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Information Theory Problems

• How to transmit or store information as 
efficiently as possible.

• What is the maximum amount of information 
that can be transmitted or stored reliably?

• How can information be kept secure? 
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Digital Communications System
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• Cover and Thomas Chapter 7
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Discrete Memoryless Channel
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Discrete Memoryless Channel

Channel Transition Matrix
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Binary Symmetric Channel
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BPSK Modulation K=2
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Eb is the energy per bit
Tb is the bit duration
fc is the carrier 
frequency



BPSK Demodulation in AWGN
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BPSK Demodulation K=2
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Mutual Information for a BSC
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Convex Functions
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Concave Function
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Convex Function
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Mutual Information
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input probabilities
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channel transition probabilities



BSC I(X;Y)

w p
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Properties of the Channel Capacity

• C ≥ 0 since I(X;Y) ≥ 0
• C ≤ log|X| = log(K) since

C = max I(X;Y) ≤ max H(X) = log(K)
• C ≤ log|Y| = log(J) for the same reason
• I(X;Y) is a concave function of p(X), so a local

maximum is a global maximum
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Channel Capacity
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Binary Symmetric Channel
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Symmetric Channels

A discrete memoryless channel is said to be
symmetric if the set of output symbols

{yj}, j = 1, 2, ..., J,
can be partitioned into subsets such that for
each subset of the matrix of transition
probabilities
• each column is a permutation of the other

columns
• each row is a permutation of the other rows.
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Binary Channels
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Binary Errors with Erasure Channel
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Symmetric Channels

• No partition required → strongly symmetric
• Partition required → weakly symmetric
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Capacity of a Strongly Symmetric Channel

Theorem
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Example
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Example
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r-ary Symmetric Channel

 − − − − 
 −
 − − −
 =  −
− − − 

 
 
 −  − − − 







    



1
1 1 1

1
1 1 1

1
1 1 1

1
1 1 1

p p pp
r r r

p p pp
r r r

P p p pp
r r r

p p p p
r r r

36



r-ary Symmetric Channel
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Binary Errors with Erasure Channel
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Binary Errors with Erasure Channel
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Capacity of a Weakly Symmetric Channel

• qi – probability of channel i
• Ci – capacity of channel i
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Binary Errors with Erasure Channel
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Binary Errors with Erasure Channel
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Binary Erasure Channel

43

0

e

p

p

1-p

1-p
1

0

1

C = 1 - p



Z Channel (Optical)
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Z Channel (Optical)
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• p = 0.15
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Mutual Information for the Z Channel
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Z Channel (Optical)

47

( )/(1 )
2C log 1 (1 ) p pp p −= + −

× + ×1 2I(X;Y) = w I( ;Y) w I( ;Y)x x

−= −
− + h( )/(1 )

1* 1
(1 )(1 2 )p pw

p

0.15 * 0.555 C 0.685p w= = =



Channel Capacity for the Z, BSC and BEC
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Blahut-Arimoto Algorithm

• An analytic solution for the capacity can be 
very difficult to obtain

• The alternative is a numerical solution
– Arimoto Jan. 1972
– Blahut Jul. 1972

• Exploits the fact that I(X;Y) is a concave 
function of p(xk)
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Blahut-Arimoto Algorithm
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Blahut-Arimoto Algorithm

• Update the probabilities
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Symmetric Channel Example
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Non-Symmetric Channel Example

0.7000
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Communication over Noisy Channels

X
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Binary Symmetric Channel
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• Consider a block of N = 1000 bits
– if p = 0, 1000 bits are received correctly
– if p = 0.01, 990 bits are received correctly
– if p = 0.5, 500 bits are received correctly

• When p > 0, we do not know which bits are in 
error
– if p = 0.01, C = .919 bit
– if p = 0.5, C = 0 bit
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Triple Repetition Code

• N = 3
message w codeword c

0 000
1 111
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Binary Symmetric Channel Errors

• If N bits are transmitted, the probability of an 
m bit error pattern is

• The probability of exactly m errors is

• The probability of m or more errors is
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Triple Repetition Code
• N = 3
• The probability of 0 errors is
• The probability of 1 error is
• The probability of 2 errors is 
• The probability of 3 errors is 

−23 (1 )p p
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• For p = 0.01
– The probability of 0 errors is .970
– The probability of 1 error is 2.94×10-2

– The probability of 2 errors is 2.97×10-4

– The probability of 3 errors is 10-6

•
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Triple Repetition Code – Decoding
Received Word Codeword

0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
1 1 1
1 1 1
1 1 1

0 0 0
0 0 1
0 1 0
1 0 0
0 0 0
0 0 1
0 1 0
1 0 0

0 0 0
0 0 1
0 1 0
1 0 0
1 1 1
1 1 0
1 0 1
0 1 1

Error Pattern
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Triple Repetition Code
• Majority vote or nearest neighbor decoding 

will correct all single errors
000, 001, 010, 100 → 000     
111, 110, 101, 011 → 111

• The probability of a decoding error is then

• If p = 0.01, then Pe = 0.000298 and only one 
word in 3356 will be in error after decoding.

• A reduction by a factor of 33. 

= − + = − <2 3 2 3
eP 3 (1 ) 3 2p p p p p p

68



Code Rate

• After compression, the data is (almost) 
memoryless and uniformly distributed 
(equiprobable)

• Thus the entropy of the messages 
(codewords) is 

• The blocklength of a codeword is N
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Code Rate

• The code rate is given by

• M is the number of codewords
• N is the block length
• For the triple repetition code
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Code rate R                    
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Shannon’s Noisy Coding Theorem

For any ε > 0 and for any rate R less than the 
channel capacity C, there is an encoding and 
decoding scheme that can be used to ensure 
that the probability of decoding error Pe is less 
than ε for a sufficiently large block length N.
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Code rate R                    
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Error Correction Coding N = 3

• R = 1/3 M = 2
0 → 000
1 → 111

• R = 1 M = 8
000 → 000   001 → 001   010 → 010   011 → 011
111 → 111   110 → 110   101 → 101   100 → 100

• Another choice R = 2/3 M = 4
00 → 000   01 → 011 
10 → 101   11 → 110

75



Error Correction Coding N = 3

• BSC  p = 0.01
• M is the number of codewords

• Tradeoff between code rate and error rate 

Code Rate R Pe M=2NR

1 0.0297 8

2/3 0.0199 4

1/3 2.98×10-4 2
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Codes for N=3
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Error Correction Coding N = 5

• BSC  p = 0.01

• Tradeoff between code rate and error rate 

Code Rate R Pe M=2NR

1 0.0490 32

4/5 0.0394 16

3/5 0.0297 8

2/5 9.80×10-4 4

1/5 9.85×10-6 2
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Error Correction Coding N = 7

• BSC  p = 0.01  N = 7

• Tradeoff between code rate and error rate 

Code Rate R Pe M=2NR

1 0.0679 128

6/7 0.0585 64

5/7 0.0490 32

4/7 2.03×10-3 16

3/7 1.46×10-3 8

2/7 9.80×10-4 4

1/7 3.40×10-7 2
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Best Codes Comparison

• BSC  p = 0.01  R = 2/3  M = 2NR

• For fixed R, Pe can be decreased by increasing 
N

N Pe log2M
3 1.99×10-2 2

12 6.17×10-3 8

30 3.32×10-3 20

51 1.72×10-3 34

81 1.36×10-3 54
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Code Matrix
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Binary Codes

• For given values of M and N, there are
2MN

possible binary codes.
• Of these, some will be bad, some will be best 

(optimal), and some will be good, in terms of 
Pe

• An average code will be good.
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Channel Capacity

• To prove that information can be transmitted 
reliably over a noisy channel at rates up to the 
capacity, Shannon used a number of new 
concepts
– Allowing an arbitrarily small but nonzero 

probability of error
– Using long codewords
– Calculating the average probability of error over a 

random choice of codes to show that at least one 
good code exists 
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Channel Coding Theorem

• Random coding used in the proof
• Joint typicality used as the decoding rule
• Shows that good codes exist which provide an 

arbitrarily small probability of error
• Does not provide an explicit way of 

constructing good codes
• If a long code (large N) is generated randomly, 

the code is likely to be good but is difficult to 
decode
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Channel Capacity: Weak Converse

For R > C, the decoding error probability is bounded 
away from 0

R
C

lower 
bound 
on Pe
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Channel Capacity: Weak Converse

• C = 0.3

88

R

1-C/R



Channel Capacity: Strong Converse

• For rates above capacity (R > C)

• where EA(R) is Arimoto’s error exponent and 
EA(R) > 0   
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Arimoto’s Error Exponent EA(R)
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EA(R) for a BSC with p=0.1
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RC

1

Pe

• The capacity is a very clear dividing point
• At rates below capacity, Pe → 0 exponentially as N → ∞ 
• At rates above capacity, Pe → 1 exponentially as N → ∞ 
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