ECE 515 Information Theory

Channel Capacity and Coding

Information Theory Problems

- How to transmit or store information as efficiently as possible.
- What is the maximum amount of information that can be transmitted or stored reliably?
- How can information be kept secure?

Digital Communications System

Ŵ is an estimate of W

Communication Channel

• Cover and Thomas Chapter 7

Discrete Memoryless Channel

J≥K≥2

Discrete Memoryless Channel

Binary Symmetric Channel

Binary Errors with Erasure Channel

BPSK Modulation K=2

bit

$$x_{1}(t) = +\sqrt{\frac{2E_{b}}{T_{b}}}\cos(2\pi f_{c}t) \qquad 0 \text{ bit}$$
$$x_{2}(t) = -\sqrt{\frac{2E_{b}}{T_{b}}}\cos(2\pi f_{c}t) \qquad 1 \text{ bit}$$

 E_b is the energy per bit T_b is the bit duration f_c is the carrier frequency

BPSK Demodulation in AWGN

BPSK Demodulation K=2

Mutual Information for a BSC

 \overline{p}

p

$$X \longrightarrow BSC \longrightarrow Y$$

$$\overline{p} = 1 - p$$

Y

0

1

channel matrix

$$p(x=0) = w$$

 $p(x=1) = 1 - w = \overline{w}$

Convex Functions

Definition (Convex function):

A real function f(x), defined on a convex set S (e.g., input symbol distributions), is *concave* (*convex down, convex "cap"* or *convex* \cap) if, for any point x on the straight line between the pair of points x_1 and x_2 , i.e., $x = \lambda x_1 + (1 - \lambda) x_2$ ($\lambda \in [0, 1]$), in the convex set S:

otherwise, if:

then the function is said to be simply convex (convex up, convex "cup" or convex \cup).

Concave Function

Figure 3.3: Convex \cap (*convex down* or *convex "cap"*) function.

Convex Function

Figure 3.4: Convex \cup (convex up or convex "cup") function.

Mutual Information

$$I(X;Y) = \sum_{k=1}^{K} \sum_{j=1}^{J} p(x_k) p(y_j | x_k) \log_b \left[\frac{p(y_j | x_k)}{\sum_{l=1}^{K} p(x_l) p(y_j | x_l)} \right]$$

= $f [p(x_k), p(y_j | x_k)]$
 $I(X;Y) = f (\mathbf{p}, \mathbf{P})$

Theorem (Convexity of the mutual information function):

The (average) mutual information I(X;Y) is a *concave* (or *convex "cap"*, or *convex* \cap) function over the *convex set* $S_{\mathbf{p}}$ of all possible input distributions $\{\mathbf{p}\}$.

Theorem (Convexity of the mutual information function):

The (average) mutual information I(X; Y) is a *convex* (or *convex "cup"*, or *convex* \cup) function over the *convex set* $S_{\mathbf{P}}$ of all possible transition probability matrices $\{\mathbf{P}\}$.

Properties of the Channel Capacity

- $C \ge 0$ since $I(X;Y) \ge 0$
- $C \le \log |X| = \log(K)$ since

 $C = \max I(X;Y) \le \max H(X) = \log(K)$

- $C \le \log |Y| = \log(J)$ for the same reason
- I(X;Y) is a concave function of p(X), so a local maximum is a global maximum

Channel Capacity

$$X \longrightarrow channel \longrightarrow Y$$

The maximum value of I(X;Y) as the input probabilities $p(x_i)$ are varied is called the Channel Capacity

$$C = \max_{p(x_i)} I(X;Y)$$

Binary Symmetric Channel

Symmetric Channels

A discrete memoryless channel is said to be **symmetric** if the set of output symbols

$$\{y_j\}, j = 1, 2, ..., J,$$

can be partitioned into subsets such that for each subset of the matrix of transition probabilities

- each column is a permutation of the other columns
- each row is a permutation of the other rows.

Binary Channels

Symmetric channel matrix

$$P = \begin{bmatrix} 1 - p & p \\ p & 1 - p \end{bmatrix}$$

Non-symmetric channel matrix

$$P = \begin{bmatrix} 1 - p_1 & p_2 \\ p_1 & 1 - p_2 \end{bmatrix} \quad p_1 \neq p_2$$

Binary Errors with Erasure Channel

Binary Errors with Erasure Channel

$$P = \begin{bmatrix} 1 - p - q & p \\ q & q \\ p & 1 - p - q \end{bmatrix}$$

$$P_1 = \begin{bmatrix} 1 - p - q & p \\ p & 1 - p - q \end{bmatrix}$$

 $P_2 = \begin{bmatrix} q & q \end{bmatrix}$

Symmetric Channels

- No partition required \rightarrow strongly symmetric
- Partition required \rightarrow weakly symmetric

Capacity of a Strongly Symmetric Channel

Theorem

For a discrete symmetric channel, the channel capacity C is achieved with an equiprobable input distribution, i.e., $p(x_k) = \frac{1}{K}, \forall k$, and is given by:

$$C = \left[\sum_{j=1}^{J} p(y_j | x_k) \log_b p(y_j | x_k)\right] + \log_b J$$

$$I(X;Y) = \sum_{k=1}^{K} p(x_k) \sum_{j=1}^{J} p(y_j | x_k) \log p(y_j | x_k) + H(Y)$$
$$= \sum_{j=1}^{J} p(y_j | x_k) \log p(y_j | x_k) + H(Y)$$

Example J = K = 3

Example

$$P_{Y|X} = \begin{bmatrix} .7 & .2 & .1 \\ .1 & .7 & .2 \\ .2 & .1 & .7 \end{bmatrix}$$

$$\sum_{k=1}^{K} p(x_k) \sum_{j=1}^{J} p(y_j | x_k) \log p(y_j | x_k)$$

= $p(x_1) [.7 \log .7 + .1 \log .1 + .2 \log .2]$
+ $p(x_2) [.2 \log .2 + .7 \log .7 + .1 \log .1]$
+ $p(x_3) [.1 \log .1 + .2 \log .2 + .7 \log .7]$
= $.7 \log .7 + .2 \log .2 + .1 \log .1$
= $\sum_{j=1}^{J} p(y_j | x_k) \log p(y_j | x_k)$

Example

$$H(Y) = -\sum_{j=1}^{J} p(y_j) \log p(y_j)$$
$$p(y_1) = \sum_{k=1}^{K} p(y_1 \mid x_k) p(x_k)$$
$$p(y_2) = \sum_{k=1}^{K} p(y_2 \mid x_k) p(x_k)$$
$$\vdots$$
$$P(y_j) = \sum_{k=1}^{K} p(y_j \mid x_k) p(x_k)$$

$$p(y_1) = .7p(x_1) + .2p(x_2) + .1p(x_3)$$

$$p(y_2) = .1p(x_1) + .7p(x_2) + .2p(x_3)$$

$$p(y_3) = .2p(x_1) + .1p(x_2) + .7p(x_3)$$

r-ary Symmetric Channel

r-ary Symmetric Channel

$$C = (1-p)\log(1-p) + (r-1)\frac{p}{r-1}\log(\frac{p}{r-1}) + \log r$$

= log r + (1-p)log(1-p) + plog($\frac{p}{r-1}$)
= log r + (1-p)log(1-p) + plog(p) - plog(r-1)
= log r - h(p) - plog(r-1)

•
$$r = 2$$
 $C = 1 - h(p)$
• $r = 3$ $C = \log_2 3 - h(p) - p$

•
$$r = 4$$
 $C = 2 - h(p) - p \log_2 3$

Binary Errors with Erasure Channel

Binary Errors with Erasure Channel

$$P_{Y|X} = \begin{bmatrix} .8 & .05 \\ .15 & .15 \\ .05 & .8 \end{bmatrix}$$

$$P_{x} = \begin{bmatrix} .5 \\ .5 \end{bmatrix} \qquad P_{y} = P_{y|x} \times P_{x} = \begin{bmatrix} .425 \\ .15 \\ .425 \end{bmatrix}$$

Capacity of a Weakly Symmetric Channel

$$\mathsf{C} = \sum_{i=1}^{L} q_i \mathsf{C}_i$$

- q_i probability of channel *i*
- C_i capacity of channel i

Binary Errors with Erasure Channel

 $P_2 = [1.0 \ 1.0]$

41

$P_1 =$.9412	.0588
	.0588	.9412

Binary Errors with Erasure Channel

$$\mathbf{C} = \sum_{i=1}^{L} \boldsymbol{q}_i \mathbf{C}_i$$

 $C_1 = .9412 \log .9412 + .0588 \log .0588 + \log 2 = .6773$ $C_2 = 1\log 1 + \log 1 = 0.0$

C = .85(.6773) + .15(0.0) = .5757

Binary Erasure Channel

C = 1 - p

Z Channel (Optical)

$$p(x=0) = w$$
$$p(x=1) = 1 - w = \overline{w}$$

Z Channel (Optical)

$$I(X;Y) = \sum_{k=1}^{2} \sum_{j=1}^{2} p(x_k) p(y_j | x_k) \log \left[\frac{p(y_j | x_k)}{p(y_j)} \right]$$
$$I(x_1;Y) = \log \left(\frac{1}{w + pw} \right)$$
$$I(x_2;Y) = p \log \left(\frac{p}{w + pw} \right) + (1 - p) \log \left(\frac{1}{w} \right)$$

$$I(X;Y) = w \times I(x_1;Y) + \overline{w} \times I(x_2;Y)$$

Mutual Information for the Z Channel

Z Channel (Optical)

$$I(X;Y) = w \times I(x_1;Y) + \overline{w} \times I(x_2;Y)$$

$$w^* = 1 - \frac{1}{(1-p)(1+2^{h(p)/(1-p)})}$$

$$C = \log_2(1 + (1 - p)p^{p/(1-p)})$$

$$p = 0.15$$
 $w^* = 0.555$ $C = 0.685$

Channel Capacity for the Z, BSC and BEC

Blahut-Arimoto Algorithm

$$I(X;Y) = \sum_{k=1}^{K} p(x_k) \sum_{j=1}^{J} p(y_j | x_k) \log \left[\frac{p(y_j | x_k)}{\sum_{l=1}^{K} p(x_l) p(y_j | x_l)} \right]$$

- An analytic solution for the capacity can be very difficult to obtain
- The alternative is a numerical solution
 - Arimoto Jan. 1972
 - Blahut Jul. 1972
- Exploits the fact that I(X;Y) is a concave function of p(xk)

Blahut-Arimoto Algorithm

$$c_k = \exp\left[\sum_{j=1}^J p(y_j|x_k) \ln\left(\frac{p(y_j|x_k)}{\sum_{l=1}^K p(x_l) \ p(y_j|x_l)}\right)\right] \quad \text{for } k = 1, \dots, K$$

$$I_L = \ln \sum_{k=1}^K p(x_k) \ c_k$$

$$I_U = \ln\left(\max_{k=1,\dots,K} c_k\right)$$

Blahut-Arimoto Algorithm

• Update the probabilities

$$p^{(n+1)}(x_k) = \frac{p^{(n)}(x_k) c_k}{\sum_{l=1}^{K} p(x_l)^{(n)} c_l}$$

Symmetric Channel Example

$$\mathbf{P}_{1} = \left(\begin{array}{ccccc} 0.4000 & 0.3000 & 0.2000 & 0.1000 \\ 0.1000 & 0.4000 & 0.3000 & 0.2000 \\ 0.3000 & 0.2000 & 0.1000 & 0.4000 \\ 0.2000 & 0.1000 & 0.4000 & 0.3000 \end{array}\right)$$

n	$p(x_1)$	$p(x_2)$	$p(x_3)$	$p(x_4)$	I_U	I_L	ϵ
1	0.2500	0.2500	0.2500	0.2500	0.1064	0.1064	0.0000

n	$p(x_1)$	$p(x_2)$	$p(x_3)$	$p(x_4)$	I_U	I_L	ϵ
1	0.1000	0.6000	0.2000	0.1000	0.1953	0.0847	0.1106
2	0.1073	0.5663	0.2155	0.1126	0.1834	0.0885	0.0949
3	0.1141	0.5348	0.2287	0.1249	0.1735	0.0916	0.0819
4	0.1204	0.5061	0.2394	0.1369	0.1650	0.0942	0.0708
5	0.1264	0.4802	0.2480	0.1484	0.1576	0.0963	0.0613
• •	•	:	:	:		:	:
10	0.1524	0.3867	0.2668	0.1963	0.1326	0.1024	0.0302
•	• •	•	•	• •	•	•	•
20	0.1912	0.3037	0.2604	0.2448	0.1219	0.1057	0.0162
•	•	•	•	•	•	•	•
40	0.2320	0.2622	0.2476	0.2578	0.1110	0.1064	0.0046
•	•	•	•	•	•	•	•
80	0.2482	0.2515	0.2486	0.2516	0.1068	0.1064	0.0004
• •	•	• •	•	• •	.	• •	•
202	0.2500	0.2500	0.2500	0.2500	0.1064	0.1064	0.0000

Non-Symmetric Channel Example

$$\mathbf{P}_2 = \left(\begin{array}{ccccc} 0.1000 & 0.2500 & 0.2000 & 0.1000 \\ 0.1000 & 0.2500 & 0.6000 & 0.2000 \\ 0.7000 & 0.2500 & 0.1000 & 0.2000 \\ 0.1000 & 0.2500 & 0.1000 & 0.5000 \end{array}\right)$$

n	$p(x_1)$	$p(x_2)$	$p(x_3)$	$p(x_4)$	I_U	I_L	ϵ
1	0.2500	0.2500	0.2500	0.2500	0.4498	0.2336	0.2162
2	0.3103	0.1861	0.2545	0.2228	0.4098	0.2504	0.1595
3	0.3640	0.1428	0.2653	0.2036	0.3592	0.2594	0.0998
4	0.4022	0.1118	0.2804	0.1899	0.3289	0.2647	0.0642
• •	•	•	:	•		•	•
8	0.4522	0.0450	0.3389	0.1639	0.2988	0.2763	0.0225
•	•	:	:	:		:	:
16	0.4629	0.0076	0.3732	0.1565	0.2848	0.2830	0.0018
• •	•	:	:	:	:	:	:
32	0.4641	0.0002	0.3769	0.1588	0.2846	0.2844	0.0003
• •	•	:	:	:		:	:
64	0.4640	0.0000	0.3768	0.1592	0.2844	0.2844	0.0000
65	0.4640	0.0000	0.3768	0.1592	0.2844	0.2844	0.0000

$$P_1 = \begin{bmatrix} .98 & .05 \\ .02 & .95 \end{bmatrix} \quad P_2 = \begin{bmatrix} .80 & .05 \\ .20 & .95 \end{bmatrix}$$

$$P_3 = \begin{bmatrix} .80 & .10 \\ .20 & .90 \end{bmatrix} \quad P_4 = \begin{bmatrix} .60 & .01 \\ .40 & .99 \end{bmatrix}$$

$$P_5 = \left[\begin{array}{cc} .80 & .30 \\ .20 & .70 \end{array} \right]$$

	C	\mathbf{p}^*
P_1	.7859	$(.5129 \ .4871)$
P_2	.4813	$(.4676 \ .5324)$
P_3	.3976	$(.4824 \ .5176)$
P_4	.3688	$(.4238 \ .5762)$
P_5	.1912	$(.5100 \ .4900)$

	C	\mathbf{p}^*	$I(X;Y)_{\mathbf{U}}$
P_1	.7859	(.5129 .4871)	.7854
P_2	.4813	$(.4676 \ .5324)$.4796
P_3	.3976	$(.4824 \ .5176)$.3973
P_4	.3688	$(.4238 \ .5762)$.3615
P_5	.1912	(.5100 .4900)	.1912

Communication over Noisy Channels

Binary Symmetric Channel

Binary Symmetric Channel

- Consider a block of *N* = 1000 bits
 - if p = 0, 1000 bits are received correctly
 - if p = 0.01, 990 bits are received correctly

- if p = 0.5, 500 bits are received correctly

When p > 0, we do not know which bits are in error

- if p = 0.5, C = 0 bit

Triple Repetition Code

• *N* = 3

message w	codeword <i>c</i>
0	000
1	111

Binary Symmetric Channel Errors

• If *N* bits are transmitted, the probability of an *m* bit error pattern is

$$p^m \left(1-p\right)^{N-m}$$

- The probability of exactly *m* errors is $\binom{N}{m}p^{m}(1-p)^{N-m}$
- The probability of *m* or more errors is

$$\sum_{i=m}^{N} \binom{N}{i} p^{i} (1-p)^{N-i}$$

Triple Repetition Code

- *N* = 3
- The probability of 0 errors is $(1-p)^3$
- The probability of 1 error is $3p(1-p)^2$
- The probability of 2 errors is $3p^2(1-p)$
- The probability of 3 errors is p^3

Triple Repetition Code

- For p = 0.01
 - The probability of 0 errors is
 - The probability of 1 error is
 - The probability of 2 errors is
 - The probability of 3 errors is

- .970
- 2.94×10⁻²
- 2.97×10⁻⁴
- 10-6
- If $p \ll \frac{1}{2}$ $p(0 \text{ errors}) \gg p(1 \text{ error}) \gg p(2 \text{ errors}) \gg p(3 \text{ errors})$

Triple Repetition Code – Decoding

Received Word		/ord	Codeword		Error	Error Pattern				
	Ο	Ο	Ο	Ο	Ο	Ο	0	Ο	0	
	Ο	Ο	1	Ο	Ο	Ο	0	Ο	1	
	Ο	1	Ο	Ο	Ο	Ο	0	1	0	
	1	Ο	Ο	Ο	Ο	Ο	1	Ο	0	
	1	1	1	1	1	1	0	Ο	0	
	1	1	Ο	1	1	1	Ο	Ο	1	
	1	Ο	1	1	1	1	Ο	1	0	
	Ο	1	1	1	1	1	1	Ο	Ο	

Triple Repetition Code

 Majority vote or nearest neighbor decoding will correct all single errors

> 000, 001, 010, 100 \rightarrow 000 111, 110, 101, 011 \rightarrow 111

- The probability of a decoding error is then $P_{a} = 3p^{2}(1-p) + p^{3} = 3p^{2} - 2p^{3} < p$
- If p = 0.01, then $P_e = 0.000298$ and only one word in 3356 will be in error after decoding.
- A reduction by a factor of 33.

Code Rate

- After compression, the data is (almost) memoryless and uniformly distributed (equiprobable)
- Thus the entropy of the messages (codewords) is

 $H(W) = \log_{b} M$

• The blocklength of a codeword is N

Code Rate

• The code rate is given by

$$R = \frac{\log_2 M}{N}$$
 bits per channel use

- *M* is the number of codewords
- *N* is the block length
- For the triple repetition code

$$R = \frac{\log_2 2}{3} = \frac{1}{3}$$

Shannon's Noisy Coding Theorem

For any $\varepsilon > 0$ and for any rate R less than the channel capacity C, there is an encoding and decoding scheme that can be used to ensure that the probability of decoding error P_e is less than ε for a sufficiently large block length N.

- R = 1/3 M = 2 $0 \rightarrow 000$
 - $1 \rightarrow 111$
- R = 1 M = 8 $000 \rightarrow 000 \quad 001 \rightarrow 001 \quad 010 \rightarrow 010 \quad 011 \rightarrow 011$ $111 \rightarrow 111 \quad 110 \rightarrow 110 \quad 101 \rightarrow 101 \quad 100 \rightarrow 100$
- Another choice R = 2/3 M = 4 $00 \rightarrow 000 \quad 01 \rightarrow 011$ $10 \rightarrow 101 \quad 11 \rightarrow 110$

- BSC *p* = 0.01
- *M* is the number of codewords

Code Rate R	Pe	M=2 ^{NR}
1	0.0297	8
2/3	0.0199	4
1/3	2.98×10 ⁻⁴	2

• Tradeoff between code rate and error rate

Codes for N=3

• BSC p = 0.01

Code Rate R	P _e	M=2 ^{NR}
1	0.0490	32
4/5	0.0394	16
3/5	0.0297	8
2/5	9.80×10 ⁻⁴	4
1/5	9.85×10⁻ ⁶	2

• Tradeoff between code rate and error rate

• BSC p = 0.01 N = 7

Code Rate R	Pe	M=2 ^{NR}
1	0.0679	128
6/7	0.0585	64
5/7	0.0490	32
4/7	2.03×10 ⁻³	16
3/7	1.46×10 ⁻³	8
2/7	9.80×10 ⁻⁴	4
1/7	3.40×10 ⁻⁷	2

• Tradeoff between code rate and error rate

Best Codes Comparison

• BSC p = 0.01 R = 2/3 M = 2^{NR}

N	P _e	log ₂ M
3	1.99×10 ⁻²	2
12	6.17×10 ⁻³	8
30	3.32×10 ⁻³	20
51	1.72×10 ⁻³	34
81	1.36×10 ⁻³	54

For fixed R, P_e can be decreased by increasing N

Code Matrix

$$\mathcal{C} = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_m \\ \vdots \\ \mathbf{c}_M \end{bmatrix} = \begin{bmatrix} c_{1,1} & \cdots & c_{1,n} & \cdots & c_{1,N} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{m,1} & \cdots & c_{m,n} & \cdots & c_{m,N} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{M,1} & \cdots & c_{M,n} & \cdots & c_{M,N} \end{bmatrix}$$

Binary Codes

For given values of *M* and *N*, there are 2^{MN}

possible binary codes.

- Of these, some will be bad, some will be best (optimal), and some will be good, in terms of P_e
- An average code will be good.

Theorem (Shannon's channel coding theorem):

Let C be the information transfer capacity of a memoryless channel defined by its transition probabilities matrix $\mathbf{P} = \{p(\mathbf{y}|\mathbf{x})\}$. If the code rate R < C, then there *exists* a channel code C of size M and blocklength N, such that the probability of decoding error P_e is *upperbounded* by an arbitrarily small number ϵ ;

 $P_e \le \epsilon$

provided that the blocklength N is sufficiently large (i.e., $N \ge N_0$).

Channel Capacity

- To prove that information can be transmitted reliably over a noisy channel at rates up to the capacity, Shannon used a number of new concepts
 - Allowing an arbitrarily small but nonzero probability of error
 - Using long codewords
 - Calculating the average probability of error over a random choice of codes to show that at least one good code exists

Channel Coding Theorem

- Random coding used in the proof
- Joint typicality used as the decoding rule
- Shows that good codes exist which provide an arbitrarily small probability of error
- Does not provide an explicit way of constructing good codes
- If a long code (large N) is generated randomly, the code is likely to be good but is difficult to decode

Theorem (Converse of the channel coding theorem):

Let a memoryless channel with capacity C be used to transmit codewords of blocklength N and input information R. Then the error decoding probability P_e satisfies the following inequality:

$$P_e(N,R) \ge 1 - \frac{C}{R} - \frac{1}{NR}$$

If the rate R > C, then the error decoding probability P_e is bounded away from zero.

Channel Capacity: Weak Converse

$$P_e(N,R) \ge 1 - \frac{C}{R} - \frac{1}{NR}$$

For R > C, the decoding error probability is bounded away from 0

Channel Capacity: Weak Converse

• C = 0.3

Channel Capacity: Strong Converse

• For rates above capacity (R > C)

 $P_{e}(N,R) \ge 1 - 2^{-NE_{A}(R)}$

• where $E_A(R)$ is Arimoto's error exponent and $E_A(R) > 0$

Arimoto's Error Exponent E_A(R)

$E_A(R)$ for a BSC with p=0.1

- The capacity is a very clear dividing point
- At rates below capacity, $P_e \rightarrow 0$ exponentially as $N \rightarrow \infty$
- At rates above capacity, $P_e \rightarrow 1$ exponentially as $N \rightarrow \infty$

