ECE 405/511 Error Control Coding

Minimal Polynomials and BCH Codes

Minimal Polynomials

- Let α be an element of $GF(q^m)$
- The minimal polynomial of α with respect to GF(q) is the smallest degree monic (non-zero) polynomial

p(*x*) in GF(*q*)[*x*]

such that $p(\alpha) = 0$

- The degree of p(x) is d and d|m
- $-f(\alpha) = 0$ implies p(x)|f(x)
- -p(x) is irreducible in GF(q)[x]
- If α is a primitive element in GF(q^m), p(x) is a primitive polynomial

- What are the other roots of p(x)?
 - The conjugates of α :

 $\{\alpha, \alpha^q, \alpha^{q^2}, ..., \alpha^{q^{d-1}}\}$

- This set of conjugates (with *d* elements) is called the conjugacy class of α with respect to GF(*q*)
- All the roots of an irreducible polynomial have the same order so all elements of a conjugacy class have the same order

Example: GF(8)

let α be a root of $x^3+x+1 \rightarrow q = 2, m = 3$ and $d \mid 3$ conjugacy class minimal polynomial {0} x{1} x+1{ $\alpha, \alpha^2, \alpha^4$ } $(x+\alpha)(x+\alpha^2)(x+\alpha^4) = x^3+x+1$ { $\alpha^3, \alpha^6, \alpha^5$ } $(x+\alpha^3)(x+\alpha^6)(x+\alpha^5) = x^3+x^2+1$

- Note that the roots are in GF(8), but the minimal polynomials have coefficients in the ground field GF(2)
- Same as multiplying by the conjugate polynomial in the complex field to obtain real coefficients

$$(x^{2} + jx + 1)(x^{2} - jx + 1) = x^{4} + 3x^{2} + 1$$

• Multiplying all the minimal polynomials of the nonzero elements of GF(8) gives

$$(x+1)(x^3+x+1)(x^3+x^2+1) = x^7+1$$

GF(16) formed from *x*⁴+*x*+1

Power of α	Polynomial in α	Vector
-∞-	0	0000
0	1	1000
1	α	0100
2	$lpha^2$	0010
3	$lpha^3$	0001
4	α+1	1100
5	$\alpha^2 + \alpha$	0110
6	$\alpha^3 + \alpha^2$	0011
7	$\alpha^3 + \alpha + 1$	1101
8	α ² +1	1010
9	$\alpha^3+\alpha$	0101
10	$\alpha^2 + \alpha + 1$	1110
11	$\alpha^3 + \alpha^2 + \alpha$	0111
12	$\alpha^3 + \alpha^2 + \alpha + 1$	1111
13	$\alpha^3 + \alpha^2 + 1$	1011
14	α ³ +1	1001

• $GF(16) = GF(2^4)$ q	= 2, <i>m</i> =	4, d 4
let α be a root of x	⁴ + <i>x</i> +1	
conjugacy class	order	minimal polynomial
{0}	-	X
{1}	1	<i>x</i> +1
$\{\alpha, \alpha^2, \alpha^4, \alpha^8\}$	15	<i>x</i> ⁴ + <i>x</i> +1
$\{\alpha^3, \alpha^6, \alpha^{12}, \alpha^9\}$	5	$x^4 + x^3 + x^2 + x + 1$
$\{\alpha^5, \alpha^{10}\}$	3	<i>x</i> ² + <i>x</i> +1
$\{lpha^{7}, lpha^{14}, lpha^{13}, lpha^{11}\}$	15	<i>x</i> ⁴ + <i>x</i> ³ +1

Cyclotomic Cosets

- The partition of powers of α by the conjugacy classes is called the set of cyclotomic cosets
- GF(8): {0}, {1,2,4}, {3,6,5}
- GF(16): {0}, {1,2,4,8}, {3,6,12,9}, {5,10}, {7,14,13,11}
- GF(32): {0}, {1,2,4,8,16}, {3,6,12,24,17},
 {5,10,20,9,18}, {7,14,28,25,19},
 {11,22,13,26,21}, {15,30,29,27,23}

Cyclotomic Cosets

• $GF(32) = GF(2^5)$ let α be a root of $x^5 + x^2 + 1$ cyclotomic coset minimal polynomial {0} $M_0(x) = x + 1$ $M_1(x) = x^5 + x^2 + 1$ $\{1,2,4,8,16\}$ $M_3(x) = x^5 + x^4 + x^3 + x^2 + 1$ $\{3, 6, 12, 24, 17\}$ $\{5, 10, 20, 9, 18\}$ $M_{5}(x) = x^{5} + x^{4} + x^{2} + x + 1$ $M_7(x) = x^5 + x^3 + x^2 + x + 1$ {7,14,28,25,19} $M_{11}(x) = x^5 + x^4 + x^3 + x + 1$ {11,22,13,26,21} $M_{15}(x) = x^5 + x^3 + 1$ {15,30,29,27,23}

- The generator polynomials of cyclic codes are
 - products of irreducible polynomials
 - factors of x^n -1

so they are a product of minimal polynomials

• Therefore, one can look at cyclic codes in terms of the roots of the generator polynomial *g*(*x*)

Binary Cyclic Hamming Codes

- If g(x) is a primitive polynomial of degree m over GF(2), then the ring of polynomials modulo g(x), GF(2)[x]/g(x), is the finite field of order 2^m.
- If α is a root of g(x), then {0, 1, α, α²,..., α^{2^{m-2}}} are the 2^m elements of the field. Each element can also be represented by a binary *m*-tuple.
- Use the 2^m-1 non-zero elements to construct the columns of a matrix

H=[1,
$$\alpha$$
, α^{2} ,..., $\alpha^{2^{m-2}}$]

 The code C with parity check matrix H is a Hamming code with n = 2^m-1 as H contains all distinct non-zero m-tuples. • Since **cH**^T = 0, we can express the set of codewords as

$$C = \{c_0 c_1 \cdots c_{n-1} \mid c_0 + c_1 \alpha + c_2 \alpha^2 + \cdots + c_{n-1} \alpha^{n-1} = 0\}$$

$$\rightarrow c(x) \text{ has root } \alpha \text{ since } c(\alpha) = 0$$

- As $g(\alpha) = 0$, c(x) is a multiple of g(x)
 - therefore c(x) is a codeword in the cyclic code generated by g(x) and C is this cyclic code
- All binary Hamming codes are equivalent to cyclic codes
- Example: $g(x) = x^3 + x + 1 \rightarrow GF(2)[x]/g(x)$ is GF(8) The field elements are

 $\{0,\,1,\,\alpha,\,\alpha^2,\,\alpha^3=\alpha+1,\,\alpha^4=\alpha^2+\alpha,\,\alpha^5=\alpha^2+\alpha+1,\,\alpha^6=\alpha^2+1\}$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} \ \mathbf{P}^{\mathsf{T}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{I} \ \mathbf{P}^{\mathsf{T}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{I} \ \mathbf{P}^{\mathsf{T}} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{P} \ \mathbf{I} \end{bmatrix}$$

or

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

since *g*(*x*) = *x*³+*x*+1

BCH Codes

- B Bose
 - C Ray-Chaudhuri
 - H Hocquenghem
- BCH codes are a generalization of cyclic Hamming codes
 - -g(x) is a primitive polynomial
 - $-c(\alpha) = 0$ if α is a root of g(x)
 - the corresponding parity check matrix has columns corresponding to powers of α from α^0 to α^{n-1} or all 2^m -1 distinct non-zero binary vectors of length *m* for a binary code

• Example: *q* = 2, *m* = 4

 $n = 2^m - 1 = 15$

Consider the parity check matrix with columns arranged in increasing integer label order

	1	0	1		1
H =	0	1	1		1
	0	0	0	•••	1
	0	0	0		1
=	[1	2	3	•••	15]

 To generalize to 2 error correction, more rows need to be added to H. Add 4 more rows to H to get H'

$$\mathbf{H'} = \begin{bmatrix} 1 & 2 & 3 & \dots & 15 \\ f(1) & f(2) & f(3) & \dots & f(15) \end{bmatrix}$$

How to choose f(i)?

- Suppose 2 errors have occurred in positions *i* and *j*
- The syndromes are $\mathbf{S} = \mathbf{e}\mathbf{H}^{\mathsf{T}} = h_i + h_j$

 $S_1 = i+j, S_2 = f(i)+f(j)$

 Require a function f such that S₁ and S₂ can be used to get i and j

− try
$$f(i) = i^2$$

 $S_2 = i^2 + j^2 = (i+j)^2 = S_1^2 \rightarrow \text{no unique solution in}$
GF(16)

- Next try $f(i) = i^3$ $i+j = S_1$ $i^3+j^3 = S_2$ $S_2 = (i+j)(i^2+ij+j^2) = S_1(S_1^2+ij)$ $\rightarrow ij = S_2/S_1 + S_1^2$
- Now *i* and *j* are roots of the equation $\Lambda(x) = (x+i)(x+j) = x^2 + S_1 x + S_2/S_1 + S_1^2$ Error Locator Polynomial

Decoding Procedure

- 1. Compute the syndromes
- 2. Form the Error Locator Polynomial $\Lambda(x)$
- 3. Find the roots of $\Lambda(x)$
- 4. Flip the bits in the error positions

Double Error Correction Decoding

- Calculate the syndromes S_1 and S_2
 - $\text{ if } S_1 = S_2 = 0, \text{ no error}$
 - if $S_1 \neq 0$ and $S_2 = S_1^3$, 1 error at position *i*
 - if $S_1 \neq 0$ and $S_2 \neq S_1^3$, solve for the roots of the error locator polynomial
 - if there are 2 distinct roots *i* and *j*, correct the errors at these locations
 - if no roots, 1 root or a double root, do nothing as more than 2 errors have been detected
 - if $S_1 = 0$, $S_2 \neq 0$, more than 2 errors have been detected

To obtain a cyclic code, place the columns of H in increasing powers of α

$$\mathbf{H} = \begin{bmatrix} 1 \ \alpha \ \alpha^{2} \alpha^{3} \alpha^{4} \cdots \alpha^{2^{m-2}} \\ 1 \ \alpha^{3} \alpha^{6} \alpha^{9} \alpha^{12} \cdots \alpha^{3(2^{m-2})} \end{bmatrix}$$

• For the GF(16) example

$$\mathbf{H} = \begin{bmatrix} \mathbf{1} \ \alpha \ \alpha^{2} \alpha^{3} \alpha^{4} \cdots \alpha^{14} \\ \mathbf{1} \ \alpha^{3} \alpha^{6} \alpha^{9} \alpha^{12} \cdots \alpha^{12} \end{bmatrix}$$

- Now a codeword must satisfy $\mathbf{c}\mathbf{H}^{\mathsf{T}} = \mathbf{0}$ $\rightarrow c(\alpha) = 0, c(\alpha^3) = 0$
- Therefore $g(x) = M_1(x)M_3(x)$

- The two error correcting BCH codes have parameters (2^m-1,2^m-1-2m,5), m > 3
- Example:

m = 4, n = 15, k = 7, d = 5 (15,7,5) BCH code

$$M_{1}(x) = x^{4} + x + 1$$

$$M_{3}(x) = x^{4} + x^{3} + x^{2} + x + 1$$

$$g(x) = M_{1}(x)M_{3}(x) = x^{8} + x^{7} + x^{6} + x^{4} + 1$$

GF(16) formed from *x*⁴+*x*+1

Power of α	Polynomial in α	Vector
-	0	0000
0	1	1000
1	α	0100
2	$lpha^2$	0010
3	$lpha^3$	0001
4	α+1	1100
5	$\alpha^2 + \alpha$	0110
6	$\alpha^3 + \alpha^2$	0011
7	$\alpha^3 + \alpha + 1$	1101
8	α ² +1	1010
9	$\alpha^3 + \alpha$	0101
10	$\alpha^2 + \alpha + 1$	1110
11	$\alpha^3 + \alpha^2 + \alpha$	0111
12	$\alpha^3 + \alpha^2 + \alpha + 1$	1111
13	$\alpha^3 + \alpha + 1$	1011
14	α ³ +1	1001

(15,7,5) BCH Code Example 1

ndromes are

$$\mathbf{S} = \begin{bmatrix} S_1 \\ S_3 \end{bmatrix} = \begin{bmatrix} r(\alpha) \\ r(\alpha^3) \end{bmatrix} = \begin{bmatrix} \alpha^{11} \\ \alpha^5 \end{bmatrix}$$

The error locator polynomial is $\Lambda(x) = x^2 + \alpha^{11}x + 1$ roots are α^7 and α^8

- r = 110111101011000
- e = 0000001100000
- **c'** = 110111110011000

(15,7,5) BCH Code Example 2

- arithmetic in GF(16)
- r = 10000001000000
 r(x) = 1+x⁸

 $S_1 = r(\alpha) = 1 + \alpha^8 = \alpha^2 \qquad S_3 = r(\alpha^3) = 1 + \alpha^{24} = \alpha^7$ The error locator polynomial is

$$\Lambda(x) = x^{2} + S_{1}x + S_{3} / S_{1} + S_{1}^{2} = x^{2} + \alpha^{2}x + \alpha^{8}$$

• To find the roots of the error locator polynomial, substitute powers of α to find the error locations

$$x=\alpha^0=1\longrightarrow 1+\alpha^2+\alpha^8=0$$

there is an error in the 1st position

Since
$$x^{2} + \alpha^{2}x + \alpha^{8} = (x+1)(x+\alpha^{8})$$

there is also an error in the 9th position

• What about correcting an arbitrary number of errors?

$$\mathbf{H} = \begin{bmatrix} \alpha^{i} \\ f_{1}(\alpha^{i}) \\ f_{2}(\alpha^{i}) \\ \vdots \end{bmatrix}$$

$$g(x) = \mathcal{M}_1(x)\mathcal{M}_3(x)\dots$$

- If each additional function f_j(x) is chosen appropriately we should be able to correct an additional error for each function added
- One choice can be determined using Vandermonde matrices

Vandermonde Matrices $\mathbf{V} = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \cdots & \lambda_n^2 \\ \lambda_1^3 & \lambda_2^3 & \lambda_3^3 & \cdots & \lambda_n^3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \lambda_1^n & \lambda_2^n & \lambda_3^n & \cdots & \lambda_n^n \end{bmatrix}_{n \times n} \qquad \lambda_i \in GF(q^m)$

Theorem: If $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$ are distinct non-zero elements of $GF(q^m)$, then the columns of **V** are linearly independent over $GF(q^m)$.

Let $\lambda_i = \alpha^{i-1}$, α an element of order *n* in GF(q^m)

$$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^{2} & \dots & \alpha^{n-1} \\ 1 & \alpha^{2} & \alpha^{4} & \dots & \alpha^{2(n-1)} \\ 1 & \alpha^{3} & \alpha^{6} & \dots & \alpha^{3(n-1)} \\ \vdots & & & & \\ 1 & \alpha^{2t} & \alpha^{4t} & \dots & \alpha^{2t(n-1)} \end{bmatrix}_{2t \times n}^{2t \times n}$$

Any 2t columns are linearly independent $\therefore d > 2t$

• GF(2^m) example:
$$M_3(x)$$

 $\alpha \alpha^2 \alpha^3 \alpha^4$
 $M_1(x)$

If α is a zero of g(x), so is α^2 and α^4 Therefore, for d = 5, only the rows

> 1 $\alpha \quad \alpha^2 \cdots \quad \alpha^{n-1}$ 1 $\alpha^3 \quad \alpha^6 \cdots \quad \alpha^{3(n-1)}$

are required as previously shown. Redundant rows can be removed. The number of rows determines *n-k* so we want to minimize this number.

Theorem – BCH Bound

Let C be an (n,k) q-ary cyclic code with generator polynomial g(x).

Let α be an element of order n in GF(q^m), $n | q^m$ -1. If g(x) is the monic polynomial of smallest degree such that

$$\alpha^{b}$$
, α^{b+1} ,..., $\alpha^{b+\delta-2}$

are among its roots, then C has minimum distance at least δ . g(x) is the product of the minimal polynomials of the roots

$$g(x) = \mathsf{LCM}\{M_b(x), M_{b+1}(x), ..., M_{b+\delta-2}(x)\}$$

- δ is called the design distance (typically 2*t*+1)
- The most commonly encountered BCH codes are the

 $n = q^m - 1$ primitive (α is a primitive element of GF(q^m))

b = 1 narrow-sense

BCH codes

 For any *m* and *t* < *n*/2, there exists a binary primitive BCH code with parameters

 $n = 2^{m}-1, d \ge 2t+1, n-k \le mt$

product of t minimal polynomials of degree m or less

- For q = 2, every second row in **H** can be deleted as α^{2i} has the same minimal polynomial as α^{i}
- Binary BCH code examples:

 $d = 3 \ (2^{m}-1, 2^{m}-1-m, 3)$ cyclic Hamming code $g(x) = M_{1}(x)$ $d = 5 \ (2^{m}-1, 2^{m}-1-2m, 5)$ $g(x) = M_{1}(x)M_{3}(x)$

Construction of BCH Codes

- To construct a *t* error correcting *q*-ary BCH code of length *n*:
 - Find an element α of order n in GF(q^m) where m is minimal, i.e. $n | q^m$ -1
 - Select 2t consecutive powers of α starting with α^b
 - Find g(x), the LCM of the minimal polynomials for these powers of α

Example: Binary BCH Codes of Length 31

- q = 2 and $n = 31 = 2^5 1$ so m = 5
- Let α be a root of x^5+x^2+1
- The cyclotomic cosets modulo 31 are

Minimal polynomial

<i>C</i> ₀	{0}	<i>x</i> +1	$M_0(x)$
<i>C</i> ₁	{1,2,4,8,16}	$x^{5}+x^{2}+1$	$M_1(x)$
<i>C</i> ₃	{3,6,12,24,17}	$x^5 + x^4 + x^3 + x^2 + 1$	$M_3(x)$
<i>C</i> ₅	{5,10,20,9,18}	$x^{5}+x^{4}+x^{2}+x+1$	$M_5(x)$
<i>C</i> ₇	{7,14,28,25,19}	$x^{5}+x^{3}+x^{2}+x+1$	$M_7(x)$
<i>C</i> ₁₁	{11,22,13,26,21}	<i>x</i> ⁵ + <i>x</i> ⁴ + <i>x</i> ³ + <i>x</i> +1	$M_{11}(x)$
<i>c</i> ₁₅	{15,30,29,27,23}	<i>x</i> ⁵ + <i>x</i> ³ +1	$M_{15}(x)$

- Narrow-sense b = 1
- troots of g(x)g(x)code1 α, α^2 $M_1(x)$ (31,26,3)2 $\alpha, \alpha^2, \alpha^3, \alpha^4$ $M_1(x)M_3(x)$ (31,21,5)3 $\alpha, \alpha^2, \alpha^3, ..., \alpha^6$ $M_1(x)M_3(x)M_5(x)$ (31,16,7)4 $\alpha, \alpha^2, \alpha^3, ..., \alpha^8$ $M_1(x)M_3(x)M_5(x)M_7(x)$ (31,11,11)

Note: for t = 4, g(x) actually has 10 consecutive powers of α as roots, thus d = 11.

Binary BCH Codes with *b* = 0

- $b = 0 \rightarrow \text{start with } \alpha^0 = 1$
- For t error correction 2t roots of g(x): 1, α , α^2 , ..., α^{2t-1}
- g(x) has x+1 as a factor
- d is even $\rightarrow d \ge 2t+2$
- roots of g(x): 1, α , α^2 , ..., α^{2t-1} , α^{2t}

conjugate of root α^t

Example: GF(8)

- t = 1, 2t = 2, b = 0: 1 and α are the roots $g(x) = (x+1)(x^3+x+1)$ $= x^4+x^3+x^2+1$ d = 4 > 2t+1
- (7,3,4) cyclic code
 dual of (7,4,3) Hamming code
- $h(x) = x^3 + x^2 + 1$

$$g(x) = x^{4} + x^{3} + x^{2} + 1$$
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$h(x) = x^{3} + x^{2} + 1 \qquad h^{*}(x) = x^{3} + x + 1$$
$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

GF(64) Minimal Polynomials

{0} {1,2,4,8,16,32} {3,6,12,24,48,33} {5,10,20,40,17,34} {7,14,28,56,49,35} (9, 18, 36){11,22,44,25,50,37} {13,26,52,41,19,38} {15,30,60,57,51,39} {21,42} {23,46,29,58,53,43} {27,54,45} {31,62,61,59,55,47}

x+1 $x^{6}+x+1$ $x^{6}+x^{4}+x^{2}+x+1$ $x^{6}+x^{5}+x^{2}+x+1$ $x^{6}+x^{3}+1$ $x^{3}+x^{2}+1$ $x^{6}+x^{5}+x^{3}+x+1$ $x^{6}+x^{4}+x^{3}+x+1$ $x^{6}+x^{5}+x^{4}+x^{2}+1$ $x^{2}+x+1$ $x^{6}+x^{5}+x^{4}+x+1$ $x^{3}+x+1$ $x^{6}+x^{5}+1$

 $M_0(x)$ $M_1(x)$ $M_{3}(x)$ $M_{5}(x)$ $M_7(x)$ $M_{q}(x)$ $M_{11}(x)$ $M_{13}(x)$ $M_{15}(x)$ $M_{21}(x)$ $M_{23}(x)$ $M_{27}(x)$ $M_{31}(x)$

Primitive BCH Codes of Length 63

- (63,57,3) (63,51,5) (63,45,7)
- (63,39,9) (63,36,11) (63,30,13)
- (63,24,15) (63,18,21) (63,16,23)
- (63,10,27) (63,7,31)

Non-primitive BCH Codes

- Example n = 21, q = 2 m = ?
 n|2^m-1 m = 6 (minimal) so use GF(64)
- Let α be a primitive element in GF(64) Let $\beta = \alpha^3$ so that $\beta^{21} = \alpha^{63} = 1$
- For t = 2 roots are β , β^2 , β^3 , $\beta^4 \rightarrow \alpha^3$, α^6 , α^9 , α^{12} $g(x) = (x^6 + x^4 + x^2 + x + 1)(x^3 + x^2 + 1)$ $= x^9 + x^8 + x^7 + x^5 + x^4 + x + 1$

(21,12,5) non-primitive BCH code

- If g(x) generates a cyclic code of length 21, it must be a factor of x²¹+1
- Check:

 $x^{21}+1=(x+1)(x^2+x+1)(x^3+x+1)(x^3+x^2+1)(x^6+x^4+x^2+x+1)(x^6+x^5+x^4+x^2+1)$

- There are many cases where the actual minimum distance is greater than the design distance
- Example: construct a BCH code with n = 2323|2¹¹-1 \rightarrow GF(2¹¹) 2¹¹-1 = 23×89
- Let α be a primitive element in GF(2¹¹)
- $\beta = \alpha^{89}$ so that $\beta^{23} = \alpha^{89 \times 23} = 1$

$$-t = 1$$
: required roots are β , β^2

- adding the conjugates, the roots are: $\beta,\beta^2,\beta^4,\beta^8,\beta^{16},\beta^{32} = \beta^9,\beta^{18},\beta^{13},\beta^3,\beta^6,\beta^{12}$ $g(x) = x^{11}+x^9+x^7+x^6+x^5+x+1$
- design distance is 5: code parameters are (23,12,7)

(23,12,7) Cyclic Golay Code

[1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0
	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0
=	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0
	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	1	0	1

G

GF(256) Cyclotomic Cosets

{0}	$M_1(x)$	{37,41,73,74,82,146,148,164}	$M_{37}(x)$
{1,2,4,8,16,32,64,128}	$M_1(x)$	{39,57,78,114,147,156,201,228}	$M_{39}(x)$
{3,6,12,24,48,96,129,192}	$M_3(x)$	{43,86,89,101,149,172,178,202}	$M_{43}(x)$
{5,10,20,40,65,80,130,160}	$M_5(x)$	{45,75,90,105,150,165,180,210}	$M_{45}(x)$
{7,14,28,56,112,131,193,224}	$M_7(x)$	{47,94,121,151,188,203,229,242}	$M_{47}(x)$
(9,18,33,36,66,72,132,144}	$M_9(x)$	{53,77,83,106,154,166,169,212}	$M_{53}(x)$
{11,22,44,88,97,133,176,194}	$M_{11}(x)$	{55,110,115,155,185,205,220,230}	$M_{55}(x)$
{13,26,52,67,104,134,161,208	$M_{13}(x)$	{59,103,118,157,179,206,217,236}	$M_{59}(x)$
{15,30,60,120,135,195,225,24	0} $M_{15}(x)$	{61,79,122,158,167,211,233,244}	$M_{61}(x)$
{17,34,68,136}	$M_{17}(x)$	{63,126,159,207,231,243,249,252}	$M_{63}(x)$
{19,38,49,76,98,137,152,196}	$M_{19}(x)$	{85,170}	$M_{85}(x)$
{21,42,69,81,84,138,162,168}	$M_{21}(x)$	{87,93,117,171,174,186,213,234}	$M_{87}(x)$
{23,46,92,113,139,184,197,22	6} $M_{23}(x)$	{91,107,109,173,181,182,214,218}	$M_{91}(x)$
{25,35,50,70,100,140,145,200	$M_{25}(x)$	{95,125,175,190,215,235,245,250}	$M_{95}(x)$
{27,54,99,108,141,177,198,21	6} $M_{27}(x)$	{111,123,183,189,219,222,237,246}	$M_{111}(x)$
{29,58,71,116,142,163,209,23	2} $M_{29}(x)$	{119,187,221,238}	$M_{119}(x)$
{31,62,124,143,199,227,241,2	48} $M_{31}(x)$	{127,191,223,239,247,251,253,254}	$M_{127}(x)$