transition probabilities between the Markov chain states are:

$$
\begin{aligned}
p\left(x_{1}^{(2)} \mid x_{1}^{(1)}\right) & =p\left(x_{2}^{(2)} \mid x_{2}^{(1)}\right)=\rho \quad \text { and } \\
p\left(x_{2}^{(2)} \mid x_{1}^{(1)}\right) & =p\left(x_{1}^{(2)} \mid x_{2}^{(1)}\right)=1-\rho
\end{aligned}
$$

a) Compute the source entropy $H(X)$ (per source symbol).
b) Let $\rho=0.25$. Construct a binary Huffman code \mathcal{C} which encodes sourcewords of blocklength $N=3$ (i.e., blocks of 3 source symbols).
c) What is the average codeword length $L(\mathcal{C})$ (per source symbol) of this Huffman code?
d) Compute the code efficiency $\eta_{\mathcal{C}}$.

Chapter 3

Channel Coding for Noisy Channels

3.1 Convex sets and convex functions

3.1.1 Convex sets

Definition (Convex set):
A set of points \mathcal{S} is convex if, for any pair of points $p_{1} \in \mathcal{S}$ and $p_{2} \in \mathcal{S}$, any point p on the straight line connecting p_{1} and p_{2} will be also in the set \mathcal{S}.

In other words, if the point $p_{1} \in \mathcal{S}$ and the point $p_{2} \in \mathcal{S}$ then for any point $p=\lambda p_{1}+(1-\lambda) p_{2}$, where $\lambda \in[0,1]$, will be contained in the same set \mathcal{S}.

Let $\mathbf{p}_{1}=\left(x_{1}, \ldots, x_{N}\right)$ and $\mathbf{p}_{2}=\left(y_{1}, \ldots, y_{N}\right)$ be two points in an N-dimensional space. Any point \mathbf{p} on the line connecting p_{1} and p_{2} in that N-dimensional space can be expressed as:

$$
\begin{equation*}
\mathbf{p}=\lambda \mathbf{p}_{1}+(1-\lambda) \mathbf{p}_{2} \quad \text { where } \lambda \in[0,1] \tag{3.1}
\end{equation*}
$$

That is, for $\lambda=1, \mathbf{p}=\mathbf{p}_{1}$, whereas for $\lambda=0, \mathbf{p}=\mathbf{p}_{1}$, and for $0<\lambda<1$, the point \mathbf{p} is located on the line connecting p_{1} and p_{2} on the N-dimensional space. Figure 3.1 illustrates a convex set and a non-convex.

Figure 3.1: Convex and non-convex sets.

Example (Convex set):
Let $\mathbf{p}_{1}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{p}_{2}=\left(y_{1}, y_{2}, y_{3}\right)$ be two 3 -dimensional probability distributions, i.e., two points in a 3-dimensional space. Let the set $\mathcal{S}_{\mathbf{p}}=\{\mathbf{p}\}$ be the set of all possible 3-dimensional probability distributions. Therefore, for any valid 3 -dimensional probability distribution \mathbf{p}, we must have the two following conditions:

$$
p\left(x_{k}\right) \geq 0 \quad \text { for } k=1,2,3
$$

as well as

$$
\sum_{k=1}^{3} p\left(x_{k}\right)=1
$$

We can view the distribution \mathbf{p} as a 3 -dimensional vector, as depicted on figure 3.2.

Figure 3.2: Example of a 3-dimensional probability distribution.
If we connect $\mathbf{p}_{1}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{p}_{2}=\left(y_{1}, y_{2}, y_{3}\right)$ with a straight line \mathbf{p} (i.e. the set of distributions between \mathbf{p}_{1} and $\left.\mathbf{p}_{2}\right)$, then:

$$
\begin{aligned}
\mathbf{p} & =\lambda \mathbf{p}_{1}+(1-\lambda) \mathbf{p}_{2} \\
p\left(x_{k}\right) & =\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right) \quad \text { for } k=1,2,3
\end{aligned}
$$

For each input symbol x_{k}, since $p_{1}\left(x_{k}\right), p_{2}\left(x_{k}\right), \lambda$, and $(1-\lambda)$ are all positive, we must have that

$$
p\left(x_{k}\right)=\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right) \geq 0 \quad \forall k
$$

We note also that

$$
\begin{aligned}
& \sum_{k=1}^{3} p\left(x_{k}\right)=\sum_{k=1}^{3}\left[\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right)\right] \\
& \sum_{k=1}^{3} p\left(x_{k}\right)=\lambda \sum_{k=1}^{3} p_{1}\left(x_{k}\right)+(1-\lambda) \sum_{k=1}^{3} p_{2}\left(x_{k}\right) \\
& \sum_{k=1}^{3} p\left(x_{k}\right)=\lambda+(1-\lambda)=1
\end{aligned}
$$

Therefore, any point $\mathbf{p}=\lambda \mathbf{p}_{1}+(1-\lambda) \mathbf{p}_{2}$ between two distributions \mathbf{p}_{1} and \mathbf{p}_{2} is also a valid distribution, and this for any choice of pairs of distributions. Thus, the set \mathcal{S}_{p} of all possible N-dimensional distributions (in this example $N=3$) forms a convex set.

3.1.2 Convex functions

Definition (Convex function):
A real function $f(x)$, defined on a convex set \mathcal{S} (e.g., input symbol distributions), is concave (convex down, convex "cap" or convex \cap) if, for any point x on the straight line between the pair of points x_{1} and x_{2}, i.e., $x=\lambda x_{1}+(1-\lambda) x_{2}(\lambda \in[0,1])$, in the convex set \mathcal{S} :

$$
f(x) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

otherwise, if:

$$
f(x) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

then the function is said to be simply convex (convex up, convex "cup" or convex \cup).

Figure 3.3: Convex \cap (convex down or convex "cap") function.

Figure 3.4: Convex \cup (convex up or convex "cup") function.

3.1.3 Convexity (\cap) of mutual information over input distributions

Theorem (Convexity of the mutual information function):
The (average) mutual information $I(X ; Y)$ is a concave (or convex "cap", or convex \cap) function over the convex set $\mathcal{S}_{\mathbf{p}}$ of all possible input distributions $\{\mathbf{p}\}$.

Figure 3.5: Convexity (\cap) of mutual information function over the set of input symbol distributions \mathcal{S}_{p}.

Proof:

The (average) mutual information function $I(X ; Y)$ is a function of both the input symbol distribution $\mathbf{p}=\left\{p\left(x_{k}\right)\right\}_{k=1, \ldots, K}$ and the channel transition probabilities' matrix $\mathbf{P}=\left\{p\left(y_{j} \mid x_{k}\right)\right\}_{\substack{k=1, \ldots, K \\ j=1, \ldots, J}}^{\substack{1 \\ \hline}}$

$$
\begin{align*}
I(X ; Y) & =\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b}\left[\frac{p\left(y_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{l}\right) p\left(y_{j} \mid x_{l}\right)}\right] \tag{3.2}\\
& =f\left[p\left(x_{k}\right), p\left(y_{j} \mid x_{k}\right)\right] \\
I(X ; Y) & =f(\mathbf{p}, \mathbf{P})
\end{align*}
$$

For channel coding, we want to evaluate the maximum transfer of information on a given channel (i.e., for a given transition probability matrix \mathbf{P}) over all possible input distributions $\mathcal{S}_{\mathbf{p}}=\{\mathbf{p}\}$. Consider two different input distributions:

$$
\mathbf{p}_{1}=\left\{p_{1}\left(x_{k}\right)\right\}_{k=1, \ldots, K} \quad \text { and } \quad \mathbf{p}_{2}=\left\{p_{2}\left(x_{k}\right)\right\}_{k=1, \ldots, K}
$$

The distribution \mathbf{p}, between distributions \mathbf{p}_{1} and \mathbf{p}_{2} in the convex set $\mathcal{S}_{\mathbf{p}}$, can be expressed as:

$$
\begin{align*}
\mathbf{p} & =\lambda \mathbf{p}_{1}+(1-\lambda) \mathbf{p}_{2} \quad \text { or } \tag{3.3}\\
p\left(x_{k}\right) & =\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right) \quad \text { for } k=1, \ldots, K
\end{align*}
$$

The corresponding output symbol distribution $\left\{p\left(y_{j}\right)\right\}$ is given by:

$$
\begin{align*}
p\left(y_{j}\right) & =\sum_{k=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \quad \text { for } j=1, \ldots, J \tag{3.4}\\
& =\sum_{k=1}^{K}\left[\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right)\right] p\left(y_{j} \mid x_{k}\right) \\
& =\lambda \sum_{k=1}^{K} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)+(1-\lambda) \sum_{k=1}^{K} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \\
p\left(y_{j}\right) & =\lambda p_{1}\left(y_{j}\right)+(1-\lambda) p_{2}\left(y_{j}\right)
\end{align*}
$$

which is also a convex set. We want to show that the mutual information is a concave (i.e., convex \cap) function of the input distribution \mathbf{p}, that is:

$$
\begin{align*}
f(x) & \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \quad \text { for } x=\lambda x_{1}+(1-\lambda) x_{2} \tag{3.5}\\
I(X ; Y) & \geq \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right) \quad \text { over the convex set } \mathcal{S}_{\mathbf{p}}
\end{align*}
$$

Consider the difference between the right-hand side and left-hand side terms in the above Equation (3.5). If the statement is true about the convexity of $I(X ; Y)$ then the difference is negative (or at most equal to zero).

$$
\begin{align*}
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y)=\lambda \sum_{k=1}^{K} \sum_{j=1}^{J} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p_{1}\left(y_{j}\right)}+ \tag{3.6}\\
& \quad(1-\lambda) \sum_{k=1}^{K} \sum_{j=1}^{J} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p_{2}\left(y_{j}\right)}-\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p\left(y_{j}\right)} \\
& =\lambda \sum_{k=1}^{K} \sum_{j=1}^{J} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p_{1}\left(y_{j}\right)}+(1-\lambda) \sum_{k=1}^{K} \sum_{j=1}^{J} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p_{2}\left(y_{j}\right)}-
\end{align*}
$$

$$
\begin{align*}
& \sum_{k=1}^{K} \sum_{j=1}^{J}\left[\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right)\right] p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p\left(y_{j}\right)} \tag{3.7}\\
= & \lambda \sum_{k=1}^{K} \sum_{j=1}^{J} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)\left[\log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p_{1}\left(y_{j}\right)}-\log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p\left(y_{j}\right)}\right]+ \tag{3.8}\\
& (1-\lambda) \sum_{k=1}^{K} \sum_{j=1}^{J} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)\left[\log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p_{2}\left(y_{j}\right)}-\log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p\left(y_{j}\right)}\right] \\
\lambda & I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y)= \tag{3.9}\\
& \lambda \sum_{k=1}^{K} \sum_{j=1}^{J} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}+(1-\lambda) \sum_{k=1}^{K} \sum_{j=1}^{J} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} \frac{p\left(y_{j}\right)}{p_{2}\left(y_{j}\right)}
\end{align*}
$$

but since the ratios $\frac{p\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}$ and $\frac{p\left(y_{j}\right)}{p_{2}\left(y_{j}\right)}$ are strictly positive, and that $\log _{b}(x)=\log _{b}(e) \ln (x)$, then Equation (3.9) can be rewritten as:

$$
\begin{align*}
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y)= \tag{3.10}\\
& \quad\left(\log _{b} e\right)\left[\lambda \sum_{k=1}^{K} \sum_{j=1}^{J} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \ln \frac{p\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}+(1-\lambda) \sum_{k=1}^{K} \sum_{j=1}^{J} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \ln \frac{p\left(y_{j}\right)}{p_{2}\left(y_{j}\right)}\right]
\end{align*}
$$

Changing the summation order;

$$
\begin{align*}
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y)= \tag{3.11}\\
& \left(\log _{b} e\right)\left[\lambda \sum_{j=1}^{J} \sum_{k=1}^{K} p_{1}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \ln \frac{p\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}+(1-\lambda) \sum_{j=1}^{J} \sum_{k=1}^{K} p_{2}\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \ln \frac{p\left(y_{j}\right)}{p_{2}\left(y_{j}\right)}\right] \\
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y)= \tag{3.12}\\
& \quad\left(\log _{b} e\right)\left[\lambda \sum_{j=1}^{J} p_{1}\left(y_{j}\right) \ln \frac{p\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}+(1-\lambda) \sum_{j=1}^{J} p_{2}\left(y_{j}\right) \ln \frac{p\left(y_{j}\right)}{p_{2}\left(y_{j}\right)}\right]
\end{align*}
$$

Therefore, since $\ln (x) \leq(x-1)$ for $x>0$ then:

$$
\begin{align*}
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y) \leq \tag{3.13}\\
& \quad\left(\log _{b} e\right)\left\{\lambda \sum_{j=1}^{J} p_{1}\left(y_{j}\right)\left[\frac{p\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}-1\right]+(1-\lambda) \sum_{j=1}^{J} p_{2}\left(y_{j}\right)\left[\frac{p\left(y_{j}\right)}{p_{2}\left(y_{j}\right)}-1\right]\right\}
\end{align*}
$$

$$
\begin{align*}
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y) \leq \tag{3.14}\\
& \left(\log _{b} e\right)\left\{\lambda\left[\sum_{j=1}^{J} p\left(y_{j}\right)-\sum_{j=1}^{J} p_{1}\left(y_{j}\right)\right]+(1-\lambda)\left[\sum_{j=1}^{J} p\left(y_{j}\right)-\sum_{j=1}^{J} p_{2}\left(y_{j}\right)\right]\right\} \\
& \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y) \leq\left(\log _{b} e\right)\{\lambda[1-1]+(1-\lambda)[1-1]\} \tag{3.15}
\end{align*}
$$

This implies that $\lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)-I(X ; Y) \leq 0$, that is:

$$
I(X ; Y) \geq \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right)
$$

for $p\left(x_{k}\right)=\lambda p_{1}\left(x_{k}\right)+(1-\lambda) p_{2}\left(x_{k}\right)$, for $k=1, \ldots K$. The mutual information $I(X ; Y)$ does have a maximum over the set $\mathcal{S}_{\mathbf{p}}$ of all possible input distributions $\{\mathbf{p}\}$.

3.1.4 Convexity (\cup) of mutual information over channel transition probability matrices

Theorem (Convexity of the mutual information function):
The (average) mutual information $I(X ; Y)$ is a convex (or convex "cup", or convex \cup) function over the convex set $\mathcal{S}_{\mathbf{P}}$ of all possible transition probability matrices $\{\mathbf{P}\}$.

Figure 3.6: Convexity (\cup) of mutual information function over the set of transition probability matrices $\mathcal{S}_{\mathbf{P}}$.

The proof is similar to the proof of the convexity (\cap) of the mutual information over the input distributions.

3.2 Capacity of memoryless channel

3.2.1 Capacity of symmetric channels

A discrete memoryless channel is said to be symmetric if the set of output symbols $\left\{y_{j}\right\}_{j=1, \ldots, J}$ can be partitionned into subsets such that for each subset of the matrix of transition probabilities, each column is a permutation of each other and each row is also a permutation of each other row.

For instance, the binary symmetric channel has a transition probability matrix $\mathbf{P}_{\mathbf{1}}$:

$$
\mathbf{P}_{\mathbf{1}}=\left(\begin{array}{cc}
1-\epsilon & \epsilon \\
\epsilon & 1-\epsilon
\end{array}\right)
$$

where each column and row are permutations of others.
However, if the crossover probabilities of another binary transition probability matrix $\mathbf{P}_{\mathbf{2}}$ are of different values:

$$
\mathbf{P}_{\mathbf{2}}=\left(\begin{array}{cc}
1-\epsilon_{1} & \epsilon_{1} \\
\epsilon_{2} & 1-\epsilon_{2}
\end{array}\right)
$$

then the binary channel is no longer symmetrical.
Consider now a binary input and ternary output channel characterized by transition probability matrix \mathbf{P}_{3} :

$$
\mathbf{P}_{\mathbf{3}}=\left(\begin{array}{cc}
1-\epsilon_{1}-\epsilon_{2} & \epsilon_{2} \\
\epsilon_{1} & \epsilon_{1} \\
\epsilon_{2} & 1-\epsilon_{1}-\epsilon_{2}
\end{array}\right)
$$

In this 2×3 matrix, the second column is a permutation of the first one but the row permutation condition is not respected. However, if we partition the set of outputs $\left\{y_{1}, y_{2}, y_{3}\right\}$ into the two subsets $\left\{y_{1}, y_{3}\right\}$ and $\left\{y_{2}\right\}$ we obtain the following submatrices:

$$
\mathbf{P}_{\mathbf{3}}^{\prime}=\left(\begin{array}{cc}
1-\epsilon_{1}-\epsilon_{2} & \epsilon_{2} \\
\epsilon_{2} & 1-\epsilon_{1}-\epsilon_{2}
\end{array}\right) \quad \text { and } \quad \mathbf{P}_{\mathbf{3}}^{\prime \prime}=\left(\begin{array}{ll}
\epsilon_{1} & \epsilon_{1}
\end{array}\right)
$$

For each submatrix, each row and each column is a permutation of another. This results in a channel which is said to be a weakly symmetric channel.

If we modify matrix $\mathbf{P}_{\mathbf{3}}$ into $\mathbf{P}_{\mathbf{4}}$ by exchanging the crossover probabilites as:

$$
\mathbf{P}_{4}=\left(\begin{array}{cc}
1-\epsilon_{1}-\epsilon_{2} & \epsilon_{1} \\
\epsilon_{1} & \epsilon_{2} \\
\epsilon_{2} & 1-\epsilon_{1}-\epsilon_{2}
\end{array}\right)
$$

then the channel is no longer symmetric since it is impossible to partition the set of outputs such has to obey the row and column permutation condition.

Theorem (Capacity of a symmetric channel):
For a discrete symmetric channel, the channel capacity C is achieved with an equiprobable input distribution, i.e., $p\left(x_{k}\right)=\frac{1}{K}, \forall k$, and is given by:

$$
C=\left[\sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)\right]+\log _{b} J
$$

In other words, the capacity of the channel is given by the maximum of the mutual information over all possible input distributions for a fixed set of channel transition probabilities. For symmetric channels this maximum is obtained with an equiprobable input distribution.

Proof:

$$
\begin{align*}
C & =\max _{\mathcal{S}_{\mathbf{p}}} I(X ; Y) \tag{3.16}\\
C & =\max _{\mathcal{S}_{\mathbf{p}}}\left[\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}, y_{j}\right) \log _{b} \frac{p\left(y_{j} \mid x_{k}\right)}{p\left(y_{j}\right)}\right] \tag{3.17}\\
C & =\max _{\mathcal{S}_{\mathbf{p}}}\left[\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)-\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j}\right)\right] \tag{3.18}\\
C & =\max _{\mathcal{S}_{\mathbf{p}}}\left[\sum_{k=1}^{K} p\left(x_{k}\right) \sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)-\sum_{j=1}^{J} \log _{b} p\left(y_{j}\right) \sum_{k=1}^{K} p\left(x_{k}, y_{j}\right)\right] \tag{3.19}\\
C & =\max _{\mathcal{S}_{\mathbf{p}}}\left[\sum_{k=1}^{K} p\left(x_{k}\right) \sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)-\sum_{j=1}^{J} p\left(y_{j}\right) \log _{b} p\left(y_{j}\right)\right] \tag{3.20}
\end{align*}
$$

Since the channel is symmetric and thus each row and column is a permutation of the other in the transition probability matrix, the sum $\sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)$ in the first term is independent of the input k and thus does not affect the maximization of the mutual information.

The second term, $-\sum_{j=1}^{J} p\left(y_{j}\right) \log _{b} p\left(y_{j}\right)$ is simply the entropy $H(Y)$ of the output Y :

$$
\begin{equation*}
\max _{\mathcal{S}_{\mathbf{p}}}\left[-\sum_{j=1}^{J} p\left(y_{j}\right) \log _{b} p\left(y_{j}\right)\right]=\max _{\mathcal{S}_{\mathbf{p}}} H(Y) \tag{3.21}
\end{equation*}
$$

and $H(Y)$ is maximized when the outputs are equiprobable: $p\left(y_{j}\right)=\frac{1}{J}$ for $j=1, \ldots, J$.

$$
\begin{equation*}
H(Y)=-\sum_{j=1}^{J} \frac{1}{J} \log _{b} \frac{1}{J}=\log _{b} J \tag{3.22}
\end{equation*}
$$

which is obtained when the inputs are also equiprobable: $p\left(x_{k}\right)=\frac{1}{K}$ (since the channel is symmetric):

$$
\begin{equation*}
p\left(y_{j}\right)=\sum_{k=1}^{K} p\left(x_{k}, y_{j}\right)=\sum_{k=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)=\frac{1}{J} \tag{3.23}
\end{equation*}
$$

and then the capacity is:

$$
\begin{equation*}
C=\left[\sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)\right]+\log _{b} J \tag{3.24}
\end{equation*}
$$

QED

3.2.2 Blahut-Arimoto algorithm (capacity of asymmetric channels)

Step 1: Choose an arbitrary input distribution:

$$
\mathbf{p}^{(0)}=\left\{p^{(0)}\left(x_{k}\right)\right\}_{k=1, \ldots, K}
$$

A good choice for the initial distribution $\mathbf{p}^{(0)}$ is the equiprobable distribution.
Step 2: Compute the following terms:
a) coefficients c_{k} :

$$
c_{k}=\exp \left[\sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \ln \left(\frac{p\left(y_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{l}\right) p\left(y_{j} \mid x_{l}\right)}\right)\right] \quad \text { for } k=1, \ldots, K
$$

b) lower bound on $I(X ; Y)$:

$$
I_{L}=\ln \sum_{k=1}^{K} p\left(x_{k}\right) c_{k}
$$

c) upper bound on $I(X ; Y)$:

$$
I_{U}=\ln \left(\max _{k=1, \ldots, K} c_{k}\right)
$$

Step 3: Test if the difference between I_{U} and I_{L} is smaller than a fixed tolerance ϵ :

$$
I_{U}-I_{L} \stackrel{?}{\leq} \epsilon
$$

yes: If the answer is yes then

$$
C=I_{L}
$$

and stop the program.
no: Otherwise, if the answer is no, then change the input distribution:

$$
p^{(n+1)}\left(x_{k}\right)=\frac{p^{(n)}\left(x_{k}\right) c_{k}}{\sum_{l=1}^{K} p\left(x_{l}\right)^{(n)} c_{l}}
$$

and go back to step 2.

Figure 3.7: Blahut-Arimoto algorithm for computing the capacity of asymmetric channels (from "Principles and Practice of Information Theory" by Richard E. Blahut).

Example (Capacity of a Non Symmetric Channel (Blahut-Arimoto Algorithm)):
For this example, we want to compute the capacity C of a channel which has four inputs and four inputs. In order to verify that the program functions properly, we begin with a symmetric channel with the following transition probability matrix:

$$
\mathbf{P}_{1}=\left(\begin{array}{llll}
0.4000 & 0.3000 & 0.2000 & 0.1000 \\
0.1000 & 0.4000 & 0.3000 & 0.2000 \\
0.3000 & 0.2000 & 0.1000 & 0.4000 \\
0.2000 & 0.1000 & 0.4000 & 0.3000
\end{array}\right)
$$

We know that for the input distribution \mathbf{p}^{*} that maximizes the mutual information is the equiprobable distribution, that is $\mathbf{p}^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. We set the threshold value $\epsilon=10^{-6}$ to stop the iterative algorithm. If we begin the Blahut-Arimoto algorithm with \mathbf{p}^{*}, then we must obtain the channel capacity C at the first iteration, i.e. without updating the input distribution since it is the optimum one already:

n	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	$p\left(x_{3}\right)$	$p\left(x_{4}\right)$	I_{U}	I_{L}	ϵ
1	0.2500	0.2500	0.2500	0.2500	0.1064	0.1064	0.0000

And the channel capacity is $C=0.1064$ logons or 0.1536 shannons (dividing by $\ln (2)$).
Now, let's compute the channel capacity of the same symmetric channel \mathbf{P} (using the BlahutArimoto algorithm) but starting this time with a non equiprobable input distribution: $\mathbf{p}_{1}=$ (0.1, 0.6, 0.2, 0.1).

At the beginning, the algorithm shows different values of I_{U} and I_{L} for that distribution. After a few iterations, the algorithm converges rapidly towards the ideal distribution $\mathbf{p}^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ and the capacity is obtained: $C=0.1064$ logons (or $C=0.1536$ shannons).

n	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	$p\left(x_{3}\right)$	$p\left(x_{4}\right)$	I_{U}	I_{L}	ϵ
1	0.1000	0.6000	0.2000	0.1000	0.1953	0.0847	0.1106
2	0.1073	0.5663	0.2155	0.1126	0.1834	0.0885	0.0949
3	0.1141	0.5348	0.2287	0.1249	0.1735	0.0916	0.0819
4	0.1204	0.5061	0.2394	0.1369	0.1650	0.0942	0.0708
5	0.1264	0.4802	0.2480	0.1484	0.1576	0.0963	0.0613
\vdots							
10	0.1524	0.3867	0.2668	0.1963	0.1326	0.1024	0.0302
\vdots							
20	0.1912	0.3037	0.2604	0.2448	0.1219	0.1057	0.0162
\vdots							
40	0.2320	0.2622	0.2476	0.2578	0.1110	0.1064	0.0046
\vdots							
80	0.2482	0.2515	0.2486	0.2516	0.1068	0.1064	0.0004
\vdots							
202	0.2500	0.2500	0.2500	0.2500	0.1064	0.1064	0.0000

Now consider the following non symmetric channel's transition probability matrix \mathbf{P}_{2} :

$$
\mathbf{P}_{2}=\left(\begin{array}{llll}
0.1000 & 0.2500 & 0.2000 & 0.1000 \\
0.1000 & 0.2500 & 0.6000 & 0.2000 \\
0.8000 & 0.2500 & 0.1000 & 0.2000 \\
0.1000 & 0.2500 & 0.1000 & 0.5000
\end{array}\right)
$$

We initialize the input distribution $\mathbf{p}_{2}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ (a good choice is the equiprobable distribution even if the channel is not symmetric).

The algorithm provides the following results:

n	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	$p\left(x_{3}\right)$	$p\left(x_{4}\right)$	I_{U}	I_{L}	ϵ
1	0.2500	0.2500	0.2500	0.2500	0.4498	0.2336	0.2162
2	0.3103	0.1861	0.2545	0.2228	0.4098	0.2504	0.1595
3	0.3640	0.1428	0.2653	0.2036	0.3592	0.2594	0.0998
4	0.4022	0.1118	0.2804	0.1899	0.3289	0.2647	0.0642
\vdots							
8	0.4522	0.0450	0.3389	0.1639	0.2988	0.2763	0.0225
\vdots							
16	0.4629	0.0076	0.3732	0.1565	0.2848	0.2830	0.0018
\vdots							
32	0.4641	0.0002	0.3769	0.1588	0.2846	0.2844	0.0003
\vdots							
64	0.4640	0.0000	0.3768	0.1592	0.2844	0.2844	0.0000
65	0.4640	0.0000	0.3768	0.1592	0.2844	0.2844	0.0000

The capacity is $C=0.2844$ logons (or $C=0.4103$ shannons) and is obtained with the optimum input distribution for this assymetric channel: $\mathbf{p}^{*}=(0.4640,0.0000,0.3768,0.1592)$. Note that the second symbol x_{2} should not be used if we want to reach the channel capacity!

3.3 Capacity of channels with memory

As we have seen, the capacity per symbol of discrete channels having memory is given by the limit, as the blocklength N goes to infinity, of the maximum of the mutual information over the set $\mathcal{S}_{\mathbf{p}_{\left(X_{1}, \ldots, X_{N}\right)}}$ of all possible input vectors, or sourcewords:

$$
\begin{equation*}
C=\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\left(X_{1}, \ldots, X_{N}\right)}} \frac{1}{N} I\left(X_{1}, \ldots, X_{n}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right) \tag{3.25}
\end{equation*}
$$

The mutual information between the input and output vectors, \mathbf{X} and \mathbf{Y} is the difference between the entropy of the input vector $H(\mathbf{X})$ and its equivocation $H(\mathbf{X} \mid \mathbf{Y})$ given the output vector.

Figure 3.8: Binary channel with memory.
Consider, as a noisy channel over which we want to send information data, a binary channel with memory (see Figure 3.8). The vector $\mathbf{E}=\left(E_{1}, \ldots, E_{n}, \ldots, E_{N}\right)$ is an error sequence which indicates if the channel is in error or not at discrete time n.

The mutual information can be expressed as a function

$$
\begin{align*}
I(\mathbf{X} ; \mathbf{Y}) & =H(\mathbf{X})-H(\mathbf{X} \mid \mathbf{Y}) \tag{3.26}\\
I(\mathbf{X} ; \mathbf{Y}) & =H(\mathbf{X})-H(\mathbf{X} \mid(\mathbf{X} \oplus \mathbf{E})) \\
I(\mathbf{X} ; \mathbf{Y}) & =H(\mathbf{X})-H(\mathbf{X} \mid \mathbf{E})
\end{align*}
$$

But since the uncertainty (i.e., equivocation) about the input vector $\left(X_{1}, \ldots, X_{N}\right)$ at the receiving end, depends solely on the error sequence $\left(E_{1}, \ldots, E_{N}\right)$ then the mutual information $I\left(X_{1}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{N}\right)$ is equal to the uncertainty about $\left(X_{1}, \ldots, X_{N}\right)$ less
the uncertainty about the error sequence $\left(E_{1}, \ldots, E_{N}\right)$ itself.

$$
\begin{equation*}
I(\mathbf{X} ; \mathbf{Y})=H(\mathbf{X})-H(\mathbf{E}) \tag{3.27}
\end{equation*}
$$

From Equation (3.25), the channel capacity C becomes:

$$
\begin{equation*}
C=\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\left(\mathbf{P}_{(\mathbf{x})}\right.}}[H(\mathbf{X})-H(\mathbf{E})] \tag{3.28}
\end{equation*}
$$

The entropy $H\left(E_{1}, \ldots, E_{N}\right)$ is often called channel entropy.

Example (Capacity of a binary symmetric channel):
This is a channel without memory. Nevertheless, its capacity can be determined using the general expression (i.e., Equation (3.28)). It is also a symmetric channel: therefore, the input distribution \mathbf{p}^{*} which leads to the channel capacity C is an equiprobable source distribution: $p\left(x_{1}\right)=p\left(x_{2}\right)=\frac{1}{2}$.

Figure 3.9: Binary symmetric channel.
The entropy (per symbol) of the source is then $H(X)=1 S h$. The channel entropy $H(E)$ is:

$$
\begin{aligned}
H(E) & =-\sum_{j=1}^{2} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right) \quad \text { for } k=1,2 \\
H(E) & =-\left[(1-\epsilon) \log _{2}(1-\epsilon)+\epsilon \log _{2} \epsilon\right]
\end{aligned}
$$

The channel capacity C is:

$$
\begin{aligned}
C & =\max _{\mathcal{S}_{\mathbf{p}}} I(X ; Y) \\
C & =H(X)-H(E) \\
C & =1+\left[(1-\epsilon) \log _{2}(1-\epsilon)+\epsilon \log _{2} \epsilon\right]
\end{aligned}
$$

For instance, if the crossover probability $\epsilon=0.025$, then the channel capacity $C=0.830$ Sh Note that the corresponding channel bit error rate $(B E R)$ is equal to ϵ, i.e., $B E R=0.025$:

$$
\begin{aligned}
B E R & =\sum_{k=1}^{K} p\left(x_{k}\right) \sum_{\substack{j=1 \\
j \neq k}}^{J} p\left(y_{j} \mid x_{k}\right) \\
B E R & =p\left(x_{1}\right) p\left(y_{2} \mid x_{1}\right)+p\left(x_{2}\right) p\left(y_{1} \mid x_{2}\right) \\
B E R & =\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon
\end{aligned}
$$

Example (Capacity of a binary symmetric channel with memory):
Consider now a binary symmetric channel with memory for which the crossover probability $p\left(y_{j} \mid x_{k}\right)_{j \neq k}=\epsilon$ at every discrete time instant n but for which the occurrence of errors are not independent (for instance, E_{n} may not be independent of E_{n-1}):

$$
E_{n}=\left\{\begin{array}{l}
1 \quad \text { with probability } p^{(n)}\left(y_{j} \mid x_{k}\right)_{j \neq k}=\epsilon \\
0 \quad \text { with probability } p^{(n)}\left(y_{j} \mid x_{k}\right)_{j=k}=1-\epsilon
\end{array}\right.
$$

The $B E R$ is still equal to ϵ, but the channel capacity C is affected by the memory of the channel. Since the channel is symmetric, we know that the capacity is achieved with the equiprobable distribution \mathbf{p}^{*}, that is: $p\left(x_{1}\right)=p\left(x_{2}\right)=\frac{1}{2}$. If the error generation process in the noisy channel is independent of the input, which is a fair assumption, then we can assume that the identically distributed input random variables $\left\{X_{n}\right\}_{n=1, \ldots, N}$ are also independent.

$$
\begin{aligned}
B E R & =\frac{1}{N} \sum_{n=1}^{N}\left[\sum_{k=1}^{K} p^{(n)}\left(x_{k}\right) \sum_{\substack{j=1 \\
j \neq k}}^{J} p^{(n)}\left(y_{j} \mid x_{k}\right)\right] \\
B E R & =\frac{1}{N} \sum_{n=1}^{N}\left[p^{(n)}\left(x_{1}\right) p^{(n)}\left(y_{2} \mid x_{1}\right)+p^{(n)}\left(x_{2}\right) p^{(n)}\left(y_{1} \mid x_{2}\right)\right] \\
B E R & =\frac{1}{N} \sum_{n=1}^{N}\left[\frac{1}{2} \epsilon+\frac{1}{2} \epsilon\right] \\
B E R & =\frac{1}{2} \epsilon+\frac{1}{2} \epsilon \\
B E R & =\epsilon
\end{aligned}
$$

The entropy per symbol of the source is $H(X)=1 S h$. The channel capacity C is:

$$
C=\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}}^{\left(X_{1}, \ldots, X_{N}\right)}}\left[I\left(X_{1}, \ldots, X_{n}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)\right]
$$

The capacity per symbol is:

$$
\begin{aligned}
C & =\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}}}\left[\frac{1}{N} I\left(X_{1}, \ldots, X_{n}, \ldots, X_{N} ; Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)\right] \\
C & =\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P X}^{\prime}}}\left[\frac{1}{N} H\left(X_{1}, \ldots, X_{n}, \ldots, X_{N}\right)-\frac{1}{N} H\left(X_{1}, \ldots, X_{n}, \ldots, X_{N} \mid Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)\right] \\
C & =\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}_{\mathrm{X}}}}\left[\frac{1}{N} \sum_{n=1}^{N} H\left(X_{n}\right)-\frac{1}{N} H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N} \mid Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)\right] \\
C & =\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}_{\mathbf{X}}}}\left[H(X)-\frac{1}{N} H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N} \mid Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)\right]
\end{aligned}
$$

since the variables $X_{1}, \ldots, X_{n}, \ldots, X_{N}$ are i.i.d. Considering that the equivocation of the error sequence $H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N} \mid Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)$, after the observation of the received symbols $Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}$, can be at most equal to the entropy itself $H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N}\right)$, then:

$$
\begin{aligned}
C & =\lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}}}\left[H(X)-\frac{1}{N} H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N} \mid Y_{1}, \ldots, Y_{n}, \ldots, Y_{N}\right)\right] \\
C & \geq \lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}}}\left[H(X)-\frac{1}{N} H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N}\right)\right] \\
C & \geq \lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{P}_{\mathbf{X}}}}\left[H(X)-\frac{1}{N} \sum_{n=1}^{N} H\left(E_{n}\right)\right]
\end{aligned}
$$

because for the error generation process with memory, $H\left(E_{1}, \ldots, E_{n}, \ldots, E_{N}\right)=\sum_{n=1}^{N} H\left(E_{n} \mid E_{1}, \ldots, E_{n-1}\right) \leq$ $\sum_{n=1}^{N} H\left(E_{n}\right)$. However, the E_{n} are identically distributed:

$$
\begin{aligned}
& C \geq \lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{p x}^{\prime}}}\left[H(X)-\frac{1}{N} \sum_{n=1}^{N} H\left(E_{n}\right)\right] \\
& C \geq \lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{p}_{\mathbf{X}}}}\left[H(X)-\frac{1}{N} \sum_{n=1}^{N} H(E)\right] \\
& C \geq \lim _{N \rightarrow \infty} \max _{\mathcal{S}_{\mathbf{p x}^{x}}}[H(X)-H(E)] \\
& C \geq H(X)-H(E) \\
& C \geq \text { Cmemoryless }
\end{aligned}
$$

Even if the bit error rate is the same in both memory and memoryless channels cases, the channel capacity is greater or equal than the capacity of the memoryless channel. In fact, for a given $B E R$, the memory of the channel can be exploited, e.g, the correlation between the successive noise samples, to increase the effective throughput of information (e.g., channel equalization, error correcting codes).

3.4 Jointly typical pairs of sequences

Definition (Jointly typical pair of sequences):
Given a memoryless pair of random variables (X, Y) with a joint probability distribution $\{p(\mathbf{x}, \mathbf{y})\}$ and a joint entropy $H(X Y)$, the set of jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$ of blocklength N are the pairs (\mathbf{x}, \mathbf{y}) in the set:

$$
\begin{equation*}
\mathcal{T}_{X Y}(\delta) \equiv\left\{(\mathbf{x}, \mathbf{y}):\left|-\frac{1}{N} \log _{b} p(\mathbf{x}, \mathbf{y})-H(X Y)\right|<\delta\right\} \tag{3.29}
\end{equation*}
$$

provided that \mathbf{x} and \mathbf{y} are respective elements of the typical sequences sets $\mathcal{T}_{X}(\delta)$ and $\mathcal{T}_{Y}(\delta)$:

$$
\begin{aligned}
& \mathcal{T}_{X}(\delta)=\left\{\mathbf{x} \text { such that: }\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|<\delta\right\} \\
& \mathcal{T}_{Y}(\delta)=\left\{\mathbf{y} \text { such that: }\left|-\frac{1}{N} \log _{b} p(\mathbf{y})-H(Y)\right|<\delta\right\}
\end{aligned}
$$

Figure 3.10: Relationship between the sets of jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$, and the sets of typical sequences $\mathcal{T}_{X}(\delta)$ and $\mathcal{T}_{Y}(\delta)$.

Theorem (Shannon-McMillan theorem for jointly typical pairs of sequences):
Given a dependent pair of memoryless sources of joint entropy $H(X Y)$, for a blocklength N sufficiently large (i.e. $N \geq N_{0}$), the set of pairs of vectors $\{(\mathbf{x}, \mathbf{y})\}$ can be partitioned into a set of jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$ and a set of jointly atypical pairs of sequences $\mathcal{T}_{X Y}^{c}(\delta)$ for which:
a) The probability of atypical sequences is upperbounded as:

$$
\begin{equation*}
\operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}^{c}(\delta)\right]<\epsilon \tag{3.30}
\end{equation*}
$$

b) If the pair of sequences $(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)$ then:

$$
\begin{equation*}
b^{-N[H(X Y)+\delta]}<p(\mathbf{x}, \mathbf{y})<b^{-N[H(X Y)-\delta]} \tag{3.31}
\end{equation*}
$$

c) The number of elements in the set of jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$ is upperbounded by:

$$
\begin{equation*}
\left\|\mathcal{T}_{X Y}(\delta)\right\|<b^{N[H(X Y)+\delta]} \tag{3.32}
\end{equation*}
$$

d) If $(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)$ and \mathbf{x} is fixed, then the conditional probability $p(\mathbf{y} \mid \mathbf{x})$ is bounded as:

$$
\begin{equation*}
b^{-N[H(Y \mid X)+2 \delta]}<p(\mathbf{y} \mid \mathbf{x})<b^{-N[H(Y \mid X)-2 \delta]} \tag{3.33}
\end{equation*}
$$

Proof:

The proof of the first three properties of jointly typical pairs of sequences is similar to that for typical sequences. The proof of the fourth property of jointly typical pairs of sequences follows.

The conditional probability $p(\mathbf{y} \mid \mathbf{x})$ can be expressed as:

$$
\begin{equation*}
p(\mathbf{y} \mid \mathbf{x})=\frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})} \tag{3.34}
\end{equation*}
$$

and the conditional entropy $H(Y \mid X)$, or equivocation of Y given X, is the difference between the joint entropy $H(X Y)$ and the entropy $H(X)$:

$$
\begin{equation*}
H(Y \mid X)=H(X Y)-H(X) \tag{3.35}
\end{equation*}
$$

Considering that, if the pair of sequences $(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)$, and that, by definition, $\mathbf{x} \in \mathcal{T}_{X}(\delta)$ and $\mathbf{y} \in \mathcal{T}_{Y}(\delta)$, then;

$$
\begin{align*}
\left|-\frac{1}{N} \log _{b} p(\mathbf{x}, \mathbf{y})-H(X Y)\right| & <\delta \tag{3.36}\\
\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right| & <\delta \quad \text { and } \\
\left|-\frac{1}{N} \log _{b} p(\mathbf{y})-H(Y)\right| & <\delta
\end{align*}
$$

Considering the difference between $\frac{1}{N} \log _{b} p(\mathbf{y} \mid \mathbf{x})$ and the equivocation $H(Y \mid X)$, then:

$$
\begin{align*}
\left|-\frac{1}{N} \log _{b} p(\mathbf{y} \mid \mathbf{x})-H(Y \mid X)\right| & =\left|-\frac{1}{N} \log _{b} \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})}-[H(X Y)-H(X)]\right| \tag{3.37}\\
& =\left|-\frac{1}{N} \log _{b} p(\mathbf{x}, \mathbf{y})+\frac{1}{N} \log _{b} p(\mathbf{x})-H(X Y)+H(X)\right| \\
& =\left|-\frac{1}{N} \log _{b} p(\mathbf{x}, \mathbf{y})-H(X Y)+\frac{1}{N} \log _{b} p(\mathbf{x})+H(X)\right| \\
\left|-\frac{1}{N} \log _{b} p(\mathbf{y} \mid \mathbf{x})-H(Y \mid X)\right| & <\delta+\delta
\end{align*}
$$

and therefore:

$$
\begin{equation*}
\left|-\frac{1}{N} \log _{b} p(\mathbf{y} \mid \mathbf{x})-H(Y \mid X)\right|<2 \delta \tag{3.38}
\end{equation*}
$$

QED

3.5 Channel coding theorem

3.5.1 Shannon's channel (second) coding theorem

Figure 3.11 illustrates a communication link. A source of information \mathbf{W} generates messages as symbols, or sourcewords, from a set of M possible messages.

Figure 3.11: Noisy communication channel with channel coding.
We assume that each message w is chosen with equal probability:

$$
\begin{equation*}
p(w)=\frac{1}{M}=b^{-N R} \tag{3.39}
\end{equation*}
$$

where R is the code rate and N is the codewords' blocklength. The information rate into a channel is $R=\frac{1}{N} H(\mathbf{X})$ where $H(\mathbf{X})$ is the entropy of the set of M sourcewords (or input vectors) of lenght N. Then, if we consider an equiprobable source $R=\frac{1}{N} \log _{b} M$.

A channel encoder maps each message $W_{m}, m=1, \ldots, M$, as a unique codeword \mathbf{c}_{m} of blocklength N. We assume also that the codewords are b-ary $\left(c_{m, n} \in\{0,1, \ldots, b-1\} \forall m, n\right)$. A code \mathcal{C} consists in M codewords:

$$
\mathcal{C}=\left[\begin{array}{c}
\mathbf{c}_{1} \tag{3.40}\\
\vdots \\
\mathbf{c}_{m} \\
\vdots \\
\mathbf{c}_{M}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m, 1} & \cdots & c_{m, n} & \cdots & c_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M, 1} & \cdots & c_{M, n} & \cdots & c_{M, N}
\end{array}\right]
$$

There are $M=b^{N R}$ different messages and therefore the code \mathcal{C} consists in $b^{N R}$ codewords. The number of possible codes $\mathcal{S}_{\mathcal{C}} \equiv\{\mathcal{C}\}$ is equal to the number of possible matrices: $b^{N \times M}=b^{\left(N \times 2^{N R}\right)}$.

For instance, consider a binary code for which the blocklength $N=20$. If the code rate $R=\frac{1}{2}$,
then there are:

$$
\left.\begin{array}{rl}
2^{\left(N \times 2^{N R}\right)} & =2^{\left(20 \times 2^{10}\right)}
\end{array}=2^{(20 \times 1024)}\right)\left(2^{6165}\right.
$$

possible codes, which is quite large. For larger values of N, the number of codes becomes enormous.

Theorem (Shannon's channel coding theorem):
Let C be the information transfer capacity of a memoryless channel defined by its transition probabilities matrix $\mathbf{P}=\{p(\mathbf{y} \mid \mathbf{x})\}$. If the code rate $R<C$, then there exists a channel code \mathcal{C} of size M and blocklength N, such that the probability of decoding error P_{e} is upperbounded by an arbitrarily small number ϵ;

$$
P_{e} \leq \epsilon
$$

provided that the blocklength N is sufficiently large (i.e., $N \geq N_{0}$).

Proof:

The proof of Shannon's channel coding theorem derived below is based on the random selection of a set of codes $\mathcal{S}_{\mathcal{C}}=\{\mathcal{C}\}$ and the average probability of decoding errors over this set of codes $\mathcal{S}_{\mathcal{C}}$. A decoding rule using jointly typical pairs of sequences is considered. This isn't an optimal decoding rule but it is probably the simplest rule to prove the channel coding theorem (also know as Shannon's second coding theorem).

The codes are chosen with the following random coding rule: the $b^{N R}$ codewords are selected accordingly to a fix distribution $p(x)$. In other words, each of the $N \times b^{N R}$ elements of the code matrix \mathcal{C} is chosen independently of each other with the same probability $p(x)$ (which maximizes the mutual information):

$$
\mathcal{C}=\left[\begin{array}{c}
\mathbf{x}_{1} \tag{3.41}\\
\vdots \\
\mathbf{x}_{m} \\
\vdots \\
\mathbf{x}_{M}
\end{array}\right]=\left[\begin{array}{ccccc}
x_{1,1} & \cdots & x_{1, n} & \cdots & x_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n} & \cdots & x_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{M, 1} & \cdots & x_{M, n} & \cdots & x_{M, N}
\end{array}\right]
$$

The probability $p(\mathcal{C})$ of selecting a particular code \mathcal{C} is:

$$
\begin{align*}
& p(\mathcal{C})=\prod_{m=1}^{M} p\left(\mathbf{x}_{m}\right) \tag{3.42}\\
& p(\mathcal{C})=\prod_{m=1}^{M} \prod_{n=1}^{N} p\left(x_{m, n}\right)
\end{align*}
$$

Note that some codes will be bad codes. The mutual information $I(\mathbf{X}, \mathbf{Y})$ between the channel input and output is a function of the codewords' elements distribution $\mathbf{p}=\{p(\mathbf{x})\}$ as well as the transition probability matrix $\mathbf{P}=\{p(\mathbf{y} \mid \mathbf{x})\}$ of the noisy channel. The channel transition probabilities are considered also i.i.d. (independent and identically distributed).

The decoding rule is based on the definition of jointly typical sequences. A received (and possibly corrupted) codeword \mathbf{y} is mapped into a valid codeword \mathbf{x}_{m}, or \mathbf{c}_{m}, if the pair of sequences $\left(\mathbf{y}, \mathbf{c}_{m}\right)$ are jointly typical, i.e., $\left(\mathbf{y}, \mathbf{c}_{m}\right) \in \mathcal{T}_{X Y}(\delta)$. The decoded message is then w_{m}.

As shown on Figure 3.12 two types of decoding errors may occur:

- ($\left.\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta) \quad$ for $m=1, \ldots, M$
- $\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X Y}(\delta) \quad$ for $m^{\prime} \neq m$

set $\{\mathbf{y}\}$ of all possible received sequences

Figure 3.12: Decoding decision regions for jointly typical pairs of sequences $\mathcal{T}_{X Y}(\delta)$.
As mentionned previously, this decoding rule is not an optimal one, but it provides a relatively simple derivation of the channel coding theorem.

The probability of a decoding error $P_{e \mid m}$, given that message w_{m} was transmitted is given by the probability of the union of error events:

$$
\begin{align*}
& P_{e \mid m}=\operatorname{Pr}\left\{\left[\left(\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta)\right] \bigcup \bigcup_{\substack{\prime^{\prime}=1 \\
m^{\prime} \neq m}}^{M}\left[\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X Y}(\delta)\right]\right\} \tag{3.43}\\
& P_{e \mid m} \leq \operatorname{Pr}\left[\left(\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta)\right]+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.44}
\end{align*}
$$

by the union bound property: $\operatorname{Pr}\left[\bigcup_{m=1}^{M} \mathcal{E}_{i}\right] \leq \sum_{m=1}^{M} \operatorname{Pr}\left[\mathcal{E}_{i}\right]$.
From the Shannon-McMillan theorem for jointly typical pairs of sequences $\left(\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta)$ (for N sufficiently large):

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta)\right] \leq \epsilon_{1} \tag{3.45}
\end{equation*}
$$

Then, for a given transmitted codeword \mathbf{c}_{m}, the error probability is bounded as:

$$
\begin{equation*}
P_{e \mid m} \leq \epsilon_{1}+\sum_{\substack{c^{\prime}=1 \\ m^{\prime} \neq m}}^{M} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.46}
\end{equation*}
$$

The second term on the right-hand side is not necessarily small. However, we will see that, on the average, this term is small.

Define an indicator function $\phi(\mathbf{x}, \mathbf{y})$ such that:

$$
\phi(\mathbf{x}, \mathbf{y})= \begin{cases}1 & \text { if }(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta) \tag{3.47}\\ 0 & \text { if }(\mathbf{x}, \mathbf{y}) \notin \mathcal{T}_{X Y}(\delta)\end{cases}
$$

Then, for a given transmitted codeword \mathbf{c}_{m},

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X Y}(\delta)\right]=\sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right) \tag{3.48}
\end{equation*}
$$

where $p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)$ represents the probability of receiving the vector \mathbf{y} given that the $m^{\text {th }}$ codeword \mathbf{c}_{m} was transmitted, and the sum $\sum_{\mathbf{y}}$ is over all received sequences $\{\mathbf{y}\}$.

Then, for all $m^{\prime} \neq m$:

$$
\begin{equation*}
P_{e \mid m} \leq \epsilon_{1}+\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} \sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right) \tag{3.49}
\end{equation*}
$$

We now use the random coding scheme where each element of a code \mathcal{C} is chosen according to a fix distribution $p(x)$. Instead of determining the error probability of a given code \mathcal{C}, we will
determine the expected error decoding probability over all possible codes, i.e., $\mathcal{S}_{\mathcal{C}}$ with distribution $p(x)$.

The expected error decoding probability, given that codeword \mathbf{c}_{m} was transmitted, over the ensemble of randomly chosen codes $\mathcal{S}_{\mathcal{C}}$ is:

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq & \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\epsilon_{1}+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\right] \tag{3.50}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq & \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\epsilon_{1}\right]+ \\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\right] \tag{3.51}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq & \epsilon_{1}+\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\right] \tag{3.52}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq & \epsilon_{1}+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\right] \tag{3.53}
\end{align*}
$$

But since the term $\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{\mathbf{y}} \phi\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\right]$ is an expectation over the ensemble of codes $\mathcal{S}_{\mathcal{C}}$ (randomly chosen), it can be rewritten as $\operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right]$. The expected probability of error becomes:

$$
\begin{align*}
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \epsilon_{1}+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.54}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \epsilon_{1}+(M-1) \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.55}
\end{align*}
$$

since the random codeword \mathbf{x} is not a function of the received codeword index m^{\prime}.
Now, let's consider the expected probability of decoding errors P_{e} over the set $\left\{\mathbf{c}_{m}\right\}$ of codewords (i.e., the code \mathcal{C}).

$$
\begin{equation*}
P_{e}=\sum_{m=1}^{M} p\left(\mathbf{c}_{m}\right) P_{e \mid m} \tag{3.56}
\end{equation*}
$$

The expected probability of error $\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]$ over the set of codes $\mathcal{S}_{\mathcal{C}}$ is:

$$
\begin{align*}
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]=\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{m=1}^{M} p\left(\mathbf{c}_{m}\right) P_{e \mid m}\right] \tag{3.57}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]=\sum_{m=1}^{M} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p\left(\mathbf{c}_{m}\right) P_{e \mid m}\right] \tag{3.58}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]=\sum_{m=1}^{M} p\left(\mathbf{c}_{m}\right) \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \tag{3.59}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]=\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \tag{3.60}
\end{align*}
$$

Therefore we can write the expected error decoding probability over $\mathcal{S}_{\mathcal{C}}$ as:

$$
\begin{equation*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+(M-1) \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.61}
\end{equation*}
$$

A decoding error will occur if the pair of transmitted and received codewords, (\mathbf{x}, \mathbf{y}), are jointly typical, which implies that:

$$
\begin{aligned}
\mathbf{x} \in \mathcal{T}_{X}(\delta) & \rightarrow \quad b^{-N[H(X)+\delta]} \leq p(\mathbf{x}) \leq b^{-N[H(X)-\delta]} \\
\mathbf{y} \in \mathcal{T}_{Y}(\delta) & \rightarrow b^{-N[H(Y)+\delta]} \leq p(\mathbf{y}) \leq b^{-N[H(Y)-\delta]} \\
(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta) & \rightarrow\left\|\mathcal{T}_{X Y}(\delta)\right\| \leq b^{N[H(X Y)+\delta]}
\end{aligned}
$$

Then:

$$
\begin{align*}
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right]=\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)} p(\mathbf{x}, \mathbf{y}) \tag{3.62}\\
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right]=\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)} p(\mathbf{x}) p(\mathbf{y}) \tag{3.63}\\
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right]=\left\|\mathcal{T}_{X Y}(\delta)\right\| p(\mathbf{x}) p(\mathbf{y}) \tag{3.64}\\
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \leq\left\|\mathcal{T}_{X Y}(\delta)\right\| b^{-N[H(X)-\delta]} b^{-N[H(Y)-\delta]} \tag{3.65}\\
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \leq b^{N[H(X Y)+\delta]} b^{-N[H(X)-\delta]} b^{-N[H(Y)-\delta]} \tag{3.66}\\
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \leq b^{-N[H(X)+H(Y)-H(X Y)-3 \delta]} \tag{3.67}\\
& \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \leq b^{-N[I(X ; Y)-3 \delta]} \tag{3.68}
\end{align*}
$$

The expected error decoding probability over $\mathcal{S}_{\mathcal{C}}$ becomes:

$$
\begin{align*}
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+(M-1) \operatorname{Pr}\left[(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.69}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+(M-1) b^{-N[I(X ; Y)-3 \delta]} \tag{3.70}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+M b^{-N[I(X ; Y)-3 \delta]} \tag{3.71}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+b^{N R} b^{-N[I(X ; Y)-3 \delta]} \tag{3.72}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+b^{-N[I(X ; Y)-R-3 \delta]} \tag{3.73}
\end{align*}
$$

The second term in the above equation can be made arbitrarily small provided that the code rate R is smaller than $I(X ; Y)-3 \delta$ (making the exponent negative), and provided that the blocklength N is sufficiently large. If the fixed input distribution is chosen such as to maximize the mutual information $I(X ; Y)$ then the probability of error can be made arbitrarily small provided that $R<C-3 \delta$. For $p(\mathbf{x})=p^{*}(\mathbf{x})$:

$$
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+\epsilon_{2}
$$

Finally, if the average probability of error $\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]$ can be made smaller than $\epsilon_{1}+\epsilon_{2}$, then there must exists a code \mathcal{C}^{*} for which the error probability P_{e} is at least as good as the average:

$$
P_{e} \leq \epsilon
$$

3.5.2 Converse of the Channel Coding Theorem

Shannon's coding theorem states that there exists a channel code \mathcal{C} of size M and blocklength N, such that the probability of decoding error P_{e} is arbitrarily small provided that the rate $R<C$, and that N is sufficiently large. What happens now if we try to transmit information at a rate R above the channel capacity C ? The converse of the channel coding theorem stipulates that:

Theorem (Converse of the channel coding theorem):
Let a memoryless channel with capacity C be used to transmit codewords of blocklength N and input information R. Then the error decoding probability P_{e} satisfies the following inequality:

$$
P_{e}(N, R) \geq 1-\frac{C}{R}-\frac{1}{N R}
$$

If the rate $R>C$, then the error decoding probability P_{e} is bounded away from zero.

Proof:

The Fano's inequality provides a lower bound on the probability of error $P_{e}(N, R)$ in terms of the conditional entropy $H(\mathbf{X} \mid \mathbf{Y})$:

$$
H(\mathbf{X} \mid \mathbf{Y}) \leq 1+N R P_{e}(N, R)
$$

The decoding error probability $P_{e}(N, R)$ is given by

$$
\begin{equation*}
P_{e}(N, R)=\operatorname{Pr}(\tilde{\mathbf{W}} \neq \mathbf{W}) \tag{3.74}
\end{equation*}
$$

Define a binary error variable E with entropy $H(E) \leq 1 S h$ such that:

$$
E= \begin{cases}1 & \text { if } \tilde{\mathbf{W}} \neq \mathbf{W} \text { (an error) } \tag{3.75}\\ 0 & \text { if } \tilde{\mathbf{W}}=\mathbf{W} \text { (no error) }\end{cases}
$$

Consider the following equivocation: $H(E, \mathbf{W} \mid \mathbf{Y})$. It can be expanded as:

$$
\begin{align*}
H(E, \mathbf{W} \mid \mathbf{Y}) & =H(E \mid \mathbf{Y})+H(\mathbf{W} \mid E, \mathbf{Y}) \\
H(E, \mathbf{W} \mid \mathbf{Y}) & =H(\mathbf{W} \mid \mathbf{Y})+H(E \mid \mathbf{W}, \mathbf{Y}) \\
H(E \mid \mathbf{Y})+H(\mathbf{W} \mid E, \mathbf{Y}) & =H(\mathbf{W} \mid \mathbf{Y})+H(E \mid \mathbf{W}, \mathbf{Y}) \tag{3.76}
\end{align*}
$$

However, the term $H(E \mid \mathbf{W}, \mathbf{Y})=0$ since, given both \mathbf{W}, \mathbf{Y} and thus $\tilde{\mathbf{W}}$, there is no uncertainty about E (i.e. we know for sure from the observation of both \mathbf{W} and \mathbf{Y} if there is an error or not).

Furthermore, $H(E \mid \mathbf{Y}) \leq H(E) \leq 1$.

$$
\begin{align*}
H(E \mid \mathbf{Y})+H(\mathbf{W} \mid E, \mathbf{Y}) & =H(\mathbf{W} \mid \mathbf{Y}) \\
1+H(\mathbf{W} \mid E, \mathbf{Y}) & \geq H(\mathbf{W} \mid \mathbf{Y}) \tag{3.77}
\end{align*}
$$

Finally, consider the term $H(\mathbf{W} \mid E, \mathbf{Y})$:

$$
\begin{align*}
H(\mathbf{W} \mid E, \mathbf{Y}) & =\operatorname{Pr}(E=0) H(\mathbf{W} \mid E=0, \mathbf{Y})+\operatorname{Pr}(E=1) H(\mathbf{W} \mid E=1, \mathbf{Y}) \\
H(\mathbf{W} \mid E, \mathbf{Y}) & \leq \operatorname{Pr}(E=0) 0+\operatorname{Pr}(E=1) \log _{2}(M-1) \\
H(\mathbf{W} \mid E, \mathbf{Y}) & \leq \operatorname{Pr}(E=1) \log _{2}(M) \\
H(\mathbf{W} \mid E, \mathbf{Y}) & \leq \operatorname{Pr}(E=1) \log _{2}\left(2^{N R}\right) \\
H(\mathbf{W} \mid E, \mathbf{Y}) & \leq \operatorname{Pr}(E=1) N R \\
H(\mathbf{W} \mid E, \mathbf{Y}) & \leq \operatorname{Pe}_{e}(N, R) N R \tag{3.78}
\end{align*}
$$

Then,

$$
\begin{align*}
1+H(\mathbf{W} \mid E, \mathbf{Y}) & \geq H(\mathbf{W} \mid \mathbf{Y}) \\
1+P_{e}(N, R) N R & \geq H(\mathbf{W} \mid \mathbf{Y}) \tag{3.79}
\end{align*}
$$

Again, we consider a source of information \mathbf{W} which generates messages as symbols, or sourcewords, from a set of M possible messages with equal probability, i.e. $p(w)=\frac{1}{M}=2^{-N R}$. The source entropy $H(\mathbf{W})$ is simply equal to $-\log _{2} 2^{-N R}=N R$. Using the relationships between entropies, equivocations and mutual information, can rewrite $N R$ as:

$$
\begin{align*}
& N R=H(\mathbf{W}) \\
& N R=H(\mathbf{W} \mid \mathbf{Y})+I(\mathbf{W} ; \mathbf{Y}) \\
& N R=H(\mathbf{X} \mid \mathbf{Y})+I(\mathbf{X} ; \mathbf{Y}) \tag{3.80}
\end{align*}
$$

Using the Fano's inequality, i.e. $H(\mathbf{X} \mid \mathbf{Y}) \leq 1+N R P_{e}(N, R)$, then:

$$
\begin{align*}
& N R=H(\mathbf{X} \mid \mathbf{Y})+I(\mathbf{X} ; \mathbf{Y}) \\
& N R \leq 1+N R P_{e}(N, R)+I(\mathbf{X} ; \mathbf{Y}) \tag{3.81}
\end{align*}
$$

The mutual information $I(\mathbf{X} ; \mathbf{Y})$ between the input vectors (original codewords of blocklength N) and output vectors (codewords corrupted by the memoryless channel) can be expressed as:

$$
\begin{aligned}
& I(\mathbf{X} ; \mathbf{Y})=H(\mathbf{Y})-H(\mathbf{Y} \mid \mathbf{X}) \\
& I(\mathbf{X} ; \mathbf{Y})=H(\mathbf{Y})-\sum_{n=1}^{N} H\left(Y_{n} \mid X_{n}\right) \\
& I(\mathbf{X} ; \mathbf{Y}) \leq \sum_{n=1}^{N} H\left(Y_{n}\right)-\sum_{n=1}^{N} H\left(Y_{n} \mid X_{n}\right)
\end{aligned}
$$

$$
\begin{align*}
I(\mathbf{X} ; \mathbf{Y}) & \leq \sum_{n=1}^{N} I\left(X_{n} ; Y_{n}\right) \\
I(\mathbf{X} ; \mathbf{Y}) & \leq \sum_{n=1}^{N} C \\
I(\mathbf{X} ; \mathbf{Y}) & \leq N C \tag{3.82}
\end{align*}
$$

using the facts that: (i) the joint entropy of vector $H(\mathbf{Y})$, which is a sum of entropies and equivocations, is less or equal to the sum of individual entropies $\sum_{n=1}^{N} H\left(Y_{n}\right)$; and (ii) the capacity C is the maximum of the mutual information $I\left(X_{n} ; Y_{n}\right)$. Therefore, the source entropy $H(\mathbf{W})=N R$ satisfies the inequality

$$
\begin{align*}
N R & \leq 1+N R P_{e}(N, R)+I(\mathbf{X} ; \mathbf{Y}) \\
N R & \leq 1+N R P_{e}(N, R)+N C \tag{3.83}
\end{align*}
$$

and finally, dividing by $N R$, we have that

$$
\begin{equation*}
1 \leq \frac{1}{N R}+P_{e}(N, R)+\frac{C}{R} \tag{3.84}
\end{equation*}
$$

$$
P_{e}(N, R) \geq 1-\frac{C}{R}-\frac{1}{N R}
$$

Therefore, for $R>C$, we cannot achieve an arbitrarily low error decoding probability P_{e}. This results is known as the weak converse of the channel coding theorem. There is also a strong converse of the channel coding theorem, based on the probability of decoded symbol error, which states that, at rates R above channel capacity C, the error decoding probability P_{e} tends towards one.

3.6 Channel reliability function

3.6.1 Random coding exponent

The conditional error decoding probability $P_{e \mid m}$, given that the $m^{\text {th }}$ message is generated by the source of information and encoded with codeword \mathbf{c}_{m}, is equal to (using as the M decoding regions $\left\{\mathcal{U}_{m}\right\}_{m=1}^{M}$ the jointly typical pairs of sequences):

$$
\begin{equation*}
P_{e \mid m} \leq \operatorname{Pr}\left[\left(\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta)\right]+\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X Y}(\delta)\right] \tag{3.85}
\end{equation*}
$$

The decoding error probability P_{e} of a code \mathcal{C} is in fact a function $P_{e}(N, R)$ of the choosen code blocklength N, the code rate R, and (the channel capacity C being determined by the channel itself):

$$
\begin{equation*}
P_{e}(N, R) \leq \underbrace{\operatorname{Pr}\left[\left(\mathbf{c}_{m}, \mathbf{y}\right) \notin \mathcal{T}_{X Y}(\delta)\right]}_{\epsilon_{1}}+\underbrace{b^{-N[C-R-3 \delta]}}_{\epsilon_{2}}=\epsilon \tag{3.86}
\end{equation*}
$$

where the first term ϵ_{1} is smaller than δ for a sufficiently large blocklength N, while the second term ϵ_{2} decreases exponentially with N, provided that the code rate $R<C-3 \delta$. The error decoding probability $P_{e}(N, R)$, can be expressed as [Bla87]:

$$
\begin{equation*}
P_{e}(N, R) \leq b^{-N E_{r}(R)} \tag{3.87}
\end{equation*}
$$

where the function $E_{r}(R)$ is called the random coding exponent.
The random coding exponent is defined as [Bla87]:

$$
\begin{equation*}
E_{r}(R) \equiv \max _{s \in[0,1]} \max _{\mathcal{S}_{\mathbf{p}}}\left[-s R-\log _{b} \sum_{j=1}^{J}\left(\sum_{k=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\frac{1}{1+s)}}\right)^{1+s}\right] \tag{3.88}
\end{equation*}
$$

Since the random coding exponent can be written in terms of a double maximum over the input symbols distribution $\mathcal{S}_{\mathbf{p}}$ and a parameter $s \in[0,1]$, the decoding error probability $P_{e}(N, R)$ can be written as a double minimum over the same sets:

$$
\begin{equation*}
P_{e}(N, R) \leq \min _{s \in[0,1]} \min _{\mathcal{S}_{\mathbf{p}}}\left[b^{s N R} \sum_{\mathbf{y}}\left(\sum_{\mathbf{x}} p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})^{\frac{1}{(1+s)}}\right)^{1+s}\right] \tag{3.89}
\end{equation*}
$$

Figure 3.13 illustrates the typical shape of the random coding exponent $E_{r}(R)$ as a function of the code rate R. The larger is the random coding exponent $E_{r}(R)$, the smaller will be the error decoding probability $P_{e}(N, R)$ for a given blocklength. As shown on this figure, the maximum of the random coding exponent $E_{r}(R)$, over the ensemble of all possible input distributions \mathcal{S}_{p} and parameter $s \in[0,1]$, is achieved with $s=1$ for low code rates. The largest code rate R at which the random coding exponent $E_{r}(R)$ decreases with a slope $s=-1$ is called the critical rate $R_{\text {crit }}$. The cut-off rate R_{0} corresponds to the code rate R, at which the tangent of the random coding exponent $E_{r}(R)$ intersects with the rate axis. The cut-off rate R_{0} is often considered as the code rate limit beyond which it is very expensive to communicate reliably [Bla87] over a noisy communication channel.

Figure 3.13: Random coding exponent $E_{r}(R)$ for block codes for BSC with $\epsilon=10^{-2}$.

3.6.2 Error bounds and channel reliability function

The random coding exponent $E_{r}(R)$ provides an upperbound on the error decoding probability $P_{e}(N, R)$. This bound is obtained from a random coding argument. The question is: "How tight is this bound?". Other bounds on the probability of error have been derived based on different arguments. Some of them, such as the random coding bound, give an upperbound on the probability of error (i.e. there exists a code for which P_{e} is smaller than $\epsilon_{\text {upper }}$), while others are lower bounds on P_{e} (i.e. it is impossible to create codes such that $P_{e}<\epsilon_{\text {lower }}$).

The channel reliability function $E^{*}(R)$ takes into account the upperbounds, as well as the lowerbounds, on the decoding error probability $P_{e}(\mathcal{C})$ [Bla87] to define an area where should lie the
actual exponent of the probability of decoding error $P_{e}(N, R)$.

3.6.3 Error bounds on $P_{e}(N, R)$

a) The random coding bound $E_{r}(R)$ is a lower bound on the channel reliability function $E^{*}(R)$ and thus an upper bound on the error decoding probability $P_{e}(N, R)$. As we have already seen, this bound is obtained by random codes selection coding and a maximum likelyhood decoding rule (or also a decoding rule based on jointly typical pairs of sequences)

$$
\begin{equation*}
P_{e}(N, R) \leq b^{-N E_{r}(R)} \tag{3.90}
\end{equation*}
$$

b) The expurgated bound $E_{x}(R)$ also provides a lower bound on $E^{*}(R)$ (and an upper bound on $P_{e}(N, R)$. Its derivation is based on a random selection of codes (i.e., $\mathcal{S}_{\mathcal{C}}$) and a maximum likelyhood decoding rule (as for the random coding bound). For small code rates R, many of the bad codes obtained by random selection can be improved before the expectation of the probability of error $\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]$ is computed, leading to a lower decoding error probability.

$$
\begin{equation*}
P_{e}(N, R) \leq b^{-N E_{x}(R)} \tag{3.91}
\end{equation*}
$$

c) The space-partitioning bound $E_{p}(R)$, however, is an upper bound on $E^{*}(R)$ and thus a lower bound on the decoding error probability $P_{e}(N, R)$. For this bound, the space $\mathcal{S}_{\mathbf{y}}$ of received (and corrupted) codewords is partitioned into a set of M decoding regions: $\mathcal{U}_{1}, \ldots, \mathcal{U}_{m}$, \ldots, \mathcal{U}_{M}. A message w_{m} is encoded with the codeword \mathbf{c}_{m} before transmission in the noisy channel. A received vector \mathbf{y} will be correctly decoded as message w_{m} if $\mathbf{y} \in \mathcal{U}_{m}$, but incorrectly decoded if $\mathbf{y} \notin \mathcal{U}_{m}$. Since the received vector y can be anywhere in the space $\mathcal{S}_{\mathbf{y}}$, this leads to a minimum probability of error $P_{e}(N, R)$ [Bla87]: it is impossible to find a code \mathcal{C} with a lower probability of error.

$$
\begin{equation*}
P_{e}(N, R) \geq b^{-N E_{p}(R)} \tag{3.92}
\end{equation*}
$$

d) The sphere-packing bound $E_{s}(R)$ is another upper bound on $E^{*}(R)$ (i.e. a lower bound on $\left.P_{e}(N, R)\right)$. Here the codewords of a code \mathcal{C} are represented as points on the set of all possible received vectors $\mathcal{S}_{\mathbf{y}}$ in an N-dimensional space. The decoding regions: $\mathcal{U}_{1}, \ldots, \mathcal{U}_{m}, \ldots$, and \mathcal{U}_{M}; are represented as N-dimensional spheres. A decoding error occurs when the received codeword $\mathbf{y} \notin \mathcal{U}_{m}$, assuming that the correct codeword is \mathbf{c}_{m}, or when there is an overlapping of spheres: $\mathbf{y} \in \mathcal{U}_{m}$ and $\mathbf{y} \in \mathcal{U}_{m}^{\prime}\left(m \neq m^{\prime}\right)$. The problem is how much decoding spheres can be packed in the N-dimensional space with minimum (or no) overlapping?

$$
\begin{equation*}
P_{e}(N, R) \geq b^{-N E_{s}(R)} \tag{3.93}
\end{equation*}
$$

e) Finally, the straight-line bound $E_{l}(R)$ is an upper bound on the reliability function $E^{*}(R)$ and therefore a lower bound on $P_{e}(N, R)$. It is based on the conjecture (not proven yet) that the channel reliability function is a convex \cup function over the rate R of the code. If this argument is true, then any point on a straight line between any two points on the upperbounds of $E^{*}(R)$ will be also an upperbound of $E^{*}(R)$.

$$
\begin{equation*}
P_{e}(N, R) \geq b^{-N E_{l}(R)} \tag{3.94}
\end{equation*}
$$

3.6.4 Channel reliability function $E^{*}(R)$

The channel reliability function $E^{*}(R)$ is established from these bounds as shown below on Figure 3.14 .

Figure 3.14: Channel reliability function $E^{*}(R)$.

3.7 Channel coding theorem revisited

3.7.1 Shannon's channel coding theorem (random coding exponent)

In the proof of Shannon's channel coding theorem, we used a random coding argument along with a decision rule based on jointly typical pairs of sequences. This was useful since we knew the properties of such sequences, and it provided a bounded expression for the probability of decoding errors P_{e} : an exponent of base b, function of the difference between the rate R of error control code and the channel capacity C, as well as the blocklength N of the codewords (we implicitly assumed a fixed length code).

In this section, we determine the probability of decoding errors P_{e}, using once again the random coding argument. However, this time, we will use a maximum likehood decoding rule.

Theorem (Shannon's channel coding theorem (random coding exponent)):
Let C be the information transfer capacity of a memoryless channel defined by its transition probabilities matrix \mathbf{P}. If the code rate $R<C$, then there exists a channel code \mathcal{C} of size M and blocklength N, such that the probability of decoding error P_{e} is upperbounded as:

$$
P_{e}(N, R) \leq \min _{s \in[0,1]} \min _{\mathcal{S}_{\mathbf{p}}}\left[b^{s N R} \sum_{\mathbf{y}}\left(\sum_{\mathbf{x}} p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})^{\frac{1}{(1+s)}}\right)^{1+s}\right]
$$

provided that the blocklength N is sufficiently large (i.e., $N \geq N_{0}$).

Proof:

The proof is based as before on the random selection of a set of codes $\mathcal{S}_{\mathcal{C}}=\{\mathcal{C}\}$ and the expected error probability P_{e} over that set. Once again we assume that the source of information \mathbf{W} is an equiprobable source:

$$
\begin{equation*}
p\left(w_{m}\right)=\frac{1}{M}=b^{-N R} \quad \forall m \tag{3.95}
\end{equation*}
$$

where R is the code rate, N the blocklength. The encoder assigns the unique codeword \mathbf{c}_{m} to the message w_{m}.

$$
\mathcal{C}=\left[\begin{array}{c}
\mathbf{c}_{1} \\
\vdots \\
\mathbf{c}_{m} \\
\vdots \\
\mathbf{c}_{M}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m, 1} & \cdots & c_{m, n} & \cdots & c_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M, 1} & \cdots & c_{M, n} & \cdots & c_{M, N}
\end{array}\right]=\left[\begin{array}{ccccc}
x_{1,1} & \cdots & x_{1, n} & \cdots & x_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{m, 1} & \cdots & x_{m, n} & \cdots & x_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{M, 1} & \cdots & x_{M, n} & \cdots & x_{M, N}
\end{array}\right]
$$

The $b^{N R}$ codewords of the code \mathcal{C} are chosen such as the distribution of the codewords elements $p(x)$ maximize the mutual information $I(X ; Y)$ and hence lead to the channel capacity C. At the channel output, a maximum likehood decoding decoder assigns to the received (and probably corrupted) codeword \mathbf{y}, the original codeword \mathbf{c}_{m} according to the maximum likelyhood rule:

$$
\mathcal{U}_{m}=\left\{\mathbf{y}: p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)>p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right) \quad \text { for all } m \neq m^{\prime}\right\}
$$

The error probability $P_{e \mid m}$, given that codeword \mathbf{c}_{m} is transmitted, is given by:

$$
\begin{equation*}
P_{e \mid m}=\sum_{\mathbf{y} \notin \mathcal{U}_{m}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right) \tag{3.96}
\end{equation*}
$$

Let $\phi_{m}(\mathbf{y})$ be an indicator function defined as:

$$
\phi_{m}(\mathbf{y})= \begin{cases}1 & \text { if } \mathbf{y} \in \mathcal{U}_{m} \\ 0 & \text { if } \mathbf{y} \notin \mathcal{U}_{m}\end{cases}
$$

This indicator function in bounded as:

$$
\begin{equation*}
1-\phi_{m}(\mathbf{y}) \leq\left\{\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M}\left[\frac{p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)}{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)}\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \quad \text { for } s \in[0,1] \tag{3.97}
\end{equation*}
$$

The expression $1-\phi_{m}(\mathbf{y})$ can take only two values, i.e., $1-\phi_{m}(\mathbf{y})=0$ or $1-\phi_{m}(\mathbf{y})=1$. For $1-\phi_{m}(\mathbf{y})=0$, the inequality holds true since the right-hand side of the inequality is positive; it is a sum a positive terms raised at a positive power:

$$
\begin{equation*}
\left\{\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M}\left[\frac{p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)}{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)}\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \geq 0 \tag{3.98}
\end{equation*}
$$

Now, if $1-\phi_{m}(\mathbf{y})=1$, i.e., $\phi_{m}(\mathbf{y})=0$, then this indicates that there is at least a codeword $\mathbf{c}_{m^{\prime}}$ such that

$$
p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right) \geq p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)
$$

(thus leading to a decoding error). Then, for this codeword $\mathbf{c}_{m^{\prime}}$:

$$
\begin{equation*}
\frac{p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)}{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)} \geq 1 \tag{3.99}
\end{equation*}
$$

Raising to a positive power $\left(\frac{1}{1+s}\right)$ and adding $M-2$ non negative terms maintains the inequality:

$$
\begin{equation*}
\sum_{\substack{c^{\prime}=1 \\ m^{\prime} \neq m}}^{M}\left[\frac{p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)}{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)}\right]^{\left(\frac{1}{1+s}\right)} \geq 1 \tag{3.100}
\end{equation*}
$$

and raising once more to a positive exponent s still preserves the inequality:

$$
\begin{equation*}
\left\{\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M}\left[\frac{p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)}{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)}\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \geq 1 \tag{3.101}
\end{equation*}
$$

The error probability can be expressed as a function of the indicator function and then upperbounded as follows:

$$
\begin{align*}
& P_{e \mid m}=\sum_{\mathbf{y} \not \mathcal{U}_{m}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right) \tag{3.102}\\
& P_{e \mid m}=\sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\left[1-\phi_{m}(\mathbf{y})\right] \tag{3.103}\\
& P_{e \mid m} \leq \sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\left\{\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M}\left[\frac{p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)}{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)}\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \tag{3.104}\\
& P_{e \mid m} \leq \sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)\left\{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(-\frac{1}{1+s}\right)} \sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M}\left[p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \tag{3.105}\\
& P_{e \mid m} \leq \sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right) p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(-\frac{s}{1+s}\right)}\left\{\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M}\left[p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \tag{3.106}\\
& P_{e \mid m} \leq \sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1+s-s}{1+s}\right)}\left\{\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M}\left[p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)\right]^{\left(\frac{1}{1+s}\right)}\right\}^{s} \tag{3.107}\\
& P_{e \mid m} \leq \sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1}{1+s}\right)}\left\{\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M}\left[p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)\right]\left(\frac{1}{1+s}\right)\right. \tag{3.108}
\end{align*}
$$

Considering the random selection scheme where each element of a code \mathcal{C} is chosen according to the distribution $p(x)$, we will determine the average error decoding probability over the set $\mathcal{S}_{\mathcal{C}}$ of all possible codes (with distribution $p(x)$).

$$
\begin{equation*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left\{\sum_{\mathbf{y}} p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1}{1+s}\right)}\left[\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)^{\left(\frac{1}{1+s}\right)}\right]^{s}\right\} \tag{3.109}
\end{equation*}
$$

The expectation of a sum being equal to the sum of expectations,

$$
\begin{equation*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \sum_{\mathbf{y}} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left\{p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1}{1+s}\right)}\left[\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)^{\left(\frac{1}{1+s}\right)}\right]^{s}\right\} \tag{3.110}
\end{equation*}
$$

Note that the first term on the right-hand side is a function of the selected codeword \mathbf{c}_{m} while the second term depends only on the codeword $\mathbf{c}_{m^{\prime}}$ which are selected randomly from each other. Therefore the error expectation $\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right]$ can be written as:

$$
\begin{equation*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \sum_{\mathbf{y}}\left\{\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1}{1+s}\right)}\right] \times \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)^{\left(\frac{1}{1+s}\right)}\right]^{s}\right\} \tag{3.111}
\end{equation*}
$$

Using the Jensen's inequality ${ }^{1}$:

$$
\left.\begin{array}{c}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \sum_{\mathbf{y}}\left\{\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1}{1+s}\right)}\right] \times\left[\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C}) \sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)^{\left(\frac{1}{1+s}\right)}\right]^{s}\right\}(3 \\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \sum_{\mathbf{y}}\left\{\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p\left(\mathbf{y} \mid \mathbf{c}_{m}\right)^{\left(\frac{1}{1+s}\right)}\right] \times\left\{\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)^{\left(\frac{1}{1+s}\right)}\right]\right\}\right\} \tag{3.113}
\end{array}\right\}
$$

Since the information source \mathbf{W} generates the messages with equal probability, then the codewords occur with equal probability:

$$
p\left(\mathbf{c}_{m}\right)=\frac{1}{M}=b^{-N R}
$$

and the second term $\left[p\left(\mathbf{y} \mid \mathbf{c}_{m^{\prime}}\right)^{\left(\frac{1}{1+s}\right)}\right]$ do not depend on the actual message, or codeword, transmitted.

[^1]\[

$$
\begin{align*}
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq \sum_{\mathbf{y}} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right] \times\left\{\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]\right\} \tag{3.114}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq(M-1)^{s} \sum_{\mathbf{y}} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right] \times\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{s} \tag{3.115}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq(M-1)^{s} \sum_{\mathbf{y}} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.116}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq M^{s} \sum_{\mathbf{y}} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.117}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \leq b^{N R s} \sum_{\mathbf{y}} \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.118}
\end{align*}
$$
\]

Rewritting the right-hand side in terms of the probability $p(\mathbf{x})$ of selecting the random codeword \mathbf{x} over the set of codes $\mathcal{S}_{\mathcal{C}}$ and considering the expected probability of error for any transmitted codeword.

$$
\begin{align*}
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]=\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[\sum_{m=1}^{M} p\left(\mathbf{c}_{m}\right) P_{e \mid m}\right] \tag{3.119}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right]=\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e \mid m}\right] \tag{3.120}\\
& \sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq b^{N R s} \sum_{\mathbf{y}}\left[\sum_{\mathbf{x}} p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.121}\\
& P_{e} \leq b^{N R s} \sum_{\mathbf{y}}\left[\sum_{\mathbf{x}} p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.122}
\end{align*}
$$

because there must exist one code \mathcal{C}^{*} for which P_{e} is, at most, as small as the the expected probability of decoding error over the set of codes $\mathcal{S}_{\mathcal{C}}$. This holds true for value of parameter $s \in[0,1]$. Therefore, the error probability P_{e} can be written as a double minimum over the input distribution (to maximize the mutual information and hence reach the channel capacity C) and the positive exponent parameter s :

$$
\begin{equation*}
P_{e}(N, R) \leq \min _{s \in[0,1]} \min _{\mathcal{S}_{\mathbf{p}}}\left[b^{s N R} \sum_{\mathbf{y}}\left(\sum_{\mathbf{x}} p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})^{\frac{1}{(1+s)}}\right)^{1+s}\right] \tag{3.123}
\end{equation*}
$$

The error probability $P_{e}(N, R)$ can also be expressed in terms of the individual codeword elements. Since we consider a memoryless channel and the random generation of codewords, we have that:

$$
\begin{align*}
p(\mathbf{y} \mid \mathbf{x}) & =\prod_{n=1}^{N} p\left(y_{j} \mid x_{k}\right) \quad \text { and } \tag{3.124}\\
p(\mathbf{x}) & =\prod_{n=1}^{N} p\left(x_{k}\right) \tag{3.125}
\end{align*}
$$

then:

$$
\begin{align*}
& P_{e} \leq b^{N R s} \sum_{\mathbf{y}}\left[\sum_{\mathbf{x}} p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.126}\\
& P_{e} \leq b^{N R s} \sum_{\mathbf{y}}\left[\sum_{\mathbf{x}} \prod_{n=1}^{N} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.127}\\
& P_{e} \leq b^{N R s} \sum_{y_{1}=1}^{J} \sum_{y_{2}=1}^{J} \cdots \sum_{y_{N}=1}^{J}\left[\sum_{x_{1}=1}^{K} \sum_{x_{2}=1}^{K} \cdots \sum_{x_{N}=1}^{K} \prod_{n=1}^{N} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.128}
\end{align*}
$$

The sums of products can be replaced by a product of sums using the rule:

$$
\begin{equation*}
\sum_{x_{1}=1}^{K} \sum_{x_{2}=1}^{K} \cdots \sum_{x_{N}=1}^{K}\left[\prod_{n=1}^{N} A\left(x_{n}\right)\right]=\prod_{n=1}^{N}\left[\sum_{x_{N}=1}^{K} A\left(x_{n}\right)\right] \tag{3.129}
\end{equation*}
$$

and therefore,

$$
\begin{align*}
& P_{e} \leq b^{N R s} \sum_{y_{1}=1}^{J} \sum_{y_{2}=1}^{J} \cdots \sum_{y_{N}=1}^{J}\left[\sum_{x_{1}=1}^{K} \sum_{x_{2}=1}^{K} \cdots \sum_{x_{N}=1}^{K} \prod_{n=1}^{N} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)} \tag{3.130}\\
& P_{e} \leq b^{N R s} \prod_{n=1}^{N}\left[\sum_{y_{N}=1}^{J}\left[\sum_{x_{N}=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)}\right] \tag{3.131}\\
& P_{e} \leq b^{N R s}\left[\sum_{j=1}^{J}\left[\sum_{k=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)\left(\frac{1}{1+s}\right)\right]^{(s+1)}\right]^{N} \tag{3.132}
\end{align*}
$$

Maximizing over the range s and the input distributions, the random coding error bound can expressed as:

$$
\begin{equation*}
P_{e}(N, R) \leq \min _{s \in[0,1]} \min _{\mathcal{S}_{\mathbf{p}}}\left[b^{N R s}\left[\sum_{j=1}^{J}\left[\sum_{k=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\left(\frac{1}{1+s}\right)}\right]^{(s+1)}\right]^{N}\right] \tag{3.134}
\end{equation*}
$$

The random coding exponent $E_{r}(R) \approx-\frac{1}{N} \log _{b} P_{e}$ can be expressed as double maximum over the same sets $\mathcal{S}_{\mathbf{p}}$ and $s \in[0,1]$:

$$
\begin{equation*}
E_{r}(R) \equiv \max _{s \in[0,1]} \max _{\mathcal{S}_{\mathbf{p}}}\left[-s R-\log _{b} \sum_{j=1}^{J}\left(\sum_{k=1}^{K} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right)^{\frac{1}{1+s)}}\right)^{1+s}\right] \tag{3.135}
\end{equation*}
$$

3.8 Problems

Problem 3.1: The average mutual information $I(X ; Y)$ is a convex \cap function (i.e. "concave" function) over the convex set of input symbols distributions $\{\bar{p}\}=\left\{\left\{p\left(x_{k}\right)\right\}\right\}$. However, $I(X ; Y)$ is a convex \cup function (or "convex" function) over the convex set of channel transition probabilities matrices $\{\mathbf{P}\}=\left\{\left\{p\left(y_{j} \mid x_{k}\right)\right\}\right\}$.
a) Show that the set of channel transition probabilities matrices $\{\mathbf{P}\}=\left\{\left\{p\left(y_{j} \mid x_{k}\right)\right\}\right\}$ forms a convex set.
b) Show that over this convex set $\{\mathbf{P}\}=\left\{\left\{p\left(y_{j} \mid x_{k}\right)\right\}\right\}$, the average mutual information is a convex \cup function.

Problem 3.2: The channel transition probability matrix \mathbf{P} of a ternary communication channel is given by:

$$
\mathbf{P}=\left(\begin{array}{ccc}
(1-2 \epsilon) & \epsilon & \epsilon \\
\epsilon & (1-2 \epsilon) & \epsilon \\
\epsilon & \epsilon & (1-2 \epsilon)
\end{array}\right)
$$

a) What is capacity C of the ternary channel as a function of the crossover probability ϵ ?
b) If this ternary channel is cascaded with another identical ternary channel what will be the resulting channel capacity $C_{\text {cascade }}$?
c) Draw on the same figure both capacities (i.e. C and $C_{\text {cascade }}$) for $\epsilon \in[0,0.5]$.
d) How does the cascading of these ternary channels affect the rate of transfer of information (i.e. $I(X ; Y)) ?$

Problem 3.3: Consider all binary sequences of blocklength $N=7$. We wish to choose a code \mathcal{C} of size M :

$$
\mathcal{C}=\left\{\mathbf{c}_{1}, \cdots, \mathbf{c}_{m}, \cdots, \mathbf{c}_{M}\right\}
$$

To correct all single errors during transmission through a binary channel, the minimum distance $d_{\text {min }}$ between any pairs of codewords ($\left.\mathbf{c}_{m}, \mathbf{c}_{m^{\prime}}\right)$ should be ≥ 3.
a) How many binary sequences have a distance less than or equal to 1 from a given codeword \mathbf{c}_{m} ?
b) What is the maximum possible value of the code size M ?
c) Assuming that the maximum value of M can be achieved, what is the rate R of generation of information that can be transmitted over the channel?

Problem 3.4: Consider a binary noisy channel for which the noise affects the transmitted bits in blocks of 15 bits. For this specific channel, a block is either transmitted without error, with one error or with 2 errors out of the 15 bits. Each combination of no error, single error or double errors occur with equal probability. Let \mathbf{X} represent the 15 -bits source sequences whereas \mathbf{Y} represent the 15 -bits sequences received from the noisy channel.
a) Indicate the number of error patterns and their probability of occurrence.
b) Determine the equivocation $H(\mathbf{Y} \mid \mathbf{X})$.
c) What is the maximum value of the mutual information between the input and output sequences $I(\mathbf{X} ; \mathbf{Y})$? Under what conditions is achieved the maximum of $I(\mathbf{X} ; \mathbf{Y})$?
d) Now what is the capacity C of the original binary channel (i.e. considering a transmission bit per bit but under the same channel conditions)?
Problem 3.5: Consider n identical binary symmetric channels with crossover probability $0<\epsilon<\frac{1}{2}$.
a) Find the channel capacity C_{2} when two of these BSC channels are cascaded.
b) Write an expression for the capacity C_{n} of n cascaded channels.
c) Suppose that the number of BSC channels $n \rightarrow \infty$. What is the resulting capacity C_{∞} ? Justify your answer and explain the result.

Problem 3.6: Consider the following M-ary memoryless channel.

a) Find the expression for the channel capacity C as a function of the parameter ϵ.
b) Draw the channel capacity function C for $0 \leq \epsilon \leq 1$.
c) If we put two of these M-ary memoryless channels in cascade what will be the expression of the resulting composite channel C_{2} ?
d) Sketch the composite channel capacity C_{2} over the same range of parameter ϵ.

Problem 3.7: The channel reliability function of a given transmission channel is given below. We want to use channel coding in order to insure reliable communication over this noisy channel.

a) What is the maximum code rate $R=\frac{k}{n}$ for this channel. Give the theoretical as well as practical limits.
b) How would you assess the probability of error P_{e} for a code with a rate $R=10$ and a code length $n=255$?
c) What can be said about the probability of error for a code rate $R=2.5$ and a code length $n=63$?

Problem 3.8: Consider the following quaternary memoryless channel.

a) What is the transition probability matrix \mathbf{P} ?
b) Find the expression for the channel capacity C as a function of the parameter α.
c) Compute the values of the channel capacity function C for $\alpha=0,0.05,0.10, \ldots, 0.40,0.45$, 0.50 , and draw this channel capacity function C for that range of α values.

Problem 3.9: For each of the following channels, give the transition probability matrix \mathbf{P}, determine the expression for the channel capacity (in $S h$ or bits) and the corresponding input symbols' distribution.
a) Ternary memoryless channel:

b) Pentagonal channel, where for $0 \leq k \leq 4$ and $0 \leq j \leq 4$:

$$
p\left(y_{j} \mid x_{k}\right)=\left\{\begin{array}{cc}
\frac{1}{2} & \text { if } j=k \pm 1 \bmod 5 \\
0 & \text { if } j \neq k \pm 1 \bmod 5
\end{array}\right.
$$

Problem 3.10: Computer-oriented problem

Write a program which computes the capacity C of asymmetric channels. Use the Blahut-Arimoto algorithm described in class. You have to provide the program's listing. (Note: for further references you may wish to read section 5.4 of "Principles and Practice of Information Theory" by Richard E. Blahut and/or section 13.8 of "Elements of Information Theory" by Thomas M. Cover and Joy A. Thomas. Compute the channel capacity of the following channels:
a)

$$
\mathbf{P}=\left(\begin{array}{lll}
0.7 & 0.2 & 0.1 \\
0.2 & 0.1 & 0.7
\end{array}\right)
$$

b)

$$
\mathbf{P}=\left(\begin{array}{ccccc}
0.4 & 0.2 & 0.4 & 0.0 & 0.0 \\
0.0 & 0.4 & 0.2 & 0.4 & 0.0 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.4 & 0.0 & 0.0 & 0.4 & 0.2 \\
0.2 & 0.4 & 0.0 & 0.0 & 0.4
\end{array}\right)
$$

Chapter 4

Rate Distortion Theory

4.1 Rate distortion function

Definition (Rate distortion function):
The rate distortion function $R(D)$ is defined, for a given distortion criterion (or fidelity criterion) D, as the minimum of the mutual information $I(X ; \hat{X})$ over the set of D-admissible transition matrices:

$$
R(D) \equiv \min _{\mathcal{P}_{D}} I(X ; \hat{X})
$$

where \mathcal{P}_{D} is the set of all D-admissible (distortion) transition probability matrices, defined as:

$$
\mathcal{P}_{D} \equiv\left\{\mathbf{P}: \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \leq D\right\}
$$

Theorem (Convexity of the rate distortion function):
The rate distortion function $R(D)$ is a convex cup, or convex \cup, function over the convex set $\mathcal{D} \equiv\{D\}$, decreasing in the distortion interval: $\left[d_{\text {min }}, d_{\text {max }}\right]$.

Proof:

Consider the set \mathcal{P}_{D} of all D-admissible transition probability matrices (which are function of the fidelity criterion D).

$$
\mathcal{P}_{D}=\{\mathbf{P}=\left\{p\left(\hat{x}_{j} \mid x_{k}\right)\right\}: \underbrace{\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right)}_{\text {average distortion }} \leq \underbrace{D}_{\begin{array}{c}
\text { distortion } \tag{4.1}\\
\text { criterion }
\end{array}}\}
$$

a) If the distortion criterion D is negative, then the set \mathcal{P}_{D} is empty, which implies that the rate distortion function $R(D)$ is not defined (this is due to the fact that the average distortion is defined as being always positive).
b) If D is positive but smaller than $d_{\text {min }}$, then the set \mathcal{P}_{D} is still empty, since it is not possible to find a matrix \mathbf{P} giving an average distortion $\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}, \hat{x}_{j}\right) d\left(x_{k}, \hat{x}_{j}\right)$ smaller than D :

$$
\begin{equation*}
d_{\min }=\sum_{k=1}^{K} p\left(x_{k}\right) d\left(x_{k}, \hat{x}_{j_{0}}\right) \tag{4.2}
\end{equation*}
$$

where $d\left(x_{k}, \hat{x}_{j_{0}}\right) \leq d\left(x_{k}, \hat{x}_{j}\right)$, for $j=1, \ldots, J$.

c) For $d_{\text {min }} \leq D \leq D^{\prime} \leq d_{\text {max }}$, the set $\mathcal{P}_{D} \in \mathcal{P}_{D^{\prime}}$ because the set $\mathcal{P}_{D^{\prime}}$ admits transition probability matrices for which the average distortion can attain D^{\prime} while the set \mathcal{P}_{D} includes only those matrices with average distortion smaller or equal to D.
As the allowable distortion D increases, the set of D-admissible transition probability matrices \mathcal{P}_{D}, satisfying the condition $E[d(X, \hat{X})] \leq D$, increases. This provides more matrices over which the average mutual information $I(X ; \hat{X})$ can be minimized. Therefore:

$$
\begin{equation*}
R\left(D^{\prime}\right)=\min _{\mathcal{P}_{D^{\prime}}} I(X ; \hat{X}) \tag{4.3}
\end{equation*}
$$

$$
\begin{align*}
R\left(D^{\prime}\right) & =\min _{\mathcal{P}_{D^{\prime}}} \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) \log _{b}\left[\frac{p\left(\hat{x}_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{l}\right) p\left(\hat{x}_{j} \mid x_{l}\right)}\right] \tag{4.4}\\
R\left(D^{\prime}\right) & \leq \min _{\mathcal{P}_{D} \in \mathcal{P}_{D^{\prime}}} \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) \log _{b}\left[\frac{p\left(\hat{x}_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{l}\right) p\left(\hat{x}_{j} \mid x_{l}\right)}\right] \tag{4.5}\\
R\left(D^{\prime}\right) & \leq \min _{\mathcal{P}_{D} \in \mathcal{P}_{D^{\prime}}} I(X ; \hat{X}) \tag{4.6}
\end{align*}
$$

d) The maximum distortion $d_{\max }$ is defined as the minimum distortion D for which the mutual information is null between the input X and its reproduction \hat{X}; i.e., $I(X ; \hat{X})=0$. Therefore, at this rate, there is no transfer of information and \hat{X} is independent of X. The transition probabilities $p\left(\hat{x}_{j} \mid x_{k}\right)$ are then equal to the marginal probabilities $p\left(\hat{x}_{j}\right)$.
The expected (or average) distortion $E[d(X, \hat{X})]$ is:

$$
\begin{align*}
& E[d(X, \hat{X})]=\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \tag{4.7}\\
& E[d(X, \hat{X})]=\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j}\right) d\left(x_{k}, \hat{x}_{j}\right) \tag{4.8}\\
& E[d(X, \hat{X})]=\sum_{j=1}^{J} p\left(\hat{x}_{j}\right) \sum_{k=1}^{K} p\left(x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \tag{4.9}
\end{align*}
$$

The maximum distortion $d_{\max }$ is the smallest distortion D with zero information transfer ${ }^{1}$:

$$
\begin{equation*}
d_{\max }=\min _{j=1, \ldots, J} \sum_{k=1}^{K} p\left(x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \tag{4.10}
\end{equation*}
$$

that is, choosing the reproducing letter to minimize the distortion D.
e) We now proove that the rate distortion function $R(D)$ is a convex \cup function of the distortion D. This is done in two steps: first, the distortion D is shown to be a convex set, and secondly, we show that $R(D)$ is indeed a convex \cup function of D.
i) Let's define two transition probability matrices \mathbf{P}^{\prime} and $\mathbf{P}^{\prime \prime}$ such that:

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\left\{p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right)\right\} \quad \Rightarrow \quad D^{\prime} \text { and } R\left(D^{\prime}\right) \\
& \mathbf{P}^{\prime \prime}=\left\{p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right)\right\} \quad \Rightarrow \quad D^{\prime \prime} \text { and } R\left(D^{\prime \prime}\right)
\end{aligned}
$$

that is:

$$
\begin{aligned}
\mathbf{P}^{\prime} \in \mathcal{P}_{D^{\prime}} & =\left\{\mathbf{P}^{\prime}: \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \leq D^{\prime}\right\} \\
\mathbf{P}^{\prime \prime} \in \mathcal{P}_{D^{\prime \prime}} & =\left\{\mathbf{P}^{\prime \prime}: \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \leq D^{\prime \prime}\right\}
\end{aligned}
$$

[^2]As seen before, the set of transition probability matrices $\{\mathbf{P}\}$ is a convex set, thus we can choose another matrix \mathbf{P} as:

$$
\begin{equation*}
p\left(\hat{x}_{j} \mid x_{k}\right)=\lambda p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right)+(1-\lambda) p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right) \tag{4.11}
\end{equation*}
$$

by definition of a convex set, where $\lambda \in[0,1]$. If we take D equal to the expected distortion $E[d(X, \hat{X})]$:

$$
\begin{align*}
d(X, \hat{X}) & =\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \tag{4.12}\\
d(X, \hat{X}) & =\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right)\left[\lambda p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right)+(1-\lambda) p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right)\right] d\left(x_{k}, \hat{x}_{j}\right) \tag{4.13}\\
d(X, \hat{X}) & =\lambda \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \\
& +(1-\lambda) \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \tag{4.14}\\
d(X, \hat{X}) & =\lambda d^{\prime}(X, \hat{X})+(1-\lambda) d^{\prime \prime}(X, \hat{X}) \tag{4.15}
\end{align*}
$$

For the pseudo-channels for which $d(X, \hat{X})=D$ then:

$$
\begin{equation*}
D=\lambda D^{\prime}+(1-\lambda) D^{\prime \prime} \tag{4.16}
\end{equation*}
$$

ii) We consider now the convexity of the rate distortion function $R(D)$ itself. The mutual information $I(X ; \hat{X})$ is a convex \cup function over the convex set of transition probabilities' matrices.

$$
R(D)=\min _{\mathcal{P}_{D}} I(X ; \hat{X})
$$

Let $\mathbf{P}^{\prime}=\left\{p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right)\right\}$ be a D^{\prime}-admissible pseudo-channel (or reproduction channel) with mutual information $I^{\prime}(X ; \hat{X})=R\left(D^{\prime}\right)$, and $\mathbf{P}^{\prime \prime}=\left\{p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right)\right\}$ a $D^{\prime \prime}$-admissible channel with $I^{\prime \prime}(X ; \hat{X})=R\left(D^{\prime \prime}\right)$. Construct another transition probability matrix \mathbf{P} as follows:

$$
\mathbf{P}=\lambda \mathbf{P}^{\prime}+(1-\lambda) \mathbf{P}^{\prime \prime}
$$

or equivalently:

$$
p\left(\hat{x}_{j} \mid x_{k}\right)=\lambda p^{\prime}\left(\hat{x}_{j} \mid x_{k}\right)+(1-\lambda) p^{\prime \prime}\left(\hat{x}_{j} \mid x_{k}\right)
$$

This new reproduction channel \mathbf{P} is then $D=\lambda D^{\prime}+(1-\lambda) D^{\prime \prime}$ admissible. Therefore the rate distortion function is:

$$
\begin{equation*}
R(D)=\min _{\mathcal{P}_{D}} I(X ; \hat{X}) \leq I(X ; \hat{X}) \tag{4.17}
\end{equation*}
$$

But the mutual information $I(X ; \hat{X})$ is a convex \cup, function over the convex set of transition matrices $\{\mathbf{P}\}$, that is:

$$
I(X ; \hat{X}) \leq \lambda I^{\prime}(X ; \hat{X})+(1-\lambda) I^{\prime \prime}(X ; \hat{X})
$$

and therefore;

$$
\begin{align*}
& R(D)=R\left(\lambda D^{\prime}+(1-\lambda) D^{\prime \prime}\right) \tag{4.18}\\
& R(D) \leq I(X ; \hat{X}) \tag{4.19}\\
& R(D) \leq \lambda I^{\prime}(X ; \hat{X})+(1-\lambda) I^{\prime \prime}(X ; \hat{X}) \tag{4.20}\\
& R(D) \leq \lambda R\left(D^{\prime}\right)+(1-\lambda) R\left(D^{\prime \prime}\right) \tag{4.21}
\end{align*}
$$

The rate distortion function $R(D)$ is a convex \cup function, and a decreasing function over the convex set of distortion criterion D, from $d_{\text {min }}$ to $d_{\text {max }}$.

Figure 4.1: Convexity of the rate distortion function $R(D)$.

Example (Rate distortion function):

In general, the computation of the rate distortion function requires an iterative algorithm such as the Blahut-Arimoto algorithm. For this example, however, because of the many symmetries, it is possible to find a closed-form expression for the rate-distortion function.

Consider a ternary source of information X characterized with the input symbol distribution: $p\left(x_{1}\right)=p\left(x_{2}\right)=p\left(x_{3}\right)=\frac{1}{3}$, that is X is an equiprobable source. Then the source entropy $H(X)$, expressed in shannons, is given by:

$$
\begin{aligned}
& H(X)=-\sum_{i=1}^{3} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right) \\
& H(X)=-3\left[\left(\frac{1}{3}\right) \log _{2}\left(\frac{1}{3}\right)\right] \\
& H(X)=1.584 \quad \text { (Shannons) }
\end{aligned}
$$

This source of information is to be compressed by a source compression code to reduce the rate needed to transmit it over a communication channel. At the receiving end, a source compression decoder reproduces, with some amount of distortion the information. As shown on Figure 4.2, the reproduction \hat{X} is binary instead of ternary to reduce its maximum entropy $H(\hat{X})$ to 1 shannon instead of 1.584 , hence reducing the information rate $R(D)$.

Figure 4.2: Source compression encoder and decoder, or pseudochannel, for the computation of the rate distortion function $R(D)$.

As depicted on Figure 4.3, the distortion measures associated with the mapping of the source symbols into the reproduction symbols are given in the distortion matrix \mathbf{D} :

$$
\mathbf{D}=\left[\begin{array}{lll}
d\left(x_{1}, \hat{x}_{1}\right) & d\left(x_{2}, \hat{x}_{1}\right) & d\left(x_{3}, \hat{x}_{1}\right) \\
d\left(x_{1}, \hat{x}_{2}\right) & d\left(x_{2}, \hat{x}_{2}\right) & d\left(x_{3}, \hat{x}_{2}\right)
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

Figure 4.3: Distortion measures associated with the distortion matric D.
The minimum distortion $d_{\min }$ is given by:

$$
\begin{aligned}
& d_{\text {min }}=\sum_{k=1}^{3} p\left(x_{k}\right) d\left(x_{k}, \hat{x}_{j_{0}}\right) \\
& d_{\min }=p\left(x_{1}\right) d\left(x_{1}, \hat{x}_{1}\right)+p\left(x_{2}\right) d\left(x_{2}, \hat{x}_{2}\right)+p\left(x_{3}\right) \underbrace{d\left(x_{3}, \hat{x}_{1}\right)}_{\text {or } d\left(x_{3}, \hat{x}_{2}\right)} \\
& d_{\min }=\left(\frac{1}{3} \times 1\right)+\left(\frac{1}{3} \times 1\right)+\left(\frac{1}{3} \times 1\right) \\
& d_{\min }=1
\end{aligned}
$$

The maximum distortion $d_{\max }$ is equal to:

$$
\begin{aligned}
d_{\max }= & \min _{j=1,2} \sum_{k=1}^{3} p\left(x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \\
d_{\max }= & \min _{j=1,2}\left\{p\left(x_{1}\right) d\left(x_{1}, \hat{x}_{1}\right)+p\left(x_{2}\right) d\left(x_{2}, \hat{x}_{1}\right)+p\left(x_{3}\right) d\left(x_{3}, \hat{x}_{1}\right)\right], \\
& {\left.\left[p\left(x_{1}\right) d\left(x_{1}, \hat{x}_{2}\right)+p\left(x_{2}\right) d\left(x_{2}, \hat{x}_{2}\right)+p\left(x_{3}\right) d\left(x_{3}, \hat{x}_{2}\right)\right]\right\} } \\
d_{\max }= & \min _{j=1,2}\left\{\left[\left(\frac{1}{3} \times 1\right)+\left(\frac{1}{3} \times 2\right)+\left(\frac{1}{3} \times 1\right)\right],\left[\left(\frac{1}{3} \times 2\right)+\left(\frac{1}{3} \times 1\right)+\left(\frac{1}{3} \times 1\right)\right]\right\} \\
d_{\max }= & \min _{j=1,2}\left(\frac{4}{3}, \frac{4}{3}\right) \\
d_{\max }= & \frac{4}{3}
\end{aligned}
$$

Therefore, the rate distortion function $R(D)$ is defined only in the distortion criterion range, that is:

$$
d_{\min }=1 \leq D \leq d_{\max }=\frac{4}{3}
$$

We now can determine the rate distortion function as:

$$
\begin{aligned}
& R(D)=\min _{\mathcal{P}_{D}} I(X ; \hat{X}) \\
& R(D)=\min _{\mathcal{P}_{D}} \sum_{k=1}^{3} \sum_{j=1}^{2} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) \log _{b}\left[\frac{p\left(\hat{x}_{j} \mid x_{k}\right)}{\sum_{l=1}^{3} p\left(x_{l}\right) p\left(\hat{x}_{j} \mid x_{l}\right)}\right]
\end{aligned}
$$

where the set of admissible channels, \mathcal{P}_{D}, for a given allowable amount of distortion D is given by:

$$
\mathcal{P}_{D} \equiv\left\{\mathbf{P}: \sum_{k=1}^{3} \sum_{j=1}^{2} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \leq D\right\}
$$

We need to indicate the transition probabilities associated with the (cascaded source compression encoder and decoder) pseudochannel. Figure 4.4 shows the transition probabilities:

$$
\mathbf{P}=\left[\begin{array}{lll}
p\left(\hat{x}_{1} \mid x_{1}\right) & p\left(\hat{x}_{1} \mid x_{2}\right) & p\left(\hat{x}_{1} \mid x_{3}\right) \\
p\left(\hat{x}_{2} \mid x_{1}\right) & p\left(\hat{x}_{2} \mid x_{2}\right) & p\left(\hat{x}_{2} \mid x_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1-\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{1} & 1-\alpha_{2} & 1-\alpha_{3}
\end{array}\right]
$$

Figure 4.4: Transition probability matrix \mathbf{P} for the source compression encoder and decoder (pseudochannel).

This means that if we want to find the set of D-admissible channels, we need to search the set of transition probability matrices over $0 \leq \alpha_{1} \leq 1,0 \leq \alpha_{2} \leq 1$, and $0 \leq \alpha_{3} \leq 1$ and determine the range over which $d(X, \hat{X})=\sum_{k=1}^{3} \sum_{j=1}^{2} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \leq D$.

$$
\begin{aligned}
d(X, \hat{X})= & \sum_{k=1}^{3} \sum_{j=1}^{2} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \\
d(X, \hat{X})= & p\left(x_{1}\right)\left[p\left(\hat{x}_{1} \mid x_{1}\right) d\left(x_{1}, \hat{x}_{1}\right)+p\left(\hat{x}_{2} \mid x_{1}\right) d\left(x_{1}, \hat{x}_{2}\right)\right]+ \\
& p\left(x_{2}\right)\left[p\left(\hat{x}_{1} \mid x_{2}\right) d\left(x_{2}, \hat{x}_{1}\right)+p\left(\hat{x}_{2} \mid x_{2}\right) d\left(x_{2}, \hat{x}_{2}\right)\right]+ \\
& p\left(x_{3}\right)\left[p\left(\hat{x}_{1} \mid x_{3}\right) d\left(x_{3}, \hat{x}_{1}\right)+p\left(\hat{x}_{2} \mid x_{3}\right) d\left(x_{3}, \hat{x}_{2}\right)\right] \\
d(X, \hat{X})= & \frac{1}{3}\left[\left(1-\alpha_{1}\right) \times 1+\alpha_{1} \times 2\right]+\frac{1}{3}\left[\alpha_{2} \times 2+\left(1-\alpha_{2}\right) \times 1\right]+\frac{1}{3}\left[\alpha_{3} \times 1+\left(1-\alpha_{3}\right) \times 1\right]
\end{aligned}
$$

Fortunately here, because of the symmetry in the distortion matrix \mathbf{D} and the equiprobable source of information, we have that for x_{1} : if $\alpha_{1}=1$ then x_{1} contributes for $\frac{1}{3}$ to the average distortion $d(X, \hat{X})$ while if $\alpha_{1}=0$ then x_{1} adds $\frac{2}{3}$ to the average distortion $d(X, \hat{X})$. Similarly, for input symbol x_{2}, the distortion contribution are respectively: $\frac{1}{3}$ for $\alpha_{2}=0$ and $\frac{2}{3}$ for $\alpha_{2}=1$. Then both α_{1} and α_{2} in the expression of the transition probabilities affect equally the average distortion $d(X, \hat{X})$.

Now consider the distortion caused by the mapping of source symbol x_{3} into either reproduction symbol, i.e. \hat{x}_{1} or \hat{x}_{2}. The contribution of x_{3} in the average distortion $d(X, \hat{X})$ is independent of the value of α_{3}. However, since we want to obtain the rate distortion function by minimizing the mutual information, we have to set α_{3} to $\frac{1}{2}$ such that the contribution in the expression of the mutual information will be equal to zero:

$$
\begin{aligned}
R(D)= & \min _{\mathcal{P}_{D}} I(X ; \hat{X}) \\
R(D)= & \min _{\mathcal{P}_{D}}\left\{\sum_{k=1}^{3} \sum_{j=1}^{2} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) \log _{2}\left[\frac{p\left(\hat{x}_{j} \mid x_{k}\right)}{\sum_{l=1}^{3} p\left(x_{l}\right) p\left(\hat{x}_{j} \mid x_{l}\right)}\right]\right\} \\
R(D)= & \min _{\mathcal{P}_{D}}\left\{p\left(x_{1}\right)\left[p\left(\hat{x}_{1} \mid x_{1}\right) \log _{2} \frac{p\left(\hat{x}_{1} \mid x_{1}\right)}{p\left(\hat{x}_{1}\right)}+p\left(\hat{x}_{2} \mid x_{1}\right) \log _{2} \frac{p\left(\hat{x}_{2} \mid x_{1}\right)}{p\left(\hat{x}_{2}\right)}\right]\right. \\
& +p\left(x_{2}\right)\left[p\left(\hat{x}_{1} \mid x_{2}\right) \log _{2} \frac{p\left(\hat{x}_{1} \mid x_{2}\right)}{p\left(\hat{x}_{1}\right)}+p\left(\hat{x}_{2} \mid x_{2}\right) \log _{2} \frac{p\left(\hat{x}_{2} \mid x_{2}\right)}{p\left(\hat{x}_{2}\right)}\right] \\
& \left.+p\left(x_{3}\right)\left[p\left(\hat{x}_{1} \mid x_{3}\right) \log _{2} \frac{p\left(\hat{x}_{1} \mid x_{3}\right)}{p\left(\hat{x}_{1}\right)}+p\left(\hat{x}_{2} \mid x_{3}\right) \log _{2} \frac{p\left(\hat{x}_{2} \mid x_{3}\right)}{p\left(\hat{x}_{2}\right)}\right]\right\} \\
R(D)= & \min _{\mathcal{P}_{D}}\left\{\frac{1}{3}\left[\left(1-\alpha_{1}\right) \log _{2} \frac{\left(1-\alpha_{1}\right)}{p\left(\hat{x}_{1}\right)}+\alpha_{1} \log _{2} \frac{\alpha_{1}}{p\left(\hat{x}_{2}\right)}\right]\right. \\
& +\frac{1}{3}\left[\alpha_{2} \log _{2} \frac{\alpha_{2}}{p\left(\hat{x}_{1}\right)}+\left(1-\alpha_{2}\right) \log _{2} \frac{\left(1-\alpha_{2}\right)}{p\left(\hat{x}_{2}\right)}\right] \\
& \left.+\frac{1}{3}\left[\left(1-\alpha_{3}\right) \log _{2} \frac{\left(1-\alpha_{3}\right)}{p\left(\hat{x}_{1}\right)}+\alpha_{3} \log _{2} \frac{\alpha_{3}}{p\left(\hat{x}_{2}\right)}\right]\right\}
\end{aligned}
$$

Minimizing the last term of the mutual information $I(X ; \hat{X})$, that is over the output symbol x_{3} does not affect (i.e. increase or decrease) the average distortion $d(X, \hat{X})$. However this is not the case for input symbols x_{1} and x_{2}. If we choose $p\left(\hat{x}_{1} \mid x_{3}\right)=\left(1-\alpha_{3}\right)=\alpha_{3}=\frac{1}{2}$ then:

$$
\log _{2} \frac{p\left(\hat{x}_{1} \mid x_{3}\right)}{p\left(\hat{x}_{1}\right)}=\log _{2} \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)}=0
$$

By symmetry, since x_{1} and x_{2} contribute to $d(X, \hat{X})$ and $I(X ; \hat{X})$ in a similar manner, we can choose $\alpha_{1}=\alpha_{2}=\alpha$ and $\alpha_{3}=\frac{1}{2}$ because $p\left(x_{1}\right)=p\left(x_{2}\right)=p\left(x_{3}\right)=\frac{1}{3}$, and then

$$
p\left(\hat{x}_{1}\right)=\frac{1}{3}(1-\alpha)+\frac{1}{3} \alpha+\frac{1}{3} \frac{1}{2}=\frac{1}{2}=p\left(\hat{x}_{2}\right)
$$

The average distortion between X and \hat{X} can now be expressed as:

$$
\begin{aligned}
d(X, \hat{X}) & =\sum_{k=1}^{3} \sum_{j=1}^{2} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \\
d(X, \hat{X}) & =\frac{1}{3}[(1-\alpha) \times 1+\alpha \times 2]+\frac{1}{3}[\alpha \times 2+(1-\alpha) \times 1]+\frac{1}{3}\left[\left(\frac{1}{2}\right) \times 1+\left(\frac{1}{2}\right) \times 1\right] \\
d(X, \hat{X}) & =\frac{1}{3}-\frac{1}{3} \alpha+\frac{2}{3} \alpha+\frac{2}{3} \alpha+\frac{1}{3} \alpha-\frac{1}{3} \alpha+\frac{1}{6}+\frac{1}{6} \\
d(X, \hat{X}) & =1+\frac{2}{3} \alpha
\end{aligned}
$$

The distortion range being $d_{\min }=1 \leq D \leq \frac{4}{3}=d_{\max }$ and taking $d(X, \hat{X})=D$ it follows that $0 \leq \alpha \leq \frac{1}{2}$, that is:

$$
D=1+\frac{2}{3} \alpha \quad \text { or equivalently } \quad \alpha=\frac{3}{2}(D-1)
$$

The rate $R(D)$ is also a function of the unique parameter α :

$$
\begin{aligned}
R(D)= & \min _{\mathcal{P}_{D}} I(X ; \hat{X}) \\
R(D)= & \min _{\mathcal{P}_{D}}\left\{\frac{1}{3}\left[\left(1-\alpha_{1}\right) \log _{2} \frac{\left(1-\alpha_{1}\right)}{p\left(\hat{x}_{1}\right)}+\alpha_{1} \log _{2} \frac{\alpha_{1}}{p\left(\hat{x}_{2}\right)}\right]+\frac{1}{3}\left[\alpha_{2} \log _{2} \frac{\alpha_{2}}{p\left(\hat{x}_{1}\right)}+\left(1-\alpha_{2}\right) \log _{2} \frac{\left(1-\alpha_{2}\right)}{p\left(\hat{x}_{2}\right)}\right]\right. \\
& \left.+\frac{1}{3}\left[\left(1-\alpha_{3}\right) \log _{2} \frac{\left(1-\alpha_{3}\right)}{p\left(\hat{x}_{1}\right)}+\alpha_{3} \log _{2} \frac{\alpha_{3}}{p\left(\hat{x}_{2}\right)}\right]\right\} \\
R(D)= & \min _{\mathcal{P}_{D}}\left\{\frac{1}{3}\left[(1-\alpha) \log _{2} \frac{(1-\alpha)}{\left(\frac{1}{2}\right)}+\alpha \log _{2} \frac{\alpha}{\left(\frac{1}{2}\right)}\right]+\frac{1}{3}\left[\alpha \log _{2} \frac{\alpha}{\left(\frac{1}{2}\right)}+(1-\alpha) \log _{2} \frac{(1-\alpha)}{\left(\frac{1}{2}\right)}\right]\right. \\
& \left.+\frac{1}{3}\left[\left(\frac{1}{2}\right) \log _{2} \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)}+\left(\frac{1}{2}\right) \log _{2} \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)}\right]\right\} \\
R(D)= & \min _{\mathcal{P}_{D}}\left\{\frac{1}{3}\left[(1-\alpha) \log _{2} \frac{(1-\alpha)}{\left(\frac{1}{2}\right)}+\alpha \log _{2} \frac{\alpha}{\left(\frac{1}{2}\right)}\right]+\frac{1}{3}\left[\alpha \log _{2} \frac{\alpha}{\left(\frac{1}{2}\right)}+(1-\alpha) \log _{2} \frac{(1-\alpha)}{\left(\frac{1}{2}\right)}\right]\right\}
\end{aligned}
$$

This can be simplified as:

$$
\begin{aligned}
R(D) & =\min _{\mathcal{P}_{D}} I(X ; \hat{X}) \\
R(D) & =\min _{\mathcal{P}_{D}} \frac{2}{3}(1-\alpha) \log _{2} 2(1-\alpha)+\frac{2}{3} \alpha \log _{2} 2 \alpha \\
R(D) & =\min _{\mathcal{P}_{D}} \frac{2}{3}\left[\log _{2} 2+(1-\alpha) \log _{2}(1-\alpha)+\alpha \log _{2} \alpha\right] \\
R(D) & =\min _{\mathcal{P}_{D}} \frac{2}{3}\left[1+(1-\alpha) \log _{2}(1-\alpha)+\alpha \log _{2} \alpha\right] \\
R(D) & =\min _{\mathcal{P}_{D}} \frac{2}{3}[1-H(\alpha)] \quad \text { or } \\
R(D) & =\min _{\mathcal{P}_{D}} \frac{2}{3}\left[1-H\left(\frac{3}{2}(D-1)\right)\right]
\end{aligned}
$$

Figure 4.5: Entropy function $H(\alpha)$ of a binary source.

Then the rate distortion function $R(D)$ is a function of the parameter α and can be expressed with the parametric equations:

$$
R(D)=\frac{2}{3}[1-H(\alpha)] \quad \text { and } \quad D=1+\frac{2}{3} \alpha \quad \text { for } 0 \leq \alpha \leq \frac{1}{2} .
$$

Figure 4.6: Rate distortion function $R(D)$ with $R(\alpha)$ and $D(\alpha), 0 \leq \alpha \leq \frac{1}{2}$.

4.2 Computation of the rate distortion function

The following algorithm (see ${ }^{2}$) computes the rate distortion function $R(D)$ iteratively. Also, see Berger 3 for an in-depth treatment of the rate distortion function.

Step 1: Initialization:
1.1: Set the rate-distortion function $R(D)$ slope $s,-\infty<s<0$.
1.2: Set the initial reproduction set distribution $\mathbf{p}^{(0)}$, where $\mathbf{p}^{(0)}=\left\{p^{(0)}\left(\hat{x}_{j}\right)\right\}$. Choose $p^{(0)}\left(\hat{x}_{j}\right) \neq 0$ for $j=1, \ldots, J$ and, obviously $\sum_{j=1}^{J} p^{0}\left(\hat{x}_{j}\right)=1$.
1.3: Compute the matrix $\mathbf{A}=\left\{A_{k, j}\right\}$ from the distortion matrix:

$$
A_{k, j}=b^{s d\left(x_{k}, \hat{x}_{j}\right)} \quad \text { for } k \in[1, \ldots, K] \text { and } j \in[1, \ldots, J]
$$

Step 2: Iterative algorithm:
2.1: Compute the J coefficients $\left\{c_{j}\right\}$, for $1 \leq j \leq J$, as:

$$
c_{j}=\sum_{k=1}^{K} \frac{p\left(x_{k}\right) A_{k, j}}{\sum_{l=1}^{J} p^{(r)}\left(\hat{x}_{l}\right) A_{k, l}}
$$

2.2: Update the reproduction set distribution $\mathbf{p}^{(r+1)}$:

$$
p^{(r+1)}\left(\hat{x}_{j}\right)=c_{j} p^{(r)}\left(\hat{x}_{j}\right) \quad \text { for } j \in[1, \ldots, J]
$$

2.3: Compute the "lower value" T_{L} as:

$$
T_{L}=\sum_{j=1}^{J} p^{(r+1)}\left(\hat{x}_{j}\right) \log _{b} c_{j}
$$

2.4: Compute the "upper value" T_{U} as:

$$
T_{U}=\max _{j=1}^{J} \log _{b} c_{j}
$$

Step 3: Test if the difference between T_{U} and T_{L} is smaller than a fixed tolerance ϵ :

$$
\text { If } \quad T_{U}-T_{L} \geq \epsilon \quad \text { then go back to Step 2, else continue }
$$

[^3]Step 4: Distortion and rate computation:
4.1: Compute the transition probabilities of the composite source compression encoder (or reproduction) channel $\mathbf{P}^{(r+1)}=\left\{p^{(r+1)}\left(\hat{x}_{j} \mid x_{k}\right)\right\}$, for $k \in[1, \ldots, K]$ and $j \in[1, \ldots, J]$:

$$
p^{(r+1)}\left(\hat{x}_{j} \mid x_{k}\right)=\frac{p^{(r+1)}\left(\hat{x}_{j}\right) A_{k, j}}{\sum_{l=1}^{J} p^{(r+1)}\left(\hat{x}_{l}\right) A_{k, l}}
$$

4.2: Compute the distortion D :

$$
D=\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p^{(r+1)}\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right)
$$

4.3: Compute the rate distortion function $R(D)$:

$$
R(D)=s D-\sum_{k=1}^{K} p\left(x_{k}\right) \log _{b} \sum_{j=1}^{J} p^{(r)}\left(\hat{x}_{j}\right) A_{k, j}-\sum_{j=1}^{J} p^{(r+1)}\left(\hat{x}_{j}\right) \log _{b} c_{j}
$$

Step 5: Program termination:
5.1: Change the value of s.
5.2: Go back to Step 1 or halt the program.

A flowchart of the above iterative algorithm [Bla87] is is shown on Figure 4.7.

Figure 4.7: Iterative algorithm for computing the rate distortion function $R(D)$ (from by "Principles and Practice of Information Theory" Richard E. Blahut).

4.3 Rate distortion theorem

Definition (Distortion jointly typical pair of sequences):
Given a memoryless pair of random variables $(X ; \hat{X})$ with a joint probability distribution $\{p(\mathbf{x}, \hat{\mathbf{x}})\}$ and a joint entropy $H(\mathbf{X}, \hat{\mathbf{X}})$, the set of ϵ-distortion jointly typical pairs of sequences $\mathcal{T}_{\mathbf{X}, \hat{\mathbf{X}} d}(\epsilon)$ of blocklength N are the pairs ($\left.\mathbf{x}, \hat{\mathbf{x}}\right)$ defined as:

$$
\begin{aligned}
\mathcal{T}_{\mathbf{X}}(\epsilon) & \equiv\left\{\mathbf{x} \text { such that: }\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(\mathbf{X})\right|<\epsilon\right\} \\
\mathcal{T}_{\hat{\mathbf{x}}}(\epsilon) & \equiv\left\{\hat{\mathbf{x}} \text { such that: }\left|-\frac{1}{N} \log _{b} p(\hat{\mathbf{x}})-H(\hat{\mathbf{X}})\right|<\epsilon\right\} \\
\mathcal{T}_{\mathbf{X} \hat{\mathbf{x}}}(\epsilon) & \equiv\left\{(\mathbf{x}, \hat{\mathbf{x}}) \text { such that: }\left|-\frac{1}{N} \log _{b} p(\mathbf{x}, \hat{\mathbf{x}})-H(\mathbf{X}, \hat{\mathbf{X}})\right|<\epsilon\right\} \\
\mathcal{T}_{\mathbf{X} \hat{\mathbf{x}} d}(\epsilon) & \equiv\{(\mathbf{x}, \hat{\mathbf{x}}) \text { such that: }|-d(\mathbf{x}, \hat{\mathbf{x}})-E[d(\mathbf{X}, \hat{\mathbf{X}})]|<\epsilon\}
\end{aligned}
$$

4.3.1 Shannon's rate distortion (third) theorem

Theorem (Rate distortion theorem):

For an independent identically distributed (i.i.d.) source \mathbf{X}, with distribution $\mathbf{p}=\{p(\mathbf{x})\}$ and bounded distortion measure $d(\mathbf{x}, \hat{\mathbf{x}})$, it is possible to find a source compression code \mathcal{C} of rate R such that the average distortion per symbol is less than a distortion criterion $D+\epsilon_{1}$, provided that the code rate R is larger than the rate distortion function $R(D)=\min _{\mathcal{P}_{D}} I(X ; \hat{X})$ and the blocklength N is sufficiently large ($N \geq N_{0}$):

$$
R>R(D)+\epsilon_{2}
$$

where $\mathcal{P}_{D}=\left\{\mathbf{P}: \sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(\hat{x}_{j} \mid x_{k}\right) d\left(x_{k}, \hat{x}_{j}\right) \leq D\right\}$.

Proof:

The expected distortion $E[d(\mathbf{X}, \hat{\mathbf{X}})]$ over all codes and all transmitted vectors $\{\mathbf{X}\}$ of blocklength N is:

$$
\begin{align*}
E[d(\mathbf{X}, \hat{\mathbf{X}})]= & \sum_{(\mathbf{x}, \hat{\mathbf{x}})} p(\mathbf{x}, \hat{\mathbf{x}}) d(\mathbf{x}, \hat{\mathbf{x}}) \tag{4.22}\\
E[d(\mathbf{X}, \hat{\mathbf{X}})]= & \underbrace{\sum_{(\mathbf{x}, \hat{\mathbf{x}}) \in \mathcal{I}_{\mathbf{x}, \hat{\mathbf{X}}_{d}(\epsilon)}} p(\mathbf{x}, \hat{\mathbf{x}})}_{\leq 1} \underbrace{d(\mathbf{x}, \hat{\mathbf{x}})}_{\leq D+\epsilon} \tag{4.23}\\
& +\sum_{(\mathbf{x}, \hat{\mathbf{x}}) \notin \mathcal{T}_{\mathbf{x}, \hat{X}_{d}(\epsilon)} p(\mathbf{x}, \hat{\mathbf{x}})}^{\underbrace{d(\mathbf{x}, \hat{\mathbf{x}})}_{\leq d_{\max }}} \\
E[d(\mathbf{X}, \hat{\mathbf{X}})] \leq & D+\epsilon+P_{e} d_{\max } \tag{4.24}
\end{align*}
$$

P_{e} is the probability that there does not exist a sequence $\hat{\mathbf{x}}$ which is ϵ-distortion typical with any of the possible input sequences $\{\mathbf{x}\}$ of length N (random coding argument).

Let the indicator function $\phi(\mathbf{x}, \hat{\mathbf{x}})$ be defined as:

$$
\phi(\mathbf{x}, \hat{\mathbf{x}})= \begin{cases}1 & \text { if }(\mathbf{x}, \hat{\mathbf{x}}) \in \mathcal{T}_{\mathbf{X}, \hat{\mathbf{x}}^{\prime} d}(\epsilon) \\ 0 & \text { if }(\mathbf{x}, \hat{\mathbf{x}}) \notin \mathcal{T}_{\mathbf{X}, \hat{\mathbf{X}} d}(\epsilon)\end{cases}
$$

The probability P_{e} can be expressed as the sum over all codebooks, or codes $\{\mathcal{C}\}$, of the probability of a non- ϵ-distortion typical sequence in a given codebook \mathcal{C} :

$$
\begin{equation*}
P_{e}=\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C}) \sum_{\mathbf{x} \notin J(\mathcal{C})} p(\mathbf{x}) \tag{4.25}
\end{equation*}
$$

where $J(\mathcal{C})$ is the set of source sequences that have, at least, one codeword $\hat{\mathbf{x}}$ which is ϵ-distortion typical with \mathbf{x}. Consider a single randomly chosen codeword \mathbf{x} :

$$
\begin{equation*}
\operatorname{Pr}\left[(\mathbf{x}, \hat{\mathbf{x}}) \notin \mathcal{T}_{\mathbf{X}, \hat{\mathbf{x}} d}(\epsilon)\right]=1-\underbrace{\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}})}_{\operatorname{Pr}\left[(\mathbf{x}, \hat{\mathbf{x}}) \in \mathcal{T}_{\mathbf{x}, \hat{\mathbf{x}} d}(\epsilon)\right]} \tag{4.26}
\end{equation*}
$$

where $\hat{\mathbf{x}}$ is the reproduction sequence.

$$
\begin{align*}
& P_{e}=\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C}) \sum_{\mathbf{x} \notin J(\mathcal{C})} p(\mathbf{x}) \tag{4.27}\\
& P_{e}=\sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\mathcal{S}_{\mathcal{C}}: \mathbf{x} \notin J(\mathcal{C})} \operatorname{Pr}(\mathcal{C}) \tag{4.28}
\end{align*}
$$

In the first equation, P_{e} is the probability of occurrence of all sequences not represented by a codeword with a fidelity criterion D, averaged over the set of all codes $\mathcal{S}_{\mathcal{C}}$. Th second equation
indicates the probability of choosing a code \mathcal{C} that does not well represent the input sequence \mathbf{x}, averaged over all input sequences $\{\mathbf{x}\}$. The error probability P_{e} can thus be written as:

$$
\begin{align*}
& P_{e}=\sum_{\mathbf{x}} p(\mathbf{x})\left[1-\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}})\right]^{M} \tag{4.29}\\
& P_{e}=\sum_{\mathbf{x}} p(\mathbf{x})\left[1-\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}})\right]^{2^{N R}} \tag{4.30}
\end{align*}
$$

since there are $M=2^{N R}$ independently chosen codewords $\{\hat{\mathbf{x}}\}$.
Consider the probability $p(\hat{\mathbf{x}})$. If $(\mathbf{x}, \hat{\mathbf{x}}) \in \mathcal{T}_{\mathbf{X}, \hat{\mathbf{X}} d}(\epsilon)$ then, by definition of ϵ-distortion typical pair of sequences:

$$
\begin{array}{rlrl}
2^{-N[H(X)+\epsilon]} & \leq p(\mathbf{x}) & & \leq 2^{-N[H(X)-\epsilon]} \\
2^{-N[H(\hat{X})+\epsilon]} & \leq p(\hat{\mathbf{x}}) & \leq 2^{-N[H(\hat{X})-\epsilon]} \\
2^{-N[H(X, \hat{X})+\epsilon]} \leq p(\mathbf{x}, \hat{\mathbf{x}}) & \leq 2^{-N[H(X, \hat{X})-\epsilon]} \tag{4.33}
\end{array}
$$

The conditional probability $p(\hat{\mathbf{x}} \mid \mathbf{x})$ can be expressed as:

$$
\begin{align*}
& p(\hat{\mathbf{x}} \mid \mathbf{x})=\frac{p(\mathbf{x}, \hat{\mathbf{x}})}{p(\mathbf{x})} \tag{4.34}\\
& p(\hat{\mathbf{x}} \mid \mathbf{x})=\frac{p(\hat{\mathbf{x}})}{p(\hat{\mathbf{x}})} \frac{p(\mathbf{x}, \hat{\mathbf{x}})}{p(\mathbf{x})} \tag{4.35}\\
& p(\hat{\mathbf{x}} \mid \mathbf{x}) \leq p(\hat{\mathbf{x}}) \frac{2^{-N[H(X, \hat{X})-\epsilon]}}{2^{-N[H(\hat{X})+\epsilon]} 2^{-N[H(X)+\epsilon]}} \tag{4.36}\\
& p(\hat{\mathbf{x}} \mid \mathbf{x}) \leq p(\hat{\mathbf{x}}) 2^{-N[H(X, \hat{X})-\epsilon-H(\hat{X})-\epsilon-H(X)-\epsilon]} \tag{4.37}\\
& p(\hat{\mathbf{x}} \mid \mathbf{x}) \leq p(\hat{\mathbf{x}}) 2^{-N[-I(X ; \hat{X})-3 \epsilon]} \tag{4.38}\\
& p(\hat{\mathbf{x}} \mid \mathbf{x}) \leq p(\hat{\mathbf{x}}) 2^{N[I(X ; \hat{X})+3 \epsilon]} \tag{4.39}
\end{align*}
$$

This implies that:

$$
\begin{array}{r}
p(\hat{\mathbf{x}}) \geq p(\hat{\mathbf{x}} \mid \mathbf{x}) 2^{-N[I(X ; \hat{X})+3 \epsilon] \quad \text { and therefore }} \\
\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}}) \geq \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) 2^{-N[I(X ; \hat{X})+3 \epsilon]} \phi(\mathbf{x}, \hat{\mathbf{x}}) \tag{4.41}
\end{array}
$$

Then P_{e} becomes:

$$
\begin{equation*}
P_{e} \leq \sum_{\mathbf{x}} p(\mathbf{x})\left[1-\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) 2^{-N[I(\mathbf{X} ; \hat{\mathbf{X}})+3 \epsilon]} \phi(\mathbf{x}, \hat{\mathbf{x}})\right]^{2^{N R}} \tag{4.42}
\end{equation*}
$$

Let α be defined as $2^{-N[I(\mathbf{X} ; \hat{\mathbf{X}})+3 \epsilon]}$ and β be $\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) \phi(\mathbf{x}, \hat{\mathbf{x}})$. It can be shown that:

$$
(1-\alpha \beta)^{M} \leq 1-\beta+e^{-\alpha M}
$$

Note that the product: $0 \leq \alpha \beta \leq 1$, since $0 \leq \alpha=2^{-N[I(\mathbf{X} ; \hat{\mathbf{X}})+3 \epsilon]} \leq 1$ and $0 \leq \beta=\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) \phi(\mathbf{x}, \hat{\mathbf{x}}) \leq$ 1.

$$
\begin{aligned}
(1-\alpha \beta)^{M} & =e^{\ln (1-\alpha \beta)^{M}} \\
(1-\alpha \beta)^{M} & =e^{M \ln (1-\alpha \beta)}
\end{aligned}
$$

but we know that, for $x>0, \ln x \leq(x-1)$, which implies, for the range of interest of the product $\alpha \beta$, that:

$$
\begin{aligned}
\ln (1-\alpha \beta) \leq & (1-\alpha \beta)-1=-\alpha \beta \\
(1-\alpha \beta)^{M} & =e^{M \ln (1-\alpha \beta)} \\
(1-\alpha \beta)^{M} & \leq e^{M(-\alpha \beta)} \\
(1-\alpha \beta)^{M} & \leq e^{-M \alpha \beta}
\end{aligned}
$$

Furthermore, as shown on Figure 4.8,

$$
(1-\alpha \beta)^{M} \leq e^{-M \alpha \beta} \leq 1-\beta+e^{-\alpha M} \quad \text { for } 0 \leq \beta \leq 1
$$

For $\beta=0$ and $\beta=1$:

$$
\begin{aligned}
& e^{-M \alpha \beta}=e^{-M \alpha 0}=1 \leq 1+e^{-\alpha M} \quad(\text { for } \beta=0) \\
& e^{-M \alpha \beta}=e^{-M \alpha} \leq 1-1+e^{-\alpha M}=e^{-\alpha M} \quad(\text { for } \beta=1)
\end{aligned}
$$

Therefore:

$$
\begin{align*}
& P_{e} \leq \sum_{\mathbf{x}} p(\mathbf{x})\left[1-\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) 2^{-N[I(\mathbf{X} ; \hat{\mathbf{x}})+3 \epsilon]} \phi(\mathbf{x}, \hat{\mathbf{x}})\right]^{2^{N R}} \tag{4.43}\\
& P_{e} \leq \sum_{\mathbf{x}} p(\mathbf{x})\left\{1-\sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) \phi(\mathbf{x}, \hat{\mathbf{x}})+e^{-\left[2^{\left.-N[I(\mathbf{x} ; \hat{\mathbf{x}})+3 \epsilon]^{N R}\right]}\right\}}\right. \tag{4.44}\\
& P_{e} \leq 1+e^{-2^{N[R-I(\mathbf{X} ; \mathbf{x})-3 \epsilon]}}-\sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) \phi(\mathbf{x}, \hat{\mathbf{x}}) \tag{4.45}
\end{align*}
$$

0
1
β

Figure 4.8: Illustration of the inequality $(1-\alpha \beta)^{M} \leq 1-\beta+e^{-\alpha M}$.

Since the joint probability $p(\mathbf{x}, \hat{\mathbf{x}})=p(\mathbf{x}) p(\hat{\mathbf{x}} \mid \mathbf{x}) ;$

$$
\begin{equation*}
P_{e} \leq 1-\sum_{\mathbf{x}} \sum_{\hat{\mathbf{x}}} p(\mathbf{x}, \hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}})+e^{-2^{N[R-I(\mathbf{X} ; \hat{\mathbf{X}})-3 \epsilon]}} \tag{4.46}
\end{equation*}
$$

where

$$
\begin{aligned}
& 1-\sum_{\mathbf{x}} \sum_{\hat{\mathbf{x}}} p(\mathbf{x}, \hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}})=\operatorname{Pr}\left[(\mathbf{X}, \hat{\mathbf{X}}) \notin \mathcal{T}_{\mathbf{x}, \hat{\mathbf{x}} d}(\epsilon)\right] \\
& 1-\sum_{\mathbf{x}} \sum_{\hat{\mathbf{x}}} p(\mathbf{x}, \hat{\mathbf{x}}) \phi(\mathbf{x}, \hat{\mathbf{x}})<\epsilon_{1}
\end{aligned}
$$

by definition of a ϵ-typical pair of sequences. Then,

$$
\begin{equation*}
P_{e} \leq \epsilon_{1}+\underbrace{e^{-2^{N[R-I(\mathbf{X} ; \hat{\mathbf{X}})-3 \epsilon]}}=\epsilon^{\prime},{ }^{\prime} .{ }^{\prime} .}_{\epsilon_{2}} \tag{4.47}
\end{equation*}
$$

The term ϵ_{2} goes to 0 , as N increases to infinity, if the exponent of e, i.e. $-2^{N[R-I(\mathbf{X} ; \hat{\mathbf{X}})-3 \epsilon]}$
tends towards $-\infty$, or equivalently, if the exponent of e^{-2}, i.e. $R-I(\mathbf{X} ; \hat{\mathbf{X}})-3 \epsilon>0$. In other words, if the rate R is greater than $I(\mathbf{X} ; \hat{\mathbf{X}})+3 \epsilon$ (where ϵ can be made arbitrarily small). The above is true for any D-admissible channel.

Choosing the channel $\mathbf{P}=\{p(\hat{\mathbf{x}} \mid \mathbf{x})\}$ such as to minimize the mutual information $I(\mathbf{X} ; \hat{\mathbf{X}})$, leads to the inequality:

$$
R>R(D)+3 \epsilon
$$

Then, there exists at least one code \mathcal{C}^{*} such that:
a) the average distortion $d(\mathbf{X}, \hat{\mathbf{X}})$ is upperbounded as:

$$
d(\mathbf{X}, \hat{\mathbf{X}})<D+\epsilon
$$

b) the code rate $R(D)$ is lowerbounded by:

$$
R>R(D)+\epsilon^{\prime}
$$

4.3.2 Information transmission theorem

Shannon's channel coding theorem states that the transmission of information over a noisy channel can be as reliable as one desires, as long as the error control code rate, i.e. R_{1}, is smaller than the channel's capacity C. On the other hand, the rate distortion theorem states that it is possible to find a source compression code for which the average distortion (fidelity criterion) is arbitrarily close to a predetermined fidelity criterion D, provided that the rate R_{2} of the source compression code is greater than the value of the rate distortion function $R(D)$ at the expected distortion level.

Figure 4.9 illustrates a communication link with source compression coding as well as channel coding. For both source compression and channel coding theorems, the codeword blocklength N should be sufficiently large ($N \geq N_{0}$).

Figure 4.9: Illustration of the information transmission theorem.
The information transmission theorem combines these two theorems:

Theorem (Information transmission theorem):
The output sequence of a discrete memoryless source, obtained by source compression with a rate distortion function $R(D)$, can be reproduced with at most D average distortion at the output of any discrete memoryless channel having a capacity C, provided that:

$$
R(D)<C
$$

if the blocklength N is sufficiently large (i.e., $N \geq N_{0}$).

4.4 Problems

Problem 4.1: Consider a binary source with input distribution $\mathbf{p}=\left\{p\left(x_{1}\right)=\alpha, p\left(x_{2}\right)=1-\alpha\right\}$, where $\alpha \in[0,0.5]$. The distortion matrix \mathbf{d} is given by (i.e. error probability distortion matrix):

$$
\mathbf{d}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Determine the expression of the rate distortion function $R(D)$ as a function of α and D. Draw the $R(D)$ as a function of D for $\alpha=0.1,0.2,0.3,0.4$ and 0.5 .
Problem 4.2: A binary equiprobable memoryless source X generates $4.8 \mathrm{kbits} / \mathrm{s}$. A source compression encoder, with a ternary reproduction alphabet \hat{X}, is used to compress the data prior transmission. The distortion matrix \mathbf{d} is given by (note that an infinite distortion $d\left(x_{k}, \hat{x}_{j}\right)=\infty$ indicates that there is no transition from x_{k} to \hat{x}_{j}):

$$
\mathbf{d}=\left(\begin{array}{ccc}
0 & \infty & 1 \\
\infty & 0 & 1
\end{array}\right)
$$

a) Express the probability transition matrix \mathbf{P} as a function of the distortion D (the average persymbol distortion $d(X, \hat{X})$ is used as the distortion criterion $D)$.
b) Compute and draw the rate-distortion function $R(D)$.
c) Determine the minimum code rate R at which the information can be transmitted if the distortion criterion is to be kept at $D \leq 20 \%$? What is the corresponding information transfer rate, expressed in kbits/s?
d) Find a simple source compression encoding scheme that achieves any desired rate R at the distortion level D determined from $R=R(D)$.
Problem 4.3: A memoryless source X generates bits with the input symbol distribution: $p\left(x_{1}\right)=\frac{3}{4}$ and $p\left(x_{2}\right)=\frac{1}{4}$. A source compression encoder, with a binary reproduction alphabet \hat{X}, is used to compress the data prior transmission. The distortion matrix \mathbf{d} is given by:

$$
\mathbf{d}=\left[\begin{array}{ll}
d\left(x_{1}, \hat{x}_{1}\right) & d\left(x_{2}, \hat{x}_{1}\right) \\
d\left(x_{1}, \hat{x}_{2}\right) & d\left(x_{2}, \hat{x}_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
0 & \infty \\
4 & 0
\end{array}\right]
$$

where an infinite distortion, i.e., $d\left(x_{k}, \hat{x}_{j}\right)=\infty$, indicates that there is no transition from x_{k} to \hat{x}_{j}. The transition probability matrix \mathbf{P} is given by:

$$
\mathbf{P}=\left[\begin{array}{ll}
p\left(\hat{x}_{1} \mid x_{1}\right) & p\left(\hat{x}_{1} \mid x_{2}\right) \\
p\left(\hat{x}_{2} \mid x_{1}\right) & p\left(\hat{x}_{2} \mid x_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\alpha & 0 \\
(1-\alpha) & 1
\end{array}\right]
$$

a) Find the source entropy $H(X)$.
b) Give the reproduction symbol probabilities as a function of α.
c) Find the minimum $d_{\min }$ and the maximum distortion $d_{\max }$.
d) Give the expression for the average per-symbol distortion $d(X, \hat{X})$ as a function of α.
e) Give the expression for the pseudochannel mutual information $I(X ; \hat{X})$ as a function of α.
f) Compute the rate-distortion function $R(D)$.
g) Draw the rate-distortion function $R(D)$ from $\left(d_{\min }-2\right) \leq D \leq\left(d_{\max }+2\right)$.

Chapter 5

Multiterminal Networks and Information Theory

In this chapter, we study two fundamental multiterminal networks: the multiple access channel and the broadcast channel. The capacity region of these two types of networks will be derived.

5.1 Multiple Access Networks

5.1.1 Capacity Region of a Two-source Multiple Access Channel

In this section, we retrict ourselves to the simple case of a multiple access network having only two independent sources of information. We will use this simple case to define and derive the capacity region of a multiple access channel. Later, we will consider the more general and realistic case of a m-user network.

Theorem (Multiple Access Channel Capacity):
The capacity region C of a memoryless multiple access channel is the closure of the convex hull of the set of all rates R_{1} and R_{2} for which:

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y \mid X_{2}\right), \\
R_{2} & \leq I\left(X_{2} ; Y \mid X_{1}\right), \text { and } \\
R_{1}+R_{2} & \leq I\left(X_{1}, X_{2} ; Y\right)
\end{aligned}
$$

for some product distribution $\left\{\left(p_{1}\left(x_{1, k}\right), p_{2}\left(x_{2, j}\right)\right\}\right.$ on the input pair $\left(X_{1}, X_{2}\right)$.

Proof:

The proof of this theorem is very similar to the proof of of Shannon's channel coding theorem on the achievability of the capacity of a single channel. We will use again the random coding argument
and the expectation of probability of error over an ensemble $\mathcal{S}_{\mathcal{C}}=\{\mathcal{C}\}$ of codes. Furthermore, a decoding strategy based on jointly typical pairs of sequences will be considered for deriving a lower bound on decoding error probabilities.

A simple multiple access communication network consisting of two information sources W_{1} and W_{2} is depicted in Figure 5.1.

Figure 5.1: Simple two-source multiple access communication network.

We will assume that the messages from both sources are equiprobable to support the random coding argument.

$$
\begin{equation*}
p\left(w_{1}\right)=\frac{1}{M_{1}}=2^{-N R_{1}} \quad \text { and } \quad p\left(w_{2}\right)=\frac{1}{M_{2}}=2^{-N R_{2}} \tag{5.1}
\end{equation*}
$$

where R_{1} and R_{2} are the code rates whereas N is the codewords' blocklength for the two distinct information sources.

We consider here a block code \mathcal{C} for the two-source multiple access channel as a composite code consisting of two component codes, \mathcal{C}_{1} and \mathcal{C}_{2}. The first component code \mathcal{C}_{1} maps each message $W_{m_{1}}^{1}, m_{1}=1, \ldots, M_{1}$, from the first source as a unique codeword \mathbf{c}_{m}^{1} of blocklength N. The codewords are assumed binary $\left(c_{m, n}^{1} \in\{0,1\}\right)$. Similarly, the second component code, \mathcal{C}_{2}, encodes each message from the second source, $W_{m_{2}}^{2}$, as a unique codeword \mathbf{c}_{m}^{2} of blocklength N where $m_{2}=1, \ldots, M_{2}$:

$$
\begin{gather*}
\mathcal{C}_{1}=\left[\begin{array}{c}
\mathbf{c}_{1}^{1} \\
\vdots \\
\mathbf{c}_{m_{1}}^{1} \\
\vdots \\
\mathbf{c}_{M_{1}}^{1}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1}^{1} & \cdots & c_{1, n_{1}}^{1} & \cdots & c_{1, N}^{1} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m_{1}, 1}^{1} & \cdots & c_{m_{1}, n_{1}}^{1} & \cdots & c_{m_{1}, N}^{1} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M_{1}, 1}^{1} & \cdots & c_{M_{1}, n_{1}}^{1} & \cdots & c_{M_{1}, N}^{1}
\end{array}\right] \\
\mathcal{C}_{2}=\left[\begin{array}{c}
\mathbf{c}_{1}^{2} \\
\vdots \\
\mathbf{c}_{m_{2}}^{2} \\
\vdots \\
\mathbf{c}_{M_{2}}^{2}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1}^{2} & \cdots & c_{1, n_{2}}^{2} & \cdots & c_{1, N}^{2} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m_{2}, 1}^{2} & \cdots & c_{m_{2}, n_{2}}^{2} & \cdots & c_{m_{2}, N}^{2} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M_{2}, 1}^{2} & \cdots & c_{M_{2}, n_{2}}^{2} & \cdots & c_{M_{2}, N}^{2}
\end{array}\right]
\end{gather*}
$$

As mentionned previously, the decoding rule is based on the definition of jointly typical sequences. Again, this decoding rule is not optimal but its use simplify the derivation of the capacity of a multiple access network. The composite codeword \mathbf{y} received from the multiple access channel is mapped into two valid (component code) codewords ($\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}}$), if the triplet of sequences $\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right)$ are jointly typical, (i.e., $\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)$ for a given arbitrarily small offset δ. The decoded messages from the two information sources are then $\left(w_{m_{1}}, w_{m_{2}}\right)$. There are four different types of decoding errors that may occur. These are:

- $\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \notin \mathcal{T}_{X_{1} X_{2} Y}(\delta) \quad$ for $m_{1}=1, \ldots, M_{1}$ and $m_{2}=1, \ldots, M_{2}$
- $\left(\mathbf{c}_{m_{1}^{\prime}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta) \quad$ for $m_{1}^{\prime} \neq m_{1}$
- $\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta) \quad$ for $m_{2}^{\prime} \neq m_{2}$
- $\left(\mathbf{c}_{m_{1}^{\prime}}, \mathbf{c}_{m_{2}^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta) \quad$ for $m_{1}^{\prime} \neq m_{1}$ and $m_{2}^{\prime} \neq m_{2}$

The probability of a decoding error $P_{e \mid m_{1}, m_{2}}$ given messages $w_{m_{1}}$ and $w_{m_{2}}$ is determined by the union of error events.

$$
\begin{align*}
P_{e \mid m_{1}, m_{2}}= & \operatorname{Pr}\left\{\left[\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \notin \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \bigcup \bigcup_{\substack{m_{1}^{\prime}=1 \\
m_{1}^{\prime} \neq m_{1}}}^{M_{1}}\left[\left(\mathbf{c}_{m_{1}^{\prime}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]\right. \tag{5.3}\\
& \left.\bigcup_{\substack{m_{2}^{\prime}=1 \\
m_{2}^{\prime} \neq m_{2}}}^{M_{2}}\left[\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \bigcup_{\substack{m_{1}^{\prime}=1 \\
m_{1}^{\prime} \neq m_{1}}}^{M_{1}} \bigcup_{\substack{m_{2}^{\prime}=1 \\
m_{2}^{\prime} \neq m_{2}}}^{M_{2}}\left[\left(\mathbf{c}_{m_{1}^{\prime}}, \mathbf{c}_{m_{2}^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]\right\}
\end{align*}
$$

Using the union bound the error decoding probability can be rewritten as the following inequality:

$$
\begin{align*}
P_{e \mid m_{1}, m_{2}} \leq & \operatorname{Pr}\left[\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \notin \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]+\sum_{\substack{m_{1}^{\prime}=1 \\
m_{1}^{\prime} \neq m_{1}}}^{M_{1}} \operatorname{Pr}\left[\left(\mathbf{c}_{m_{1}^{\prime}}, \mathbf{c}_{m_{2}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \tag{5.4}\\
& +\sum_{\substack{m_{2}^{\prime}=1 \\
m_{2}^{\prime} \neq m_{2}}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{c}_{m_{1}}, \mathbf{c}_{m_{2}^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]+\sum_{\substack{m_{1}^{\prime}=1 \\
m_{1}^{\prime} \neq m_{1}}}^{M_{1}} \sum_{\substack{m_{2}^{\prime}=1 \\
m_{2}^{\prime} \neq m_{2}}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{c}_{m_{1}^{\prime}}, \mathbf{c}_{m_{2}^{\prime}}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]
\end{align*}
$$

This last expression can be written as a sum of four possible terms: $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$, and ϵ_{4}. The first term, ϵ_{1}, can be made arbitraily small by the definition of jointly typical pairs of sequences and using a sufficiently large blocklength N. Unfortunately, the three other terms are not necessarily arbitrary small. We will show next that using random coding, the expection of each of these three terms can be made arbitrary small on the ensemble average of the codes provided that the blocklength N is large enough and that the individual rates obey thes conditions: $R_{1} \leq C_{1}, R_{2} \leq C_{2}$, and $R_{1}+R_{2} \leq C_{1}+C_{2}$.

As for the case of single channels, we use the random coding construction scheme for the ensemble of codes and determine, on this ensemble of multiaccess codes $\mathcal{S}_{\mathcal{C}}$, the average of the error probability. The expected error decoding probability over the ensemble of randomly chosen codes is:

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+\sum_{\substack{m_{1}^{\prime}=1 \\
m_{1}^{\prime} \neq m_{1}}}^{M_{1}} \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]+\sum_{\substack{m_{2}^{\prime}=1 \\
m_{2}^{\prime} \neq m_{2}}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \\
& +\sum_{\substack{m_{1}^{\prime}=1 \\
m_{1}^{\prime} \neq m_{1}}}^{M_{1}} \sum_{\substack{m_{2}^{\prime}=1 \\
m_{2}^{\prime} \neq m_{2}}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \tag{5.5}
\end{align*}
$$

and since the multiaccess codewords $\mathbf{x}_{1}, \mathbf{x}_{2}$ are not a function of the received codeword indices $m_{1}^{\prime}, m_{2}^{\prime}$, the above expression reduces to:

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+\left(M_{1}-1\right) \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]+\left(M_{2}-1\right) \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \\
& +\left(M_{1}-1\right)\left(M_{2}-1\right) \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \tag{5.6}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right]+2^{N R_{2}} \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \\
& +2^{N R_{1}} 2^{N R_{2}} \operatorname{Pr}\left[\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)\right] \tag{5.7}
\end{align*}
$$

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)} p\left(\mathbf{x}_{1}\right) p\left(\mathbf{x}_{2}, \mathbf{y}\right)+2^{N R_{2}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)} p\left(\mathbf{x}_{2}\right) p\left(\mathbf{x}_{1}, \mathbf{y}\right) \\
& +2^{N\left(R_{1}+R_{2}\right)} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)} p\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) p(\mathbf{y}) \tag{5.8}
\end{align*}
$$

From the definition and properties of jointly typical pairs of sequences we know that these probabilities are bounded as:

$$
\begin{aligned}
p\left(\mathbf{x}_{1}\right) & \leq 2^{-N\left[H\left(X_{1}\right)-\delta\right]} ; & p\left(\mathbf{x}_{2}\right) & \leq 2^{-N\left[H\left(X_{2}\right)-\delta\right]} ;
\end{aligned} \quad p\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \leq 2^{-N\left[H\left(X_{1} X_{2}\right)-\delta\right]} ;
$$

Therefore, the expected probability of decoding error in the multiple access case is:

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)} 2^{-N\left[H\left(X_{1}\right)-\delta\right]} 2^{-N\left[H\left(X_{2} Y\right)-\delta\right]} \\
& +2^{N R_{2}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)} 2^{-N\left[H\left(X_{2}\right)-\delta\right]} 2^{-N\left[H\left(X_{1} Y\right)-\delta\right]} \\
& +2^{N\left(R_{1}+R_{2}\right)} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}\right) \in \mathcal{T}_{X_{1} X_{2} Y}(\delta)} 2^{-N\left[H\left(X_{1} X_{2}\right)-\delta\right]} 2^{-N[H(Y)-\delta]} \tag{5.9}
\end{align*}
$$

The maximum number of jointly typical pairs of sequences $\left\|\mathcal{T}_{X_{1} X_{2} Y}(\delta)\right\| \leq 2^{N\left[H\left(X_{1} X_{2} Y\right)+\delta\right]}$ and therefore:

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} 2^{N\left[H\left(X_{1} X_{2} Y\right)+\delta\right]} 2^{-N\left[H\left(X_{1}\right)-\delta\right]} 2^{-N\left[H\left(X_{2} Y\right)-\delta\right]} \\
& +2^{N R_{2}} 2^{N\left[H\left(X_{1} X_{2} Y\right)+\delta\right]} 2^{-N\left[H\left(X_{2}\right)-\delta\right]} 2^{-N\left[H\left(X_{1} Y\right)-\delta\right]} \\
& +2^{N\left(R_{1}+R_{2}\right)} 2^{N\left[H\left(X_{1} X_{2} Y\right)+\delta\right]} 2^{-N\left[H\left(X_{1} X_{2}\right)-\delta\right]} 2^{-N[H(Y)-\delta]} \tag{5.10}
\end{align*}
$$

Using the relationships between joint entropies and equivocations, $H\left(X_{1}, X_{2}, Y\right)=H\left(X_{2}\right)+$ $H\left(X_{1} \mid X_{2}\right)+H\left(Y \mid X_{1}, X_{2}\right)$ and $H\left(X_{2}, Y\right)=H\left(X_{2}\right)+H\left(Y \mid X_{2}\right)$ and considering that the messages from the two information sources are independent (i.e. $H\left(X_{1} \mid X_{2}\right)=H\left(X_{1}\right)$), we rewrite the previous equation as:

$$
\begin{aligned}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} 2^{N\left[H\left(X_{2}\right)+H\left(X_{1} \mid X_{2}\right)+H\left(Y \mid X_{1}, X_{2}\right)+\delta\right]} 2^{-N\left[H\left(X_{1}\right)-\delta\right]} 2^{-N\left[H\left(X_{2}\right)+H\left(Y \mid X_{2}\right)-\delta\right]} \\
& +2^{N R_{2}} 2^{N\left[H\left(X_{2}\right)+H\left(X_{1} \mid X_{2}\right)+H\left(Y \mid X_{1}, X_{2}\right)+\delta\right]} 2^{-N\left[H\left(X_{2}\right)-\delta\right]} 2^{-N\left[H\left(X_{1}\right)+H\left(Y \mid X_{1}\right)-\delta\right]} \\
& \left.\left.+2^{N\left(R_{1}+R_{2}\right)} 2^{N\left[H\left(X_{2}\right)+H\left(X_{1} \mid X_{2}\right)+H\left(Y \mid X_{1}, X_{2}\right)+\delta\right]} 2^{-N\left[H\left(X_{2}\right)+H\left(X_{1} \mid X_{2}\right)-\delta\right]} 2^{-N[H(\zeta)}\right)+\mathbb{\wp}\right) \\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} 2^{N\left[H\left(X_{2}\right)+H\left(X_{1}\right)+H\left(Y \mid X_{1}, X_{2}\right)+\delta-H\left(X_{1}\right)+\delta-H\left(X_{2}\right)-H\left(Y \mid X_{2}\right)+\delta\right]}
\end{aligned}
$$

$$
\begin{align*}
& +2^{N R_{2}} 2^{N\left[H\left(X_{2}\right)+H\left(X_{1}\right)+H\left(Y \mid X_{1}, X_{2}\right)+\delta-H\left(X_{2}\right)+\delta-H\left(X_{1}\right)-H\left(Y \mid X_{1}\right)+\delta\right]} \\
& +2^{N\left(R_{1}+R_{2}\right)} 2^{N\left[H\left(X_{2}\right)+H\left(X_{1}\right)+H\left(Y \mid X_{1}, X_{2}\right)+\delta-H\left(X_{2}\right)-H\left(X_{1}\right)+\delta-H(Y)+\delta\right]} \tag{5.12}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} 2^{N\left[H\left(Y \mid X_{1}, X_{2}\right)-H\left(Y \mid X_{2}\right)+3 \delta\right]}+2^{N R_{2}} 2^{N\left[H\left(Y \mid X_{1}, X_{2}\right)-H\left(Y \mid X_{1}\right)+3 \delta\right]} \\
& +2^{N\left(R_{1}+R_{2}\right)} 2^{N\left[H\left(Y \mid X_{1}, X_{2}\right)-H(Y)+3 \delta\right]} \tag{5.13}
\end{align*}
$$

Noting that the difference in the above equivocations are (average) mutual information terms:

$$
\begin{aligned}
H\left(Y \mid X_{1}, X_{2}\right)-H\left(Y \mid X_{2}\right) & =-I\left(X_{1} ; Y \mid X_{2}\right) \\
H\left(Y \mid X_{1}, X_{2}\right)-H\left(Y \mid X_{1}\right) & =-I\left(X_{2} ; Y \mid X_{1}\right) \quad \text { and } \\
H\left(Y \mid X_{1}, X_{2}\right)-H(Y) & =-I\left(X_{1}, X_{2} ; Y\right)
\end{aligned}
$$

the expected error decoding probability over the ensemble of codes is:

$$
\begin{align*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{N R_{1}} 2^{N\left[-I\left(X_{1} ; Y \mid X_{2}\right)+3 \delta\right]}+2^{N R_{2}} 2^{N\left[-I\left(X_{2} ; Y \mid X_{1}\right)+3 \delta\right]} \\
& +2^{N\left(R_{1}+R_{2}\right)} 2^{N\left[-I\left(X_{1}, X_{2} ; Y\right)+3 \delta\right]} \tag{5.14}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+2^{-N\left[I\left(X_{1} ; Y \mid X_{2}\right)-R_{1}-3 \delta\right]}+2^{-N\left[I\left(X_{2} ; Y \mid X_{1}\right)-R_{2}-3 \delta\right]} \\
& +2^{-N\left[I\left(X_{1}, X_{2} ; Y\right)-\left(R_{1}+R_{2}\right)-3 \delta\right]} \tag{5.15}\\
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq & \epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4} \tag{5.16}
\end{align*}
$$

As the multiple access code blocklength N increases, the term ϵ_{2} will decreases only if the rate R_{1} of the first component code is smaller than $I\left(X_{1} ; Y \mid X_{2}\right)-3 \delta$, where δ is an arbitrary small positive number. Similarly, as for the second and third sterm to vanish toward zero as N increases, the following conditions must be met: $R_{2} \leq I\left(X_{2} ; Y \mid X_{1}\right)-3 \delta$ and $\left(R_{1}+R_{2}\right) \leq I\left(X_{1}, X_{2} ; Y\right)-3 \delta$. If these three conditions are met than the average error decoding probability for the multiple access code can be as low as we wish, provided that N is sufficiently large.

Therefore, there must exist at least a multiple access code \mathcal{C}^{*} or which the error performance is at least as good as the average over the ensemble of codes. Consequently, because the error probability $P_{e} \leq \epsilon=\sum_{i=1}^{4} \epsilon_{i}$ is arbitrarily small, then every pair of rates $\left(R_{1}+R_{2}\right)$ which obey these 3 conditions will be in the capacity region of the multiple access channel.

$$
P_{e} \leq \epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}=\epsilon
$$

Example (Capacity of a Binary Erasure Multiple Access Channel):
In this example, the multiple access channel consists of two binary sources, X_{1} and X_{2}, an a ternary information sink, or destination, Y. The ternary output is given as the sum of the two inputs:

$$
Y=X_{1}+X_{2}
$$

Figure 5.2: Capacity region of the binary erasure multiple access channel.
When the output $Y=0$ or $Y=2$, there is no ambiguity about the transmitted symbols from both input sources: if $Y=0$ this implies that both X_{1} and X_{2} are equal to zero whereas $Y=2 \leftarrow X_{1}=X_{2}=1$. However, the output $Y=1$ can be obtained either with $X_{1}=0$ and $X_{2}=1$ or with $X_{1}=1$ and $X_{2}=0$, leading to an ambiguity about the sources.

What is the capacity C of such a binary erasure multiple access channel? If we set deliberately $X_{2}=0$ (or equivalently $X_{2}=1$), then $Y=X_{1}$ (or $Y=X_{1}+1$), there is no longer any ambiguity and the capacity of the multiple access channel simply becomes the capacity of the channel between source X_{1} and $\operatorname{sink} Y$, i.e. $C=C_{1}$. The same applies to the second channel, from X_{2} to Y, if we set $X_{1}=0$ (or $X_{1}=1$). By time-sharing the two channels, that is by allowing the first source X_{1}
to transmit at a fraction $\lambda(0 \leq \lambda \leq 1)$ of the time while X_{2} is set to 0 and then having source X_{2} active for the remaining $(1-\lambda)$ of the time (i.e. while $X_{1}=0$), the capacity of the multiaccess channel C consists of the straight line defined by the set of points joining the two extreme points as shown by the dotted line on Figure 5.2.

However, the capacity C is larger. Suppose that either source, for instance X_{1}, is already transmitting at a rate R_{1}. From the point of view of the second channel, meaning X_{2} to Y, the source X_{1} appears like a equiprobable binary noisy sequence superimposed over X_{2}. The channel between X_{2} and Y is similar to a standard binary erasure channel (BEC) where the probability of obtaining an erasure symbol is equal to $\frac{1}{2}$ whatever the symbol from source X_{2} is. We have seen previously that the capacity of a binary erasure channel is given by $C_{2}=1-\rho$ where ρ is the transition probability from either binary input symbol to the output ternary erasure symbol. Here $\rho=\frac{1}{2}$ since source X_{1} is assumed equiprobable. This means that with this multiple access scheme the first source is already exchanging information with the common receiver at a rate $R_{1}=C_{1}=1$ and that an additionnal amount of information between source X_{2} and Y of rate $\frac{1}{2}$. As shown by the solid line on Figure 5.2, the capacity region C of this binary erasure multiple access channel is the closure of the convex hull of the achievable rates $\left(R_{1}, R_{2}\right)$ where $R_{1} \leq 1, R_{2} \leq 1$, and $R_{1}+R_{2} \leq 1 \frac{1}{2}$.

5.1.2 Generalization of the Multiple Access Channel Capacity Region

Figure 5.3 illustrates a multiple access communication network with m users. Here there are m different users who transmit independent information over the same multiple access channel. The capacity region for the m-user multiple access communication network is again the convex hull of all achievable rates.

Figure 5.3: m-user multiple access communication network.
Consider the following partitionning of the set $\{1,2, \ldots, m\}$ of all individual users: $\mathcal{S} \subseteq$ $\{1,2, \ldots, m\}$ (the symbol \subseteq represents the set inclusion, i.e. \mathcal{S} can be any subset of the set of all users $\{1,2, \ldots, m\}$) and its complementary set \mathcal{S}^{c}. If $R(\mathcal{S})=\sum_{i \in \mathcal{S}} R_{i}$ and the random source $X(\mathcal{S})=\left\{X_{i}\right\}$ such that $i \in \mathcal{S}$, then one can determine the capacity region of such a m-user multiple link.

Theorem (Capacity Region for the General Multiple Access Channel):
The capacity region C of a m-user multiple access channel is the closure of the convex hull of the set of all rate vectors for which:

$$
R(\mathcal{S}) \leq I\left(X(\mathcal{S}) ; Y \mid X\left(\mathcal{S}^{c}\right)\right), \quad \text { for all sets } \mathcal{S} \subseteq\{1,2, \ldots, m\}
$$

for some product distribution $\left\{\left(p_{1}\left(x_{1, k_{1}}\right), p_{2}\left(x_{2, k_{2}}, \ldots, p_{m}\left(x_{m, k_{m}}\right)\right\}\right.\right.$ on the input vector $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$.

Proof:

The proof of this generalization theorem follows the same lines of the previous proof for the two-source case where now the number of terms in the expression of the probability of error is now $2^{m}-1$ instead of 3 (excluding the first term ϵ_{1}).

5.2 Broadcast Networks

A broadcast communication network with m-users is depicted on Figure 5.4. A single broadcast transmitter sends information to m different users over the same broadcast channel. Here we assume that a part of the broadcast message is intended to all users, or receivers, whereas some other parts of the message are different and specific to each individual receivers.

Figure 5.4: Broadcast communication network with m users.

5.2.1 Capacity Region of Broadcast Networks

The capacity region for the m-user broadcast communication link is once again the convex hull of a set of achievable rates. For the broadcast channel case, those rates are $R_{0}, R_{1}, \ldots, R_{m}$, where R_{0} corresponds to the rate of the part of the message which is common to all m users and R_{1}, \ldots, R_{m} represent those rates of the other message parts intended only for each receiver specifically.

Assume for a moment that the message sent by the broadcast transmitter is the same for all m receivers and that all transmitter to receiver links are the same (i.e. they can be represented with the same transition probability matrix). Then the problem will be equivalent to the situation where
there is only one receiver and the capacity region of that degenerated case of broadcast channel would be simply the capacity of a point-to-point channel as we have considered in chapter 3 .

At the other extreme, assume now that there is no common part in the broadcasted message; that is, each user receives a different message. Then the message parts can be exchanged between the single broadcast transmitter and each receiver in the network by sharing the channel. One obvious method is the time-sharing multiplexing scheme where the message part intended for a given user occupies a unique timeslot in a data stream.

Here we are interested in a more general broadcast network situation where part of the broadcast message is common to all users whereas there are also distinct messages, or parts, intended for each receiver. In this later case, a larger capacity region C can be obtained by exploiting the common and specific parts of the broadcast message.

Consider here, for simplicity, a broadcast network which consists of only two receivers. The code \mathcal{C} of such a broadcast channel is defined as a block code of blocklength N and consisting of a total of $M=2^{N R_{0}} 2^{N R_{1}} 2^{N R_{2}}$ codewords.

$$
\mathcal{C}=\left[\begin{array}{c}
\mathbf{c}_{1} \\
\vdots \\
\mathbf{c}_{m} \\
\vdots \\
\mathbf{c}_{M}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{1} \\
\vdots \\
\mathbf{c}_{m} \\
\vdots \\
\mathbf{c}_{2^{N\left(R_{0}+R_{1}+R_{2}\right)}}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m, 1} & \cdots & c_{m, n} & \cdots & c_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M, 1} & \cdots & c_{M, n} & \cdots & c_{M, N}
\end{array}\right]
$$

There are $M=2^{N\left(M_{0}, M_{1}, M_{2}\right)}$ binary codewords of blocklength N. Both decoders must be able to recover the common message w_{0}. Furthermore, decoder 1 must decode its intended specific message w_{1} whereas decoder 2 must decode w_{2}. In other words, the task of decoder 1 is to recover the information pair $\left(w_{0}, w_{1}\right)$ and decoder 2 must determine the message pair $\left(w_{0}, w_{2}\right)$. For this purpose, we can rewrite the broadcast network code by differentiating the index of the common and specific parts of the broadcasted message.

$$
\mathcal{C}=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m, 1} & \cdots & c_{m, n} & \cdots & c_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M, 1} & \cdots & c_{M, n} & \cdots & c_{M, N}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{\left(m_{0}, m_{1}, m_{2}\right), 1} & \cdots & c_{\left(m_{0}, m_{1}, m_{2}\right), n} & \cdots & c_{\left(m_{0}, m_{1}, m_{2}\right), N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{\left(M_{0}, M_{1}, M_{2}\right), 1} & \cdots & c_{\left(M_{0}, M_{1}, M_{2}\right), n} & \cdots & c_{\left(M_{0}, M_{1}, M_{2}\right), N}
\end{array}\right]
$$

There will be a decoding error if either one of the messages ($\tilde{w}_{0}, \tilde{w}_{1}$,or \tilde{w}_{2}) decoded by the receivers is in error. The capacity region of broadcast channels is known only for some special cases: we will study the degraded broadcast network which is one of those known capacity region cases.

5.2.2 Capacity Region of Degraded Broadcast Networks

A degraded broadcast network is a broadcast channel which has the particular characteristic that the broadcast channel can be represented as m cascaded noisy channels as illustrated on Figure 5.5. With that channel configuration, we see that the first receiver is better than the second, which is a cascade of these first two channels, the third receiver gets a worse signal, and so on.

Figure 5.5: Degraded broadcast network with m users.

Theorem (Degraded Broadcast Channel Capacity):

The capacity region C of a memoryless degraded broadcast channel is the closure of the convex hull of the set of all rates R_{1} and R_{2} for which:

$$
\begin{aligned}
& R_{1} \leq I\left(X ; Y_{1} \mid U\right) \\
& R_{2} \leq I\left(U ; Y_{2}\right)
\end{aligned}
$$

for some joint distribution $\left\{\left(p(u) p(x \mid u) p\left(y_{1}, y_{2} \mid u\right)\right\}\right.$ on the input X, an auxiliary random variable U, and the output pair $\left(Y_{1}, Y_{2}\right)$.

Proof:

The proof presented here involves once more the random coding argument as well as a decoding rule based on the definition of jointly typical pairs of sequences. Its derivation is similar to that used in section 3.5 for point-to-point channels and section 5.1 for multiple access channels. We briefly outline here the differences between the previous derivations and the present one for broadcast channel.

There is a broadcast channel decoding error the message intended for user 1 and/or user 2 is in error. We will use the concept of protocodes to show this theorem. In the degraded broadcast network configuration we have two channels: the first one between input X and output Y_{1} is in fact a single point-to-point channel with high reliability. The other link between input X and output Y_{2} consists of two cascaded channels and hence its performance is worse than the first channel. We recall that for cascaded channels the mutual information between the input and the output of the second channel $I\left(X ; Y_{2}\right) \leq I\left(X ; Y_{1}\right)$. All the codewords from the source X will be grouped in clouds of codewords where the cloud center is called the protocodeword of that subgroup of codewords. For the high quality broadcast link $\left(X \Rightarrow Y_{1}\right)$, decoder 1 will attempt to decode the exact codeword transmitted by determining the transmitted protocodeword, or cloud, as well as the actual transmitted codeword. However, for the second low-quality channel ($X \Rightarrow Y_{2}$), decoder 2 will only try to determine the protocodeword without attempting to find the actual transmitted codeword, hence its low reliability.

An interesting example of such a degraded broadcast network is the High Definition Television (HDTV) for which the transmitted broadcast information will be high quality high images. Those users having a high quality HDTV receiver will be able to receive the intended high quality images whereas the other users with bad receivers will still be able to receive the broadcast images but with the limitation of the regular TV receivers. The common message will be the protocodes whereas the actual codewords will provide the additionnal image quality that can only be exploited by the high-end HDTV receivers. For this arrangement to work properly, a broadcast channel code should be employed.

For user 1, i.e. the single and better channel, a decoding error will occur if the triplet $\left(\mathbf{c}_{m}^{\star}, \mathbf{c}_{m, l}, \mathbf{y}_{1}\right)$ representing the transmitted protocodeword \mathbf{c}_{m}^{\star}, the transmitted codeword $\mathbf{c}_{m, l}$ and the received codeword \mathbf{y}_{1} are not jointly typical. This first term in the error probability can be made arbitrarily small, provided that the blocklength N is sufficiently large. However, there will also be a decoding error if another triplet $\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{c}_{m^{\prime}, l^{\prime}}, \mathbf{y}_{1}\right)$, where either $m^{\prime} \neq m$ and $l^{\prime} \neq l$, happens to be jointly typical with the received codeword \mathbf{y}_{1}. In other words, the received vector \mathbf{y}_{1} is correctly decoded only if we can determine both the correct protocodeword \mathbf{c}_{m}^{\star} and the actual transmitted codeword $\mathbf{c}_{m, l}$:

$$
\begin{align*}
& P_{e, \mathbf{y}_{1}} \leq \operatorname{Pr}\left[\left(\mathbf{c}_{m}^{\star}, \mathbf{c}_{m, l}, \mathbf{y}_{1}\right) \notin \mathcal{T}_{U X Y_{1}}(\delta)\right]+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M_{2}} \sum_{\substack{l^{\prime}=1 \\
l^{\prime} \neq l}}^{M_{1}} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{c}_{m^{\prime}, l^{\prime}}, \mathbf{y}_{1}\right) \in \mathcal{T}_{U X Y_{1}}(\delta)\right] \\
& P_{e, \mathbf{y}_{1}} \leq \epsilon_{1}+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M_{2}} \sum_{\substack{l^{\prime}=1 \\
l^{\prime} \neq l}}^{M_{1}} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{c}_{m^{\prime}, l^{\prime}}, \mathbf{y}_{1}\right) \in \mathcal{T}_{U X Y_{1}}(\delta)\right] \tag{5.17}
\end{align*}
$$

For the second user (i.e. using the cascaded and thus the worse channel), an error in the decoding process will occur only if the decoder can not recognize the transmitted protocodeword. Again two error situations may happen: the pair $\left(\mathbf{c}_{m}^{\star}, \mathbf{y}_{2}\right) \notin \mathcal{T}_{U Y_{2}}(\delta)$ (the protocodeword \mathbf{c}_{m}^{\star} and the received vector \mathbf{y}_{2} are not jointly typical), and $\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{y}_{2}\right) \in \mathcal{T}_{U Y_{2}}(\delta)$ (the received vector \mathbf{y}_{2} is jointly typical with another, and thus erroneous, protocodeword $\left.\mathbf{c}_{m^{\prime}}^{\star}\right)$. The first term can be made
vanishlingly small by the properties of jointly typical sequences whereas the second term may not converge towards zero.

$$
\begin{align*}
& P_{e, \mathbf{y}_{2}} \leq \operatorname{Pr}\left[\left(\mathbf{c}_{m}^{\star}, \mathbf{y}_{2}\right) \notin \mathcal{T}_{U Y_{2}}(\delta)\right]+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{y}_{2}\right) \in \mathcal{T}_{U Y_{2}}(\delta)\right] \\
& P_{e, \mathbf{y}_{2}} \leq \epsilon_{2}+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{y}_{2}\right) \in \mathcal{T}_{U Y_{2}}(\delta)\right] \tag{5.18}
\end{align*}
$$

The error decoding probability P_{e} for the two-user degraded broadcast channel is then given by the union of the above two error events and, by the union bound, can be restated as:

$$
\begin{align*}
P_{e} & \leq P_{e, \mathbf{y}_{1}}+P_{e, \mathbf{y}_{2}} \tag{5.19}\\
& \leq \epsilon_{1}+\epsilon_{2}+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M_{2}} \sum_{\substack{l^{\prime}=1 \\
l_{1} \neq l}}^{M_{1}} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{c}_{m^{\prime}, l^{\prime}}, \mathbf{y}_{1}\right) \in \mathcal{T}_{U X Y_{1}}(\delta)\right]+\sum_{\substack{m^{\prime}=1 \\
m^{\prime} \neq m}}^{M_{2}} \operatorname{Pr}\left[\left(\mathbf{c}_{m^{\prime}}^{\star}, \mathbf{y}_{2}\right) \in \mathcal{T}_{U Y_{2}}(\delta)\right]
\end{align*}
$$

The expected probability of error over the ensemble of codes (random coding argument) is given by [Bla87, CT91]:

$$
\begin{equation*}
\sum_{\mathcal{S}_{\mathcal{C}}} \operatorname{Pr}(\mathcal{C})\left[P_{e}\right] \leq \epsilon_{1}+\epsilon_{2}+2^{-N\left[I\left(X ; Y_{1} \mid U\right)-R_{1}-\epsilon^{\prime}\right]}+2^{-N\left[I\left(U ; Y_{2}\right)-R_{2}-\epsilon^{\prime \prime}\right]} \tag{5.20}
\end{equation*}
$$

The right-hand term in the last equation can be made arbitrarily small provided that:

$$
\begin{aligned}
& R_{1} \leq I\left(X ; Y_{1} \mid U\right) \\
& R_{2} \leq I\left(U ; Y_{2}\right)
\end{aligned}
$$

and provided that the blocklength N of the broadcast code is sufficiently large. Then there must exist a code for which the error decoding probability is at least as small as the average of the error decoding probability of the ensemble of codes.

$$
P_{e} \leq \epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}=\epsilon
$$

5.3 Problems

Problem 5.1: Find and draw the capacity regions for these following multiple access channels.
a) A multiple access channel which consists in two independent binary symmetric channels of capacities $C_{1}=1 S h$ and $C_{2}=1 S h$.
b) A additive modulo-2 multiple access channel where $X_{1} \in\{0,1\}, X_{2} \in\{0,1\}$, and $Y=X_{1} \oplus X_{2}$ (the symbol \oplus represent the modulo- 2 addition operation).
c) A multiplicative multiple access channel where $X_{1} \in\{-1,1\}, X_{2} \in\{-1,1\}$, and $Y=X_{1} \times X_{2}$.
d) How do the capacity regions of the above three multiple access channels compare with the capacity region of the binary erasure multiple access channel studied in class.

Bibliography

[Bla84] R.E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, Reading, Massachusetts, 1984.
[Bla87] R.E. Blahut. Principles and Practice of Information Theory. Addison-Wesley, Reading, Massachusetts, 1987.
[CCR90] T.H. Cormen, Leiserson C.E., and R.L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.
[CF94] J.-Y. Chouinard and G. Ferland. Cryptographic Degradation of DES in Block and Stream Cipher Modes in a Digital Mobile Communication Link. In Workshop on Selected Areas in Cryptography (SAC'94), pages 159-169, Kingston, Canada, May 1994.
[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, NewYork, 1991.
[FC92] G. Ferland and J.-Y. Chouinard. Error Rate Performance Analysis of Stream and Block Ciphers in a Digital Mobile communication Channel. In Third Annual Conference on Vehicular Navigation and Information Systems (VNIS 92), pages 426-433, Oslo, Norway, September 1992.
[FC94] G. Ferland and J.-Y. Chouinard. Performance of BCH codes with DES encryption in a Digital Mobile Channel, volume 793 of Lecture Notes in Computer Science, pages 153-172. SpringerVerlag, Berlin, 1994. Information Theory and Applications: Third Canadian Workshop, Rockland, Ontario, Canada (edited by A. Gulliver and N. Secord).
[For70] G.D. Forney. Convolutional Codes I: Algebraic Structure. IEEE Transactions on Information Theory, IT-16(6):720-738, November 1970.
[Fri67] B.D. Fritchman. A Binary Channel Characterization Using Partitioned Markov Chains. IEEE Transactions on Information Theory, IT-13(2):221-227, April 1967.
[Gal68] R. G. Gallagher. Information Theory and Reliable Communications. John Wiley and Sons, New-York, 1968.
[Gil60] E.N. Gilbert. Capacity of a Burst-Noise Channel. Bell System Technical Journal, 76(5):12531265, September 1960.
[Knu73a] D.E. Knuth. The Art of Computer Programming: Fundamental Algorithms (volume 1). AddisonWesley, Reading, Massachusetts, second edition, 1973.
[Knu73b] D.E. Knuth. The Art of Computer Programming: Sorting and Searching (volume 3). AddisonWesley, Reading, Massachusetts, 1973.
[Knu81] D.E. Knuth. The Art of Computer Programming: Seminumerical Algorithms (volume 2). Addison-Wesley, Reading, Massachusetts, second edition, 1981.
[KS78] L.N. Kanal and A.R.K. Sastry. Models for Channels with Memory and Their Applications to Error Control. Proceedings of the IEEE, 66(7):724-744, July 1978.
[LC83] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and Applications. Prentice-Hall, Englewood Cliffs, New-Jersey, 1983.
[LV93] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Texts and Monographs in Computer Science. Springer-Verlag, New-York, 1993.
[Man87] M. Mansuripur. Introduction to Information Theory. Prentice-Hall, Englewood Cliffs, New-Jersey, 1987.
[oSAiC89] IEEE Journal on Selected Areas in Communications. Secure Communications. IEEE Journal on Selected Areas in Communications, SAC-7(4), May 1989.
[Osw86] J. Oswald. Théorie de l'information ou analyse diacritique des systèmes. Collection CNET-ENST. Masson, Paris, 1986.
[otI88] Proceedings of the IEEE. Special issue on Cryptography. Proceedings of the IEEE, 76(5), May 1988.
[Rez94] F.M. Reza. An Introduction to Information Theory. Dover Publications, New-York, 1994. (work first published by the McGraw-Hill Book Company, New-York, in 1961).
[Rom93] S. Roman. Coding and Information Theory. Graduate Texts in Mathematics. Springer-Verlag, New-York, 1993.
[Sha49] C.E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal, 28:656-715, October 1949.
[Sim92] G.J. Simmons. Contemporary Cryptography: The Science of Information Integrity. IEEE Press, New-York, 1992.
[Skl88] B. Sklar. Digital Communications: Fundamentals and Applications. Prentice-Hall, Englewood Cliffs, New-Jersey, 1988.
[SLCA91] A. Semmar, M. Lecours, J.-Y. Chouinard, and J. Ahern. Characterization of Error Sequences in UHF Digital Mobile Radio Channels. IEEE Transactions on Vehicular Technology, VT-40(4):769775, November 1991.
[Sle73] D. Slepian. Key Papers in the Development of Information Theory. IEEE Press, New-York, 1973.
[SW93] N.J.A. Sloane and A.D. Wyner. Claude Elwood Shannon: Collected Papers. IEEE Press, NewYork, 1993.
[Tor92] D.J. Torrieri. Principles of Secure Communication Systems. Artech House, Norwood, Massachusetts, second edition, 1992.

[^0]: ${ }^{1}\lceil x\rceil$: smallest integer larger than or equal to the argument x.

[^1]: ${ }^{1}$ The Jensen's inequality states that $E\left[x^{s}\right] \leq[E(x)]^{s}$

[^2]: ${ }^{1}$ Note that there can be greater rates at which $I(X ; \hat{X})=0$, but here we are interested only in the smallest rate.

[^3]: ${ }^{2}$ Blahut, R. E., "Principles and Practice of Information Theory", Addison-Wesley, Reading, Massachusetts, 1987.
 ${ }^{3}$ Berger, T., "Rate Distortion Theory", Prentice-Hall, Englewood Cliffs, N.J., 1971.

