ECE 515 Information Theory

Channel Capacity and Coding

Information Theory Problems

- How to transmit or store information as efficiently as possible.
- What is the maximum amount of information that can be transmitted or stored reliably?
- How can information be kept secure?

Digital Communications System

\hat{W} is an estimate of W

Communication Channel

- Cover and Thomas Chapter 7

Discrete Memoryless Channel

$J \geq K \geq 2$

Discrete Memoryless Channel

Channel Transition Matrix

$$
P=\left[\begin{array}{ccccc}
p\left(y_{1} \mid x_{1}\right) & \cdots & p\left(y_{1} \mid x_{k}\right) & \cdots & p\left(y_{1} \mid x_{k}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
p\left(y_{j} \mid x_{1}\right) & \cdots & p\left(y_{j} \mid x_{k}\right) & \cdots & p\left(y_{j} \mid x_{k}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
p\left(y_{j} \mid x_{1}\right) & \cdots & p\left(y_{j} \mid x_{k}\right) & \cdots & p\left(y_{j} \mid x_{k}\right)
\end{array}\right]
$$

Binary Symmetric Channel

Binary Errors with Erasure Channel

BPSK Modulation $K=2$

$$
\begin{aligned}
& x_{1}(t)=+\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) \quad 0 \text { bit } \begin{array}{l}
E_{b} \text { is the energy per bit } \\
T_{b} \text { is the bit duration } \\
f_{c} \text { is the carrier } \\
\text { frequency }
\end{array} \\
& x_{2}(t)=-\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) \quad 1 \text { bit }
\end{aligned}
$$

BPSK Demodulation in AWGN

$-\sqrt{E_{b}}$	0	$+\sqrt{E_{b}}$
\mid	\mid	\mid
x_{2}		x_{1}

BPSK Demodulation $K=2$

Mutual Information for a BSC

crossover probability p
 $$
\bar{p}=1-p
$$

channel matrix

$$
\mathrm{P}_{\mathrm{Y} \mid \mathrm{X}}=\left[\begin{array}{ll}
\bar{p} & p \\
p & \bar{p}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{p}(x=0)=w \\
& \mathrm{p}(x=1)=1-w=\bar{w}
\end{aligned}
$$

Probability of a " 0 " at input, ω

Convex Functions

Definition (Convex function):

A real function $f(x)$, defined on a convex set \mathcal{S} (e.g., input symbol distributions), is concave (convex down, convex "cap" or convex \cap) if, for any point x on the straight line between the pair of points x_{1} and x_{2}, i.e., $x=\lambda x_{1}+(1-\lambda) x_{2}(\lambda \in[0,1])$, in the convex set \mathcal{S} :

$$
f(x) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

otherwise, if:

$$
f(x) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

Concave

Convex
then the function is said to be simply convex (convex up, convex "cup" or convex \cup).

Concave Function

Figure 3.3: Convex \cap (convex down or convex "cap") function.

Convex Function

Figure 3.4: Convex \cup (convex up or convex "cup") function.

Mutual Information

$$
\begin{aligned}
I(X ; Y) & =\sum_{k=1}^{K} \sum_{j=1}^{J} p\left(x_{k}\right) p\left(y_{j} \mid x_{k}\right) \log _{b}\left[\frac{p\left(y_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{l}\right) p\left(y_{j} \mid x_{l}\right)}\right] \\
& =f\left[p\left(x_{k}\right), p\left(y_{j} \mid x_{k}\right)\right] \\
I(X ; Y) & =f(\mathbf{p}, \mathbf{P})
\end{aligned}
$$

Theorem (Convexity of the mutual information function):
The (average) mutual information $I(X ; Y)$ is a concave (or convex "cap", or convex \cap) function over the convex set $\mathcal{S}_{\mathbf{p}}$ of all possible input distributions $\{\mathbf{p}\}$.

Probability of a " 0 " at input, ω

Theorem (Convexity of the mutual information function):
The (average) mutual information $I(X ; Y)$ is a convex (or convex "cup", or convex \cup) function over the convex set $\mathcal{S}_{\mathbf{P}}$ of all possible transition probability matrices $\{\mathbf{P}\}$.

BSC I(X;Y)

Properties of the Channel Capacity

- $\mathrm{C} \geq 0$ since $\mathrm{I}(\mathrm{X} ; \mathrm{Y}) \geq 0$
- $\mathrm{C} \leq \log |X|=\log (K)$ since

$$
\mathrm{C}=\max \mathrm{I}(\mathrm{X} ; \mathrm{Y}) \leq \max \mathrm{H}(\mathrm{X})=\log (K)
$$

- $\mathrm{C} \leq \log |\mathrm{Y}|=\log (J)$ for the same reason
- $I(X ; Y)$ is a concave function of $p(X)$, so a local maximum is a global maximum

Channel Capacity

The maximum value of $I(X ; Y)$ as the input probabilities $p\left(x_{i}\right)$ are varied is called the Channel Capacity

$$
C=\max _{p\left(x_{i}\right)} I(X ; Y)
$$

Binary Symmetric Channel

Symmetric Channels

A discrete memoryless channel is said to be symmetric if the set of output symbols

$$
\left\{y_{j}\right\}, j=1,2, \ldots, J,
$$

can be partitioned into subsets such that for each subset of the matrix of transition probabilities

- each column is a permutation of the other columns
- each row is a permutation of the other rows.

Binary Channels

Symmetric channel matrix

$$
P=\left[\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right]
$$

Non-symmetric channel matrix

$$
P=\left[\begin{array}{cc}
1-p_{1} & p_{2} \\
p_{1} & 1-p_{2}
\end{array}\right] \quad p_{1} \neq p_{2}
$$

Binary Errors with Erasure Channel

Binary Errors with Erasure Channel

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
1-p-q & p \\
q & q \\
p & 1-p-q
\end{array}\right] \\
& P_{1}=\left[\begin{array}{cc}
1-p-q & p \\
p & 1-p-q
\end{array}\right] \\
& P_{2}=\left[\begin{array}{ll}
q & q
\end{array}\right]
\end{aligned}
$$

Symmetric Channels

- No partition required \rightarrow strongly symmetric
- Partition required \rightarrow weakly symmetric

Capacity of a Strongly Symmetric Channel

Theorem

For a discrete symmetric channel, the channel capacity C is achieved with an equiprobable input distribution, i.e., $p\left(x_{k}\right)=\frac{1}{K}, \forall k$, and is given by:

$$
\begin{gathered}
C=\left[\sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \log _{b} p\left(y_{j} \mid x_{k}\right)\right]+\log _{b} J \\
\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\sum_{k=1}^{K} \mathrm{p}\left(x_{k}\right) \sum_{j=1}^{J} \mathrm{p}\left(y_{j} \mid x_{k}\right) \log \mathrm{p}\left(y_{j} \mid x_{k}\right)+\mathrm{H}(\mathrm{Y}) \\
=\sum_{j=1}^{j} \mathrm{p}\left(y_{j} \mid x_{k}\right) \log \mathrm{p}\left(y_{j} \mid x_{k}\right)+\mathrm{H}(\mathrm{Y})
\end{gathered}
$$

Example $J=K=3$

Example

$$
\begin{gathered}
P_{\mathrm{Y} \mid \mathrm{X}}=\left[\begin{array}{lll}
.7 & .2 & .1 \\
.1 & .7 & .2 \\
.2 & .1 & .7
\end{array}\right] \\
\sum_{k=1}^{K} \mathrm{p}\left(x_{k}\right) \sum_{j=1}^{j} \mathrm{p}\left(y_{j} \mid x_{k}\right) \log \mathrm{p}\left(y_{j} \mid x_{k}\right) \\
=\mathrm{p}\left(x_{1}\right)[.7 \log .7+.1 \log \cdot 1+.2 \log .2] \\
+\mathrm{p}\left(x_{2}\right)[.2 \log \cdot 2+.7 \log .7+.1 \log \cdot 1] \\
+\mathrm{p}\left(x_{3}\right)[.1 \log \cdot 1+.2 \log \cdot 2+.7 \log .7] \\
= \\
=.7 \log .7+.2 \log \cdot 2+.1 \log .1 \\
=\sum_{j=1}^{j} \mathrm{p}\left(y_{j} \mid x_{k}\right) \log \mathrm{p}\left(y_{j} \mid x_{k}\right)
\end{gathered}
$$

Example

$$
\begin{aligned}
& \mathrm{H}(\mathrm{Y})=-\sum_{j=1}^{J} \mathrm{p}\left(y_{j}\right) \log \mathrm{p}\left(y_{j}\right) \\
& \mathrm{p}\left(y_{1}\right)=\sum_{k=1}^{K} \mathrm{p}\left(y_{1} \mid x_{k}\right) \mathrm{p}\left(x_{k}\right) \\
& \mathrm{p}\left(y_{2}\right)=\sum_{k=1}^{K} \mathrm{p}\left(y_{2} \mid x_{k}\right) \mathrm{p}\left(x_{k}\right) \\
& \vdots \\
& \mathrm{p}\left(y_{j}\right)=\sum_{k=1}^{K} \mathrm{p}\left(y_{j} \mid x_{k}\right) \mathrm{p}\left(x_{k}\right) \\
& \mathrm{p}\left(y_{1}\right)=.7 \mathrm{p}\left(x_{1}\right)+.2 \mathrm{p}\left(x_{2}\right)+.1 \mathrm{p}\left(x_{3}\right) \\
& \mathrm{p}\left(y_{2}\right)=.1 \mathrm{p}\left(x_{1}\right)+.7 \mathrm{p}\left(x_{2}\right)+.2 \mathrm{p}\left(x_{3}\right) \\
& \mathrm{p}\left(y_{3}\right)=.2 \mathrm{p}\left(x_{1}\right)+.1 \mathrm{p}\left(x_{2}\right)+.7 \mathrm{p}\left(x_{3}\right)
\end{aligned}
$$

r-ary Symmetric Channel

$$
P=\left[\begin{array}{ccccc}
1-p & \frac{p}{r-1} & \frac{p}{r-1} & \cdots & \frac{p}{r-1} \\
\frac{p}{r-1} & 1-p & \frac{p}{r-1} & \cdots & \frac{p}{r-1} \\
\frac{p}{r-1} & \frac{p}{r-1} & 1-p & \cdots & \frac{p}{r-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{p}{r-1} & \frac{p}{r-1} & \frac{p}{r-1} & \cdots & 1-p
\end{array}\right]
$$

r-ary Symmetric Channel

$$
\begin{aligned}
C & =(1-p) \log (1-p)+(r-1) \frac{p}{r-1} \log \left(\frac{p}{r-1}\right)+\log r \\
& =\log r+(1-p) \log (1-p)+p \log \left(\frac{p}{r-1}\right) \\
& =\log r+(1-p) \log (1-p)+p \log (p)-p \log (r-1) \\
& =\log r-h(p)-p \log (r-1)
\end{aligned}
$$

- $r=2$
$\mathrm{C}=1-\mathrm{h}(p)$
- $r=3$
$\mathrm{C}=\log _{2} 3-\mathrm{h}(p)-p$
- $r=4$
$\mathrm{C}=2-\mathrm{h}(p)-\operatorname{plog}_{2} 3$

Binary Errors with Erasure Channel

Binary Errors with Erasure Channel

$$
P_{\mathrm{Y} \mid \mathrm{X}}=\left[\begin{array}{cc}
.8 & .05 \\
.15 & .15 \\
.05 & .8
\end{array}\right]
$$

$$
P_{x}=\left[\begin{array}{l}
.5 \\
.5
\end{array}\right] \quad P_{r}=P_{y \mid X} \times P_{x}=\left[\begin{array}{l}
.425 \\
.15 \\
.425
\end{array}\right]
$$

Capacity of a Weakly Symmetric Channel

$$
\mathrm{C}=\sum_{i=1}^{\llcorner } q_{i} \mathrm{C}_{i}
$$

- q_{i} - probability of channel i
- C_{i} - capacity of channel i

Binary Errors with Erasure Channel

$P_{1}=\left[\begin{array}{ll}.9412 & .0588 \\ .0588 & .9412\end{array}\right]$

$$
P_{2}=\left[\begin{array}{ll}
1.0 & 1.0
\end{array}\right]
$$

Binary Errors with Erasure Channel

$$
\mathrm{C}=\sum_{i=1}^{L} q_{i} \mathrm{C}_{i}
$$

$\mathrm{C}_{1}=.9412 \log .9412+.0588 \log .0588+\log 2=.6773$
$C_{2}=1 \log 1+\log 1=0.0$
$C=.85(.6773)+.15(0.0)=.5757$

Binary Erasure Channel

$$
C=1-p
$$

Z Channel (Optical)

Z Channel (Optical)

$$
\begin{aligned}
& \mathrm{I}(\mathrm{X} ; \mathrm{Y})=\sum_{k=1}^{2} \sum_{j=1}^{2} \mathrm{p}\left(x_{k}\right) \mathrm{p}\left(y_{j} \mid x_{k}\right) \log \left[\frac{\mathrm{p}\left(y_{j} \mid x_{k}\right)}{\mathrm{p}\left(y_{j}\right)}\right] \\
& \mathrm{I}\left(x_{1} ; \mathrm{Y}\right)=\log \left(\frac{1}{w+p \bar{w}}\right) \\
& \mathrm{I}\left(x_{2} ; \mathrm{Y}\right)=p \log \left(\frac{p}{w+p \bar{w}}\right)+(1-p) \log \left(\frac{1}{\bar{w}}\right) \\
& \mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{w} \times \|\left(x_{1} ; \mathrm{Y}\right)+\overline{\mathrm{W}} \times \mathrm{I}\left(x_{2} ; \mathrm{Y}\right)
\end{aligned}
$$

Mutual Information for the Z Channel

- $p=0.15$

Z Channel (Optical)

$$
\begin{gathered}
I(X ; Y)=w \times I\left(x_{1} ; Y\right)+\overline{\mathrm{W}} \times \mathrm{l}\left(x_{2} ; Y\right) \\
w^{*}=1-\frac{1}{(1-p)\left(1+2^{\mathrm{h}(p) /(1-p)}\right)} \\
\mathrm{C}=\log _{2}\left(1+(1-p) p^{p /(1-p)}\right) \\
p=0.15 \quad w^{*}=0.555 \quad \mathrm{C}=0.685
\end{gathered}
$$

Channel Capacity for the Z, BSC and BEC

Blahut-Arimoto Algorithm

$$
\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\sum_{k=1}^{\kappa} \mathrm{p}\left(x_{k}\right) \sum_{j=1}^{j} \mathrm{p}\left(y_{j} \mid x_{k}\right) \log \left[\frac{\mathrm{p}\left(y_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{i}\right) p\left(y_{j} \mid x_{j}\right)}\right]
$$

- An analytic solution for the capacity can be very difficult to obtain
- The alternative is a numerical solution
- Arimoto Jan. 1972
- Blahut Jul. 1972
- Exploits the fact that $I(X ; Y)$ is a concave function of $p\left(x_{k}\right)$

Blahut-Arimoto Algorithm

$$
\begin{aligned}
& c_{k}=\exp \left[\sum_{j=1}^{J} p\left(y_{j} \mid x_{k}\right) \ln \left(\frac{p\left(y_{j} \mid x_{k}\right)}{\sum_{l=1}^{K} p\left(x_{l}\right) p\left(y_{j} \mid x_{l}\right)}\right)\right] \quad \text { for } k=1, \ldots, K \\
& I_{L}=\ln \sum_{k=1}^{K} p\left(x_{k}\right) c_{k} \\
& I_{U}=\ln \left(\max _{k=1, \ldots, K} c_{k}\right)
\end{aligned}
$$

Blahut-Arimoto Algorithm

- Update the probabilities

$$
p^{(n+1)}\left(x_{k}\right)=\frac{p^{(n)}\left(x_{k}\right) c_{k}}{\sum_{l=1}^{K} p\left(x_{l}\right)^{(n)} c_{l}}
$$

Symmetric Channel Example

$$
\mathbf{P}_{1}=\left(\begin{array}{llll}
0.4000 & 0.3000 & 0.2000 & 0.1000 \\
0.1000 & 0.4000 & 0.3000 & 0.2000 \\
0.3000 & 0.2000 & 0.1000 & 0.4000 \\
0.2000 & 0.1000 & 0.4000 & 0.3000
\end{array}\right)
$$

n	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	$p\left(x_{3}\right)$	$p\left(x_{4}\right)$	I_{U}	I_{L}	ϵ
1	0.2500	0.2500	0.2500	0.2500	0.1064	0.1064	0.0000

n	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	$p\left(x_{3}\right)$	$p\left(x_{4}\right)$	I_{U}	I_{L}	ϵ
1	0.1000	0.6000	0.2000	0.1000	0.1953	0.0847	0.1106
2	0.1073	0.5663	0.2155	0.1126	0.1834	0.0885	0.0949
3	0.1141	0.5348	0.2287	0.1249	0.1735	0.0916	0.0819
4	0.1204	0.5061	0.2394	0.1369	0.1650	0.0942	0.0708
5	0.1264	0.4802	0.2480	0.1484	0.1576	0.0963	0.0613
\vdots							
10	0.1524	0.3867	0.2668	0.1963	0.1326	0.1024	0.0302
\vdots							
20	0.1912	0.3037	0.2604	0.2448	0.1219	0.1057	0.0162
\vdots							
40	0.2320	0.2622	0.2476	0.2578	0.1110	0.1064	0.0046
\vdots							
80	0.2482	0.2515	0.2486	0.2516	0.1068	0.1064	0.0004
\vdots							
202	0.2500	0.2500	0.2500	0.2500	0.1064	0.1064	0.0000

Non-Symmetric Channel Example

$$
\mathbf{P}_{2}=\left(\begin{array}{llll}
0.1000 & 0.2500 & 0.2000 & 0.1000 \\
0.1000 & 0.2500 & 0.6000 & 0.2000 \\
0.7000 & 0.2500 & 0.1000 & 0.2000 \\
0.1000 & 0.2500 & 0.1000 & 0.5000
\end{array}\right)
$$

n	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	$p\left(x_{3}\right)$	$p\left(x_{4}\right)$	I_{U}	I_{L}	ϵ
1	0.2500	0.2500	0.2500	0.2500	0.4498	0.2336	0.2162
2	0.3103	0.1861	0.2545	0.2228	0.4098	0.2504	0.1595
3	0.3640	0.1428	0.2653	0.2036	0.3592	0.2594	0.0998
4	0.4022	0.1118	0.2804	0.1899	0.3289	0.2647	0.0642
\vdots							
8	0.4522	0.0450	0.3389	0.1639	0.2988	0.2763	0.0225
\vdots							
16	0.4629	0.0076	0.3732	0.1565	0.2848	0.2830	0.0018
\vdots							
32	0.4641	0.0002	0.3769	0.1588	0.2846	0.2844	0.0003
\vdots							
64	0.4640	0.0000	0.3768	0.1592	0.2844	0.2844	0.0000
65	0.4640	0.0000	0.3768	0.1592	0.2844	0.2844	0.0000

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{cc}
.98 & .05 \\
.02 & .95
\end{array}\right] \quad P_{2}=\left[\begin{array}{cc}
.80 & .05 \\
.20 & .95
\end{array}\right] \\
& P_{3}=\left[\begin{array}{ll}
.80 & .10 \\
.20 & .90
\end{array}\right] \quad P_{4}=\left[\begin{array}{ll}
.60 & .01 \\
.40 & .99
\end{array}\right] \\
& P_{5}=\left[\begin{array}{ll}
.80 & .30 \\
.20 & .70
\end{array}\right]
\end{aligned}
$$

	C	\mathbf{p}^{*}
P_{1}	.7859	$(.5129 .4871)$
P_{2}	.4813	$(.4676$
	$.5324)$	
P_{3}	.3976	$(.4824$
P_{4}	$.5176)$	
P_{5}	.3688	$(.4238$

	C	\mathbf{p}^{*}	$I(X ; Y) \mathrm{u}$	
P_{1}	.7859	$(.5129$	$.4871)$.7854
P_{2}	.4813	$(.4676$	$.5324)$.4796
P_{3}	.3976	$(.4824$	$.5176)$.3973
P_{4}	.3688	$(.4238$	$.5762)$.3615
P_{5}	.1912	$(.5100$	$.4900)$.1912

Communication over Noisy Channels

Binary Symmetric Channel

Binary Symmetric Channel

- Consider a block of $N=1000$ bits
- if $p=0,1000$ bits are received correctly
- if $p=0.01,990$ bits are received correctly
- if $p=0.5,500$ bits are received correctly
- When $p>0$, we do not know which bits are in error
- if $p=0.01, \mathrm{C}=.919 \mathrm{bit}$
- if $p=0.5, \mathrm{C}=0$ bit

Triple Repetition Code

- $N=3$
message w codeword c
0
000
111

Binary Symmetric Channel Errors

- If N bits are transmitted, the probability of an m bit error pattern is

$$
p^{m}(1-p)^{N-m}
$$

- The probability of exactly m errors is

$$
\binom{N}{m} p^{m}(1-p)^{N-m}
$$

- The probability of m or more errors is

$$
\sum_{i=m}^{N}\binom{N}{i} p^{i}(1-p)^{N-i}
$$

Triple Repetition Code

- $N=3$
- The probability of 0 errors is $(1-p)^{3}$
- The probability of 1 error is $3 p(1-p)^{2}$
- The probability of 2 errors is $3 p^{2}(1-p)$
- The probability of 3 errors is p^{3}

Triple Repetition Code

- For $p=0.01$
- The probability of 0 errors is . 970
- The probability of 1 error is $\quad 2.94 \times 10^{-2}$
- The probability of 2 errors is $\quad 2.97 \times 10^{-4}$
- The probability of 3 errors is 10^{-6}
- If $p \ll \frac{1}{2}$
p (0 errors) $\gg \mathrm{p}$ (1 error) $\gg \mathrm{p}$ (2 errors) $\gg \mathrm{p}$ (3 errors)

Triple Repetition Code - Decoding

Received Word				Codeword				Error Pattern		
\mathbf{O}	\mathbf{O}	0	0	0	0	0	0	0		
0	0	1	0	0	0	0	0	1		
0	1	0	0	0	0	0	1	0		
1	0	0	0	0	0	1	0	0		
1	1	1	1	1	1	0	0	0		
1	1	0	1	1	1	0	0	1		
1	0	1	1	1	1	0	1	0		
0	1	1	1	1	1	1	0	0		

Triple Repetition Code

- Majority vote or nearest neighbor decoding will correct all single errors

$$
\begin{aligned}
& 000,001,010,100 \rightarrow 000 \\
& 111,110,101,011 \rightarrow 111
\end{aligned}
$$

- The probability of a decoding error is then

$$
\mathrm{P}_{\mathrm{e}}=3 p^{2}(1-p)+p^{3}=3 p^{2}-2 p^{3}<p
$$

- If $p=0.01$, then $\mathrm{P}_{\mathrm{e}}=0.000298$ and only one word in 3356 will be in error after decoding.
- A reduction by a factor of 33 .

Code Rate

- After compression, the data is (almost) memoryless and uniformly distributed (equiprobable)
- Thus the entropy of the messages (codewords) is

$$
H(W)=\log _{b} M
$$

- The blocklength of a codeword is N

Code Rate

- The code rate is given by

$$
\mathrm{R}=\frac{\log _{2} M}{N} \text { bits per channel use }
$$

- M is the number of codewords
- N is the block length
- For the triple repetition code

$$
\mathrm{R}=\frac{\log _{2} 2}{3}=\frac{1}{3}
$$

Shannon's Noisy Coding Theorem

For any $\varepsilon>0$ and for any rate R less than the channel capacity C, there is an encoding and decoding scheme that can be used to ensure that the probability of decoding error P_{e} is less than ε for a sufficiently large block length N.

Error Correction Coding $N=3$

- $R=1 / 3 M=2$
$0 \rightarrow 000$
$1 \rightarrow 111$
- $\mathrm{R}=1 \mathrm{M}=8$
$000 \rightarrow 000001 \rightarrow 001 \quad 010 \rightarrow 010 \quad 011 \rightarrow 011$
$111 \rightarrow 111 \quad 110 \rightarrow 110 \quad 101 \rightarrow 101 \quad 100 \rightarrow 100$
- Another choice $\mathrm{R}=2 / 3 \mathrm{M}=4$
$00 \rightarrow 00001 \rightarrow 011$
$10 \rightarrow 10111 \rightarrow 110$

Error Correction Coding $N=3$

- BSC $p=0.01$
- M is the number of codewords

Code Rate R	P_{e}	$M=2^{\text {NR }}$
1	0.0297	8
$2 / 3$	0.0199	4
$1 / 3$	2.98×10^{-4}	2

- Tradeoff between code rate and error rate

Codes for $N=3$

Error Correction Coding $N=5$

- BSC $p=0.01$

Code Rate R	P_{e}	$M=2^{N R}$
1	0.0490	32
$4 / 5$	0.0394	16
$3 / 5$	0.0297	8
$2 / 5$	9.80×10^{-4}	4
$1 / 5$	9.85×10^{-6}	2

- Tradeoff between code rate and error rate

Error Correction Coding $N=7$

- BSC $p=0.01 N=7$

Code Rate R	P_{e}	$M=2^{N R}$
1	0.0679	128
$6 / 7$	0.0585	64
$5 / 7$	0.0490	32
$4 / 7$	2.03×10^{-3}	16
$3 / 7$	1.46×10^{-3}	8
$2 / 7$	9.80×10^{-4}	4
$1 / 7$	3.40×10^{-7}	2

- Tradeoff between code rate and error rate

Best Codes Comparison

- BSC $p=0.01 \mathrm{R}=2 / 3 \mathrm{M}=2^{N R}$

N	P_{e}	$\log _{2} M$
3	1.99×10^{-2}	2
12	6.17×10^{-3}	8
30	3.32×10^{-3}	20
51	1.72×10^{-3}	34
81	1.36×10^{-3}	54

- For fixed R, P_{e} can be decreased by increasing N

Code Matrix

$$
\mathcal{C}=\left[\begin{array}{c}
\mathbf{c}_{1} \\
\vdots \\
\mathbf{c}_{m} \\
\vdots \\
\mathbf{c}_{M}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m, 1} & \cdots & c_{m, n} & \cdots & c_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M, 1} & \cdots & c_{M, n} & \cdots & c_{M, N}
\end{array}\right]
$$

Binary Codes

- For given values of M and N, there are $2^{M N}$
possible binary codes.
- Of these, some will be bad, some will be best (optimal), and some will be good, in terms of P_{e}
- An average code will be good.

Theorem (Shannon's channel coding theorem):
Let C be the information transfer capacity of a memoryless channel defined by its transition probabilities matrix $\mathbf{P}=\{p(\mathbf{y} \mid \mathbf{x})\}$. If the code rate $R<C$, then there exists a channel code \mathcal{C} of size M and blocklength N, such that the probability of decoding error P_{e} is upperbounded by an arbitrarily small number ϵ;

$$
P_{e} \leq \epsilon
$$

provided that the blocklength N is sufficiently large (i.e., $N \geq N_{0}$).

Channel Capacity

- To prove that information can be transmitted reliably over a noisy channel at rates up to the capacity, Shannon used a number of new concepts
- Allowing an arbitrarily small but nonzero probability of error
- Using long codewords
- Calculating the average probability of error over a random choice of codes to show that at least one good code exists

Channel Coding Theorem

- Random coding used in the proof
- Joint typicality used as the decoding rule
- Shows that good codes exist which provide an arbitrarily small probability of error
- Does not provide an explicit way of constructing good codes
- If a long code (large N) is generated randomly, the code is likely to be good but is difficult to decode

Theorem (Converse of the channel coding theorem):
Let a memoryless channel with capacity C be used to transmit codewords of blocklength N and input information R. Then the error decoding probability P_{e} satisfies the following inequality:

$$
P_{e}(N, R) \geq 1-\frac{C}{R}-\frac{1}{N R}
$$

If the rate $R>C$, then the error decoding probability P_{e} is bounded away from zero.

Channel Capacity: Weak Converse

$$
P_{e}(N, R) \geq 1-\frac{C}{R}-\frac{1}{N R}
$$

For $\mathrm{R}>\mathrm{C}$, the decoding error probability is bounded away from 0

Channel Capacity: Weak Converse

- $\mathrm{C}=0.3$

Channel Capacity: Strong Converse

- For rates above capacity $(\mathrm{R}>\mathrm{C})$

$$
P_{e}(N, R) \geq 1-2^{-N E_{A}(R)}
$$

- where $E_{A}(R)$ is Arimoto's error exponent and $E_{A}(R)>0$

Arimoto's Error Exponent $E_{A}(R)$

$\mathrm{E}_{\mathrm{A}}(\mathrm{R})$ for a BSC with $p=0.1$

- The capacity is a very clear dividing point
- At rates below capacity, $\mathrm{P}_{\mathrm{e}} \rightarrow 0$ exponentially as $N \rightarrow \infty$
- At rates above capacity, $\mathrm{P}_{\mathrm{e}} \rightarrow 1$ exponentially as $N \rightarrow \infty$

