ECE 405/511
 Error Control Coding

Minimal Polynomials and BCH Codes

Minimal Polynomials

- Let α be an element of GF($\left.q^{m}\right)$
- The minimal polynomial of α with respect to $\mathrm{GF}(q)$ is the smallest degree monic (non-zero) polynomial

$$
p(x) \text { in } \operatorname{GF}(q)[x]
$$

such that $p(\alpha)=0$

- The degree of $p(x)$ is d and $d \mid m$
$-f(\alpha)=0$ implies $p(x) \mid f(x)$
$-p(x)$ is irreducible in $\mathrm{GF}(q)[x]$
- If α is a primitive element in $\operatorname{GF}\left(q^{m}\right), p(x)$ is a primitive polynomial
- What are the other roots of $p(x)$?
- The conjugates of α :

$$
\left\{\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{\alpha^{-1}}}\right\}
$$

- This set of conjugates (with d elements) is called the conjugacy class of α with respect to $\operatorname{GF}(q)$
- All the roots of an irreducible polynomial have the same order so all elements of a conjugacy class have the same order

Example: GF(8)

let α be a root of $x^{3}+x+1 \rightarrow q=2, m=3$ and $d \mid 3$
conjugacy class
\{0\}
\{1\}
$\left\{\alpha, \alpha^{2}, \alpha^{4}\right\}$
$(x+\alpha)\left(x+\alpha^{2}\right)\left(x+\alpha^{4}\right)=x^{3}+x+1$
$\left\{\alpha^{3}, \alpha^{6}, \alpha^{5}\right\}$
$\left(x+\alpha^{3}\right)\left(x+\alpha^{6}\right)\left(x+\alpha^{5}\right)=x^{3}+x^{2}+1$

- Note that the roots are in GF(8), but the minimal polynomials have coefficients in the ground field GF(2)
- Same as multiplying by the conjugate polynomial in the complex field to obtain real coefficients

$$
\left(x^{2}+j x+1\right)\left(x^{2}-j x+1\right)=x^{4}+3 x^{2}+1
$$

- Multiplying all the minimal polynomials of the nonzero elements of GF(8) gives

$$
(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)=x^{7}+1
$$

GF(16) formed from $x^{4}+x+1$

Power of α	Polynomial in α	Vector
$-\infty$	0	0000
0	1	1000
1	α	0100
2	α^{2}	0010
3	α^{3}	0001
4	$\alpha+1$	1100
5	$\alpha^{2}+\alpha$	0110
6	$\alpha^{3}+\alpha^{2}$	0011
7	$\alpha^{3}+\alpha+1$	1101
8	$\alpha^{2}+1$	1010
9	$\alpha^{3}+\alpha$	0101
10	$\alpha^{2}+\alpha+1$	1110
11	$\alpha^{3}+\alpha^{2}+\alpha$	0111
12	$\alpha^{3}+\alpha^{2}+\alpha+1$	1111
13	$\alpha^{3}+\alpha^{2}+1$	1011
14	$\alpha^{3}+1$	1001

- $\operatorname{GF}(16)=\operatorname{GF}\left(2^{4}\right) \quad q=2, m=4, d \mid 4$
let α be a root of $x^{4}+x+1$
conjugacy class order minimal polynomial

$\{0\}$	-	x
$\{1\}$	1	$x+1$
$\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$	15	$x^{4}+x+1$
$\left\{\alpha^{3}, \alpha^{6}, \alpha^{12}, \alpha^{9}\right\}$	5	$x^{4}+x^{3}+x^{2}+x+1$
$\left\{\alpha^{5}, \alpha^{10}\right\}$	3	$x^{2}+x+1$
$\left\{\alpha^{7}, \alpha^{14}, \alpha^{13}, \alpha^{11}\right\}$	15	$x^{4}+x^{3}+1$

Cyclotomic Cosets

- The partition of powers of α by the conjugacy classes is called the set of cyclotomic cosets
- GF(8): $\{0\},\{1,2,4\},\{3,6,5\}$
- $\operatorname{GF}(16):\{0\},\{1,2,4,8\},\{3,6,12,9\},\{5,10\}$,
$\{7,14,13,11\}$
- GF(32):
$\{0\},\{1,2,4,8,16\},\{3,6,12,24,17\}$,
$\{5,10,20,9,18\},\{7,14,28,25,19\}$,
$\{11,22,13,26,21\},\{15,30,29,27,23\}$

Cyclotomic Cosets

- $\mathrm{GF}(32)=\mathrm{GF}\left(2^{5}\right)$ let α be a root of $x^{5}+x^{2}+1$
cyclotomic coset
\{0\}
\{1,2,4,8,16\}
$\{3,6,12,24,17\}$
$\{5,10,20,9,18\}$
$\{7,14,28,25,19\}$
$\{11,22,13,26,21\}$
$\{15,30,29,27,23\}$
minimal polynomial
$M_{0}(x)=x+1$
$M_{1}(x)=x^{5}+x^{2}+1$
$M_{3}(x)=x^{5}+x^{4}+x^{3}+x^{2}+1$
$M_{5}(x)=x^{5}+x^{4}+x^{2}+x+1$
$M_{7}(x)=x^{5}+x^{3}+x^{2}+x+1$
$M_{11}(x)=x^{5}+x^{4}+x^{3}+x+1$
$M_{15}(x)=x^{5}+x^{3}+1$
- The generator polynomials of cyclic codes are
- products of irreducible polynomials
- factors of $x^{n}-1$
so they are a product of minimal polynomials
- Therefore, one can look at cyclic codes in terms of the roots of the generator polynomial $g(x)$

Binary Cyclic Hamming Codes

- If $g(x)$ is a primitive polynomial of degree m over $G F(2)$, then the ring of polynomials modulo $g(x), \mathrm{GF}(2)[x] / g(x)$, is the finite field of order 2^{m}.
- If α is a root of $g(x)$, then $\left\{0,1, \alpha, \alpha^{2}, \cdots, \alpha^{2^{m}-2}\right\}$ are the 2^{m} elements of the field. Each element can also be represented by a binary m-tuple.
- Use the $2^{m}-1$ non-zero elements to construct the columns of a matrix

$$
\mathbf{H}=\left[1, \alpha, \alpha^{2}, \cdots, \alpha^{2^{m}-2}\right]
$$

- The code C with parity check matrix \mathbf{H} is a Hamming code with $n=2^{m}-1$ as \mathbf{H} contains all distinct non-zero m-tuples.
- Since $\mathbf{c H}^{\top}=0$, we can express the set of codewords as

$$
\begin{aligned}
& \quad C=\left\{c_{0} c_{1} \cdots c_{n-1} \mid c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+\cdots+c_{n-1} \alpha^{n-1}=0\right\} \\
& \rightarrow c(x) \text { has root } \alpha \text { since } c(\alpha)=0
\end{aligned}
$$

- As $g(\alpha)=0, c(x)$ is a multiple of $g(x)$
- therefore $c(x)$ is a codeword in the cyclic code generated by $g(x)$ and C is this cyclic code
- All binary Hamming codes are equivalent to cyclic codes
- Example: $g(x)=x^{3}+x+1 \rightarrow \mathrm{GF}(2)[x] / g(x)$ is $\mathrm{GF}(8)$

The field elements are
$\left\{0,1, \alpha, \alpha^{2}, \alpha^{3}=\alpha+1, \alpha^{4}=\alpha^{2}+\alpha, \alpha^{5}=\alpha^{2}+\alpha+1, \alpha^{6}=\alpha^{2}+1\right\}$

$$
\begin{aligned}
& \mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]=\left[I \mathbf{P}^{\top}\right] \\
& \begin{array}{llllll}
1 & \alpha & \alpha^{2} & \alpha^{3} \alpha^{4} & \alpha^{5} & \alpha^{6}
\end{array} \\
& \mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=[\mathbf{P ~ I}] \\
& \text { or } \\
& \mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \quad \text { since } g(x)=x^{3}+x+1
\end{aligned}
$$

BCH Codes

- B - Bose

C - Ray-Chaudhuri
H - Hocquenghem

- BCH codes are a generalization of cyclic Hamming codes
$-g(x)$ is a primitive polynomial
$-c(\alpha)=0$ if α is a root of $g(x)$
- the corresponding parity check matrix has columns corresponding to powers of α from α^{0} to α^{n-1} or all $2^{m}-1$ distinct non-zero binary vectors of length m for a binary code
- Example: $q=2, m=4$

$$
n=2^{m}-1=15
$$

Consider the parity check matrix with columns arranged in increasing integer label order

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{lllll}
1 & 0 & 1 & & 1 \\
0 & 1 & 1 & & 1 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & & 1
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1 & 2 & 3 & \cdots & 15
\end{array}\right]
\end{aligned}
$$

- To generalize to 2 error correction, more rows need to be added to \mathbf{H}. Add 4 more rows to \mathbf{H} to get \mathbf{H}^{\prime}

$$
\mathbf{H}^{\prime}=\left[\begin{array}{ccccc}
1 & 2 & 3 & \ldots & 15 \\
f(1) & f(2) & f(3) & \ldots & f(15)
\end{array}\right]
$$

How to choose $f(i)$?

- Suppose 2 errors have occurred in positions i and j
- The syndromes are $\mathbf{S}=\mathbf{e H}^{\top}=h_{i}+h_{j}$

$$
S_{1}=i+j, S_{2}=f(i)+f(j)
$$

- Require a function f such that S_{1} and S_{2} can be used to get i and j
$-\operatorname{try} f(i)=i^{2}$
$S_{2}=i^{2}+j^{2}=(i+j)^{2}=S_{1}{ }^{2} \rightarrow$ no unique solution in GF(16)
- Next try $f(i)=i^{3}$

$$
\begin{aligned}
& i+j=S_{1} \\
& i^{3}+j^{3}=S_{2} \\
& S_{2}=(i+j)\left(i^{2}+i j+j^{2}\right)=S_{1}\left(S_{1}^{2}+i j\right) \\
& \rightarrow i j=S_{2} / S_{1}+S_{1}^{2}
\end{aligned}
$$

- Now i and j are roots of the equation

$$
\Lambda(x)=(x+i)(x+j)=x^{2}+S_{1} x+S_{2} / S_{1}+S_{1}^{2}
$$

Error Locator Polynomial

Decoding Procedure

1. Compute the syndromes
2. Form the Error Locator Polynomial $\wedge(x)$
3. Find the roots of $\Lambda(x)$
4. Flip the bits in the error positions

Double Error Correction Decoding

- Calculate the syndromes S_{1} and S_{2}
- if $S_{1}=S_{2}=0$, no error
- if $S_{1} \neq 0$ and $S_{2}=S_{1}{ }^{3}, 1$ error at position i
- if $S_{1} \neq 0$ and $S_{2} \neq S_{1}{ }^{3}$, solve for the roots of the error locator polynomial
- if there are 2 distinct roots i and j, correct the errors at these locations
- if no roots, 1 root or a double root, do nothing as more than 2 errors have been detected
- if $S_{1}=0, S_{2} \neq 0$, more than 2 errors have been detected
- To obtain a cyclic code, place the columns of \mathbf{H} in increasing powers of α

$$
\mathbf{H}=\left[\begin{array}{lll}
1 & \alpha & \alpha^{2} \alpha^{3} \alpha^{4} \cdots \\
1 & \alpha^{3} \alpha^{6} \alpha^{9} \alpha^{12} \cdots & \alpha^{3\left(2^{m}-2\right)}
\end{array}\right]
$$

- For the GF(16) example

$$
\mathbf{H}=\left[\begin{array}{c}
1 \alpha \alpha^{2} \alpha^{3} \alpha^{4} \cdots \alpha^{14} \\
1 \alpha^{3} \alpha^{6} \alpha^{9} \alpha^{12} \cdots \alpha^{12}
\end{array}\right]
$$

- Now a codeword must satisfy

$$
\begin{aligned}
& \mathbf{c H}^{\top}=0 \\
& \rightarrow c(\alpha)=0, c\left(\alpha^{3}\right)=0
\end{aligned}
$$

- Therefore $g(x)=M_{1}(x) M_{3}(x)$
- The two error correcting BCH codes have parameters $\left(2^{m}-1,2^{m}-1-2 m, 5\right), m>3$
- Example:

$$
m=4, n=15, k=7, d=5 \quad(15,7,5) \mathrm{BCH} \text { code }
$$

$M_{1}(x)=x^{4}+x+1$
$M_{3}(x)=x^{4}+x^{3}+x^{2}+x+1$
$g(x)=M_{1}(x) M_{3}(x)=x^{8}+x^{7}+x^{6}+x^{4}+1$

$$
\begin{aligned}
& \mathbf{G}=\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
& \mathbf{H}=\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

GF(16) formed from $x^{4}+x+1$

Power of α	Polynomial in α	Vector
-	0	0000
0	1	1000
1	α	0100
2	α^{2}	0010
3	α^{3}	0001
4	$\alpha+1$	1100
5	$\alpha^{2}+\alpha$	0110
6	$\alpha^{3}+\alpha^{2}$	0011
7	$\alpha^{3}+\alpha+1$	1101
8	$\alpha^{2}+1$	1010
9	$\alpha^{3}+\alpha$	0101
10	$\alpha^{2}+\alpha+1$	1110
11	$\alpha^{3}+\alpha^{2}+\alpha$	0111
12	$\alpha^{3}+\alpha^{2}+\alpha+1$	1111
13	$\alpha^{3}+\alpha+1$	1011
14	$\alpha^{3}+1$	1001

$(15,7,5) \mathrm{BCH}$ Code Example 1

- $r=110111101011000$ arithmetic in GF(16)

$$
r(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{8}+x^{10}+x^{11}
$$

The syndromes are

$$
\mathbf{S}=\left[\begin{array}{l}
S_{1} \\
S_{3}
\end{array}\right]=\left[\begin{array}{l}
r(\alpha) \\
r\left(\alpha^{3}\right)
\end{array}\right]=\left[\begin{array}{l}
\alpha^{11} \\
\alpha^{5}
\end{array}\right]
$$

The error locator polynomial is $\Lambda(x)=x^{2}+\alpha^{11} x+1$ roots are α^{7} and α^{8}

$$
\begin{aligned}
& \mathbf{r}=110111101011000 \\
& \mathbf{e}=000000011000000 \\
& \mathbf{c}^{\prime}=110111110011000
\end{aligned}
$$

$(15,7,5)$ BCH Code Example 2

- arithmetic in GF(16)
- $r=100000001000000$
$r(x)=1+x^{8}$
$S_{1}=r(\alpha)=1+\alpha^{8}=\alpha^{2} \quad S_{3}=r\left(\alpha^{3}\right)=1+\alpha^{24}=\alpha^{7}$
The error locator polynomial is

$$
\Lambda(x)=x^{2}+S_{1} x+S_{3} / S_{1}+S_{1}^{2}=x^{2}+\alpha^{2} x+\alpha^{8}
$$

- To find the roots of the error locator polynomial, substitute powers of α to find the error locations

$$
x=\alpha^{0}=1 \rightarrow 1+\alpha^{2}+\alpha^{8}=0
$$

there is an error in the 1st position
Since $x^{2}+\alpha^{2} x+\alpha^{8}=(x+1)\left(x+\alpha^{8}\right)$
there is also an error in the 9th position

- What about correcting an arbitrary number of errors?

$$
\mathbf{H}=\left[\begin{array}{c}
\alpha^{i} \\
f_{1}\left(\alpha^{i}\right) \\
f_{2}\left(\alpha^{i}\right) \\
\vdots
\end{array}\right] \quad g(x)=M_{1}(x) M_{3}(x) \ldots
$$

- If each additional function $f_{j}(x)$ is chosen appropriately we should be able to correct an additional error for each function added
- One choice can be determined using

Vandermonde matrices

Vandermonde Matrices

$$
\mathbf{V}=\left[\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2} \\
\lambda_{1}^{3} & \lambda_{2}^{3} & \lambda_{3}^{3} & \cdots & \lambda_{n}^{3} \\
\vdots & \vdots & \vdots & & \vdots \\
\lambda_{1}^{n} & \lambda_{2}^{n} & \lambda_{3}^{n} & \cdots & \lambda_{n}^{n}
\end{array}\right]_{n \times n} \quad \lambda_{i} \in G F\left(q^{m}\right)
$$

Theorem: If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ are distinct non-zero elements of $\mathrm{GF}\left(q^{m}\right)$, then the columns of \mathbf{V} are linearly independent over GF(q^{m}).

Let $\lambda_{i}=\alpha^{i-1}, \alpha$ an element of order $n \operatorname{in} \operatorname{GF}\left(q^{m}\right)$

$$
\mathbf{H}=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \ldots & \alpha^{n-1} \\
1 & \alpha^{2} & \alpha^{4} & \ldots & \alpha^{2(n-1)} \\
1 & \alpha^{3} & \alpha^{6} & \ldots & \alpha^{3(n-1)} \\
\vdots & & & & \\
1 & \alpha^{2 t} & \alpha^{4 t} & \ldots & \alpha^{2 t(n-1)}
\end{array}\right]_{2 t \times n} \begin{gathered}
\\
\text { are roots of } g(x)
\end{gathered}
$$

Any $2 t$ columns are linearly independent
$\therefore d>2 t$

- $\operatorname{GF}\left(2^{m}\right)$ example:

If α is a zero of $g(x)$, so is α^{2} and α^{4}
Therefore, for $d=5$, only the rows

$$
\begin{array}{llll}
1 & \alpha & \alpha^{2} \cdots & \alpha^{n-1} \\
1 & \alpha^{3} & \alpha^{6} \cdots & \alpha^{3(n-1)}
\end{array}
$$

are required as previously shown. Redundant rows can be removed. The number of rows determines $n-k$ so we want to minimize this number.

Theorem - BCH Bound

Let C be an $(n, k) q$-ary cyclic code with generator polynomial $g(x)$.
Let α be an element of order n in $\mathrm{GF}\left(q^{m}\right), n \mid q^{m}-1$. If $g(x)$ is the monic polynomial of smallest degree such that

$$
\alpha^{b}, \alpha^{b+1}, \cdots, \alpha^{b+\delta-2}
$$

are among its roots, then C has minimum distance at least $\delta . g(x)$ is the product of the minimal polynomials of the roots

$$
g(x)=\operatorname{LCM}\left\{M_{b}(x), M_{b+1}(x), \ldots, M_{b+\delta-2}(x)\right\}
$$

- δ is called the design distance (typically $2 t+1$)
- The most commonly encountered BCH codes are the $n=q^{m}-1$ primitive (α is a primitive element of $\mathrm{GF}\left(q^{m}\right)$)
$b=1$ narrow-sense
BCH codes
- For any m and $t<n / 2$, there exists a binary primitive BCH code with parameters

$$
n=2^{m}-1, d \geq 2 t+1, n-k \leq m t
$$

product of t minimal polynomials of degree m or less

- For $q=2$, every second row in \mathbf{H} can be deleted as $\alpha^{2 i}$ has the same minimal polynomial as α^{i}
- Binary BCH code examples:
$d=3\left(2^{m}-1,2^{m}-1-m, 3\right) \quad$ cyclic Hamming code $g(x)=M_{1}(x)$
$d=5\left(2^{m}-1,2^{m}-1-2 m, 5\right)$
$g(x)=M_{1}(x) M_{3}(x)$

Construction of BCH Codes

- To construct a t error correcting q-ary BCH code of length n :
- Find an element α of order n in $\operatorname{GF}\left(q^{m}\right)$ where m is minimal, i.e. $n \mid q^{m}-1$
- Select $2 t$ consecutive powers of α starting with α^{b}
- Find $g(x)$, the LCM of the minimal polynomials for these powers of α

Example: Binary BCH Codes of Length 31

- $q=2$ and $n=31=2^{5}-1$ so $m=5$
- Let α be a root of $x^{5}+x^{2}+1$
- The cyclotomic cosets modulo 31 are

Minimal polynomial
$c_{0} \quad\{0\}$
$c_{1}\{1,2,4,8,16\}$
$c_{3}\{3,6,12,24,17\}$
$c_{5}\{5,10,20,9,18\}$
$c_{7}\{7,14,28,25,19\}$
$c_{11}\{11,22,13,26,21\}$
$c_{15}\{15,30,29,27,23\}$
$x+1$
$x^{5}+x^{2}+1$
$x^{5}+x^{4}+x^{3}+x^{2}+1$
$x^{5}+x^{4}+x^{2}+x+1$
$x^{5}+x^{3}+x^{2}+x+1$
$x^{5}+x^{4}+x^{3}+x+1$
$x^{5}+x^{3}+1$
$M_{0}(x)$
$M_{1}(x)$
$M_{3}(x)$
$M_{5}(x)$
$M_{7}(x)$
$M_{11}(x)$
$M_{15}(x)$

- Narrow-sense $b=1$
t roots of $g(x)$
$1 \alpha, \alpha^{2}$
$2 \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$
$3 \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{6}$
$4 \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{8}$
$g(x)$
$M_{1}(x)$
$M_{1}(x) M_{3}(x)$
$M_{1}(x) M_{3}(x) M_{5}(x)$
$M_{1}(x) M_{3}(x) M_{5}(x) M_{7}(x)$
code
$(31,26,3)$
$(31,21,5)$
$(31,16,7)$
$(31,11,11)$

Note: for $t=4, g(x)$ actually has 10 consecutive powers of α as roots, thus $d=11$.

Binary BCH Codes with $b=0$

- $b=0 \rightarrow$ start with $\alpha^{0}=1$
- For t error correction $2 t$ roots of $g(x): 1, \alpha, \alpha^{2}, \ldots, \alpha^{2 t-1}$
- $g(x)$ has $x+1$ as a factor
- d is even $\rightarrow d \geq 2 t+2$
- roots of $g(x): 1, \alpha, \alpha^{2}, \ldots, \alpha^{2 t-1}, \alpha^{2 t}$
conjugate of root α^{t}

Example: GF(8)

- $t=1,2 t=2, b=0: 1$ and α are the roots

$$
\begin{aligned}
g(x) & =(x+1)\left(x^{3}+x+1\right) \\
& =x^{4}+x^{3}+x^{2}+1 \quad d=4>2 t+1
\end{aligned}
$$

- $(7,3,4)$ cyclic code
- dual of $(7,4,3)$ Hamming code
- $h(x)=x^{3}+x^{2}+1$

$$
g(x)=x^{4}+x^{3}+x^{2}+1
$$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

$h(x)=x^{3}+x^{2}+1 \quad h^{*}(x)=x^{3}+x+1$

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

GF(64) Minimal Polynomials

\{0\}
\{1,2,4,8,16,32\}
$\{3,6,12,24,48,33\}$
$\{5,10,20,40,17,34\}$
$\{7,14,28,56,49,35\}$
(9,18,36\}
$\{11,22,44,25,50,37\}$
$\{13,26,52,41,19,38\}$
$\{15,30,60,57,51,39\}$
\{21,42\}
$\{23,46,29,58,53,43\}$
\{27,54,45\}
$\{31,62,61,59,55,47\}$
$x+1$
$x^{6}+x+1$
$x^{6}+x^{4}+x^{2}+x+1$
$x^{6}+x^{5}+x^{2}+x+1$
$x^{6}+x^{3}+1$
$x^{3}+x^{2}+1$
$x^{6}+x^{5}+x^{3}+x+1$
$x^{6}+x^{4}+x^{3}+x+1$
$x^{6}+x^{5}+x^{4}+x^{2}+1$
$x^{2}+x+1$
$x^{6}+x^{5}+x^{4}+x+1$
$x^{3}+x+1$
$x^{6}+x^{5}+1$
$M_{0}(x)$
$M_{1}(x)$
$M_{3}(x)$
$M_{5}(x)$
$M_{7}(x)$
$M_{9}(x)$
$M_{11}(x)$
$M_{13}(x)$
$M_{15}(x)$
$M_{21}(x)$
$M_{23}(x)$
$M_{27}(x)$
$M_{31}(x)$

Primitive BCH Codes of Length 63

$(63,57,3) \quad(63,51,5) \quad(63,45,7)$
$(63,39,9) \quad(63,36,11) \quad(63,30,13)$
$(63,24,15) \quad(63,18,21) \quad(63,16,23)$
$(63,10,27) \quad(63,7,31)$

Non-primitive BCH Codes

- Example $n=21, q=2 \quad m=$?
$n \mid 2^{m}-1 \quad m=6$ (minimal) so use GF(64)
- Let α be a primitive element in GF(64) Let $\beta=\alpha^{3}$ so that $\beta^{21}=\alpha^{63}=1$
- For $t=2$ roots are $\beta, \beta^{2}, \beta^{3}, \beta^{4} \rightarrow \alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12}$

$$
\begin{aligned}
g(x) & =\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right) \\
& =x^{9}+x^{8}+x^{7}+x^{5}+x^{4}+x+1
\end{aligned}
$$

$(21,12,5)$ non-primitive BCH code

- If $g(x)$ generates a cyclic code of length 21 , it must be a factor of $x^{21}+1$
- Check:
$x^{21}+1=(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{6}+x^{5}+x^{4}+x^{2}+1\right)$
- There are many cases where the actual minimum distance is greater than the design distance
- Example: construct a BCH code with $n=23$

$$
23 \mid 2^{11}-1 \rightarrow G F\left(2^{11}\right) \quad 2^{11}-1=23 \times 89
$$

- Let α be a primitive element in $\operatorname{GF}\left(2^{11}\right)$
- $\beta=\alpha^{89}$ so that $\beta^{23}=\alpha^{89 \times 23}=1$
$-t=1$: required roots are β, β^{2}
- adding the conjugates, the roots are:

$$
\beta, \beta^{2}, \beta^{4}, \beta^{8}, \beta^{16}, \beta^{32}=\beta^{9}, \beta^{18}, \beta^{13}, \beta^{3}, \beta^{6}, \beta^{12}
$$

$$
g(x)=x^{11}+x^{9}+x^{7}+x^{6}+x^{5}+x+1
$$

- design distance is 5 : code parameters are $(23,12,7)$

$(23,12,7)$ Cyclic Golay Code

$\left[\begin{array}{lllllllllllllllllllllll}1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$0 \begin{array}{lllllllllllllllllllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{lllllllllllllllllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$
$0 \begin{array}{lllllllllllllllllllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{lllllllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{lllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0$
$0 \begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$
$0 \begin{array}{llllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$\left[\begin{array}{lllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1\end{array}\right]$

GF(256) Cyclotomic Cosets

$\{0\}$
$\{1,2,4,8,16,32,64,128\}$
$\{3,6,12,24,48,96,129,192\}$
$\{5,10,20,40,65,80,130,160\}$
$\{7,14,28,56,112,131,193,224\}$
$(9,18,33,36,66,72,132,144\}$
$\{11,22,44,88,97,133,176,194\}$
$\{13,26,52,67,104,134,161,208\}$
$\{15,30,60,120,135,195,225,240\}$
$\{17,34,68,136\}$
$\{19,38,49,76,98,137,152,196\}$
$\{21,42,69,81,84,138,162,168\}$
$\{23,46,92,113,139,184,197,226\}$
$\{25,35,50,70,100,140,145,200\}$
$\{27,54,99,108,141,177,198,216\}$
$\{29,58,71,116,142,163,209,232\}$
$\{31,62,124,143,199,227,241,248\}$

$M_{1}(x)$	$\{37,41,73,74,82,146,148,164\}$	$M_{37}(x)$
$M_{1}(x)$	$\{39,57,78,114,147,156,201,228\}$	$M_{39}(x)$
$M_{3}(x)$	$\{43,86,89,101,149,172,178,202\}$	$M_{43}(x)$
$M_{5}(x)$	$\{45,75,90,105,150,165,180,210\}$	$M_{45}(x)$
$M_{7}(x)$	$\{47,94,121,151,188,203,229,242\}$	$M_{47}(x)$
$M_{9}(x)$	$\{53,77,83,106,154,166,169,212\}$	$M_{53}(x)$
$M_{11}(x)$	$\{55,110,115,155,185,205,220,230\}$	$M_{55}(x)$
$M_{13}(x)$	$\{59,103,118,157,179,206,217,236\}$	$M_{59}(x)$
$M_{15}(x)$	$\{61,79,122,158,167,211,233,244\}$	$M_{61}(x)$
$M_{17}(x)$	$\{63,126,159,207,231,243,249,252\}$	$M_{63}(x)$
$M_{19}(x)$	$\{85,170\}$	$M_{85}(x)$
$M_{21}(x)$	$\{87,93,117,171,174,186,213,234\}$	$M_{87}(x)$
$M_{23}(x)$	$\{91,107,109,173,181,182,214,218\}$	$M_{91}(x)$
$M_{25}(x)$	$\{95,125,175,190,215,235,245,250\}$	$M_{95}(x)$
$M_{27}(x)$	$\{111,123,183,189,219,222,237,246\}$	$M_{111}(x)$
$M_{29}(x)$	$\{119,187,221,238\}$	$M_{119}(x)$
$M_{31}(x)$	$\{127,191,223,239,247,251,253,254\}$	$M_{127}(x)$

