ECE 405/511 Error Control Coding

Cyclic Codes

Definition

- A code C is cyclic if
 1) C is a linear block code
 2) a cyclic shift of any codeword
 c_i = (c₀, c₁, ..., c_{n-1})
 is another codeword
 c_i = (c_{n-1}, c₀, c₁, ..., c_{n-2})
- Examples:

Another Example

• C₃ = {0000,1001,0110,1111} is not cyclic

 Interchange positions 3 and 4 (equivalent code)

• C_{3'} = {0000,1010,0101,1111} is cyclic

• Code polynomials

 $c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}, \quad c_i \in GF(q)$

- GF(q)[x] is the set of polynomials with coefficients from GF(q)
- GF(q)[x] is a commutative ring with identity (not a field)

- Define the ring of polynomials modulo f(x) of degree
 n as GF(q)[x]/f(x)
- This is a finite ring
- Example: choose $f(x)=x^2-1$ which in GF(2) is x^2+1
 - then the ring is $GF(2)[x]/(x^2+1)$
 - $-x^2+1$ is not irreducible
 - elements are {0, 1, x, x+1}

• Over any field GF(q) $x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$

so x^n -1 is never irreducible for n>1

- Let R_n denote $GF(2)[x]/(x^n-1)$
- Any polynomial of degree ≥ n can be reduced modulo xⁿ-1 to a polynomial of degree less than n

$$x^n \rightarrow 1$$

 $x^{n+1} \rightarrow x$
 $x^{n+2} \rightarrow x^2$

ECE 405/511 Test

- Friday, February 17, 2023 10:30 AM
 constitutes 20% of the final grade
- Test will cover material up to bounds on codes
- Shortening and extending are included but not the Hamming, Gilbert, and Gilbert-Varshamov bounds.
 - Moreira and Farrell Chapter 2 (not Section 2.11)
 - Assignments 1 and 2 (Problems 1-4)
- Aids allowed: 1 sheet of paper 8.5 × 11 in² calculator

Ideals

- Let R be a ring. A nonempty subset I ⊆ R is called an Ideal if it satisfies the following
 - I forms a group under addition
 - $a \cdot r \in I$ for all $a \in I$ and $r \in R$
 - superclosed under multiplication
- Examples
 - {0} and R are trivial Ideals in R
 - $\{0, x^4 + x^3 + x^2 + x + 1\}$ is an Ideal in $R_5 = GF(2)[x]/(x^5-1)$
 - even numbers in Z (even integers)

Ideal Example

- $R_3 = GF(2)[x]/(x^3-1)$
 - $0 \rightarrow 000 \qquad 1 \rightarrow 100$ $x \rightarrow 010 \qquad 1+x \rightarrow 110$ $x^{2} \rightarrow 001 \qquad 1+x^{2} \rightarrow 101$ $x + x^{2} \rightarrow 011 \qquad 1+x + x^{2} \rightarrow 111$

 $I = \{0, 1 + x, 1 + x^2, x + x^2\}$ is an Ideal in R_3 {000, 110, 101, 011} is a cyclic code

Theorem

A code which is a vector subspace over a field GF(q) is a cyclic code iff it corresponds to an ideal in $GF(q)[x]/(x^n-1)$ (the ring of polynomials modulo x^n-1)

Cyclic Code Generation

 Let f(x) be any polynomial in R_n and let < f(x) > denote the subset of R_n consisting of all multiples of f(x) modulo xⁿ-1

 $< f(x) >= \{r(x)f(x) \mid r(x) \in R_n\}$

- < f(x) > is the cyclic code generated by f(x)
- Example: $C = \langle 1+x^2 \rangle$ in $R_3 = GF(2)[x]/(x^3-1)$
 - Multiplying by all 8 elements in R_3 produces only 4 distinct codewords

 $C = \{0, 1+x, 1+x^2, x+x^2\}$

Generator Polynomial

- Any cyclic code can be generated by a polynomial from R_n
- Let C be a cyclic code in R_n . Then we have the following facts:
 - 1. There exists a unique monic polynomial g(x) of smallest degree in C
 - 2. C = < g(x) >
 - 3. $g(x) | x^{n} 1$

g(x) is called the generator polynomial of the cyclic code

Cyclic Codes

- Any polynomial c(x) of degree less than n is in C iff
 g(x) | c(x)
- If g(x) has degree n-k, $|C|=q^k$
- Every codeword has the form

$$c(x) = m(x)g(x)$$

codeword	message	generator
polynomial of	polynomial of	polynomial of
degree <i>n</i> -1 or	degree <i>k</i> -1 or	degree <i>n-k</i>
less	less	

- To determine the possible g(x), factor x^n -1
- Example:

 $x^{3}-1 = (x+1)(x^{2}+x+1)$ over GF(2)

Generator polynomial	Code in <i>R</i> ₃	Code in 3-tuples		
1	<i>R</i> ₃	V ₃		
<i>x</i> +1	$\{0,1+x,1+x^2,x+x^2\}$	{000,110,101,011}		
<i>x</i> ² + <i>x</i> +1	$\{0,1+x+x^2\}$	{000,111}		
<i>x</i> ³ -1	{0}	{000}		

Generator Matrix

 $c(x) = m(x)g(x) = (m_0 + m_1x + \dots + m_{k-1}x^{k-1})g(x)$ Since $= m_0 g(x) + m_1 x g(x) + \dots + m_{k-1} x^{k-1} g(x)$ $= [m_0 \ m_1 \ \cdots \ m_{k-1}] \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix} = \mathbf{mG}$ $\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & \mathbf{0} \\ g_0 & g_1 & \cdots & g_{n-k} \\ \vdots & \vdots & \ddots & \ddots \\ g_0 & g_1 & \cdots & g_{n-k} \\ \mathbf{0} & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$ is a generator matrix for the cyclic code

Generator Matrix Example

- $R_7 = GF(2)[x]/(x^7-1)$
- $x^7 1 = (1 + x + x^3)(1 + x^2 + x^3)(1 + x)$
- $g(x) = 1 + x + x^3$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- C is a (7,4,3) code a binary cyclic code
- All binary cyclic codes with *g*(*x*) a primitive polynomial are equivalent to Hamming codes

Example

•
$$g(x) = (1+x+x^3)(1+x) = 1+x^2+x^3+x^4$$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

• *C* is a (7,3,4) binary cyclic code

Parity Check Matrix

- The generator matrix is not in systematic form. How to find the parity check matrix?
- g(x) is a factor of $x^{n}-1$, i.e. $g(x)h(x) = x^{n}-1$
- h(x) is a monic polynomial with degree k, and is the generator polynomial of a cyclic code C', but not necessarily of the dual code of C.
- For the (7,4,3) code example $h(x) = (1+x^2+x^3)(1+x) = 1+x+x^2+x^4$

- $x^7 1 = (1 + x + x^3)(1 + x^2 + x^3)(1 + x)$
- $g(x) = 1 + x + x^3$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

• $h(x) = (1+x^2+x^3)(1+x) = 1+x+x^2+x^4$

$$\mathbf{H'} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- g(x)h(x)=0 mod xⁿ-1 (in R_n) is not the same as vectors in V_n being orthogonal.
- Let **H** be the matrix generated from $h^*(x)=x^kh(x^{-1})=h_k+xh_{k-1}+...+x^kh_0$ reciprocal poly. of h(x)

$$\mathbf{H} = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_1 & h_0 & & 0 \\ h_k & h_{k-1} & \cdots & h_1 & h_0 & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \\ & & h_k & h_{k-1} & \cdots & h_1 & h_0 \\ 0 & & & h_k & h_{k-1} & \cdots & h_1 & h_0 \end{bmatrix}$$

Parity Check Matrix H

- $c(x)h(x) = m(x)g(x)h(x) = m(x)(x^{n}-1) = -m(x) + x^{n}m(x)$
- m(x) has degree < k, thus the coefficients of x^k to xⁿ⁻¹
 in c(x)h(x) must be zero

$$c_{0}h_{k} + c_{1}h_{k-1} + \dots + c_{k}h_{0} = 0$$

$$c_{1}h_{k} + c_{2}h_{k-1} + \dots + c_{k+1}h_{0} = 0 \qquad \implies \mathbf{C}\mathbf{H}^{\mathsf{T}} = \mathbf{0}$$

$$\vdots$$

$$c_{n-k-1}h_{k} + c_{n-k}h_{k-1} + \dots + c_{n-1}h_{0} = 0$$

Hamming Code Example (Cont.)

 h*(x) =1+x²+x³+x⁴ generates the parity check matrix and the dual cyclic code of the code generated by g(x)

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- **H** is the parity check matrix for the (7,4,3) Hamming code
- h*(x)=1+x²+x³+x⁴ is the generator polynomial for a (7,3,4) cyclic code since h*(x) | xⁿ-1

Hamming Code Example (Cont.)

- h*(x)=1+x²+x³+x⁴ is the generator polynomial for a (7,3,4) cyclic code since h*(x) | xⁿ-1
- $g(x)=1+x^2+x^3+x^4$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Hamming Code Example (Cont.)

- To construct the parity check matrix for the (7,3,4) code, use h(x) = 1+x²+x³
- h*(x) = 1+x+x³ is the generator polynomial for a (7,4,3) cyclic code since h*(x) | xⁿ-1
- h*(x) generates the parity check matrix H as well as the dual cyclic code

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Binary Cyclic Codes of Length 7

- $x^7 1 = (1 + x + x^3)(1 + x^2 + x^3)(1 + x)$
- g(x) = 1+x (7,6,2) dual code $h^*(x) = 1+x+x^2+x^3+x^4+x^5+x^6$ (7,1,7) • $g(x) = 1+x+x^3$ (7,4,3) dual code $h^*(x) = 1+x^2+x^3+x^4$ (7,3,4) • $g(x) = 1+x^2+x^3$ (7,4,3) dual code $h^*(x) = 1+x+x^2+x^4$ (7,3,4)

Systematic Cyclic Codes

- $R_7 = GF(2)[x]/(x^7-1)$
- $x^7 1 = (1 + x + x^3)(1 + x^2 + x^3)(1 + x)$
- $g(x) = 1 + x + x^3$ $\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$
 - *C* is a (7,4,3) code not in systematic form
 - To transform into systematic form:
 - permute columns 1 and 4, then add rows 2 and 4 to get a new row 4

Systematic Generator Matrix

- Permute columns 1 and 4, then add rows 2 and 4 to get a new row 4.
- The resulting generator matrix has a systematic form [P I_k], but is not cyclic

$$\mathbf{G'} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Check: divide the last row of **G**' by g(x)

- $1+x+x^2+x^6$ is not divisible by $g(x) = 1+x+x^3$

Systematic Generator Matrix

- We require an algebraic means of generating a systematic code while preserving divisibility by g(x).
- Approach: divide x^i by g(x), i = n-k to n-1 $x^i = g(x)q_i(x)+d_i(x)$ $d_i(x)$ has degree less than n-krearranging $x^i - d_i(x) = g(x)q_i(x)$ divisible by g(x)
- xⁱ d_i(x) has only one non-zero coefficient for degrees n-k to n-1
- Use $x^i d_i(x)$ to form **G G** = [**P** I_k] **H** = [I_{n-k} -**P**^T]

Example

• $g(x) = 1 + x + x^3$

X ⁱ	$g(x)q_i(x)$				d_i	(x)			$x^i + d_i(x)$	
<i>x</i> ³	$(1+x+x^3)\cdot 1$			1+ <i>x</i>				$1+x+x^{3}$		
X ⁴	$(1+x+x^3)\cdot x$			<i>x+x</i> ²				<i>x</i> + <i>x</i> ² + <i>x</i> ⁴		
x ⁵	$(1+x+x^3)\cdot(1+x^2)$			$1+x+x^2$			2	$1+x+x^2+x^5$		
X ⁶	$(1+x+x^3) \cdot (1+x+x^3) \cdot (1+x$	<i>⊦x+</i>	x ³)	1+ <i>x</i> ²					$1+x^2+x^6$	
		1	1	0 1 1	1	0	0	0		
	G =	0	1	1	0	1	0	0		
								0		
		1	0	1	0	0	0	1		

Systematic Encoding

Systematic encoding is achieved by multiplying m(x) by x^{n-k} and dividing this product by g(x) to obtain d(x)

•
$$c(x) = m(x)x^{n-k} + m(x)x^{n-k}/g(x)$$

 \sim use the remainder d(x)

• Example (7,4,3) code $m(x) = x^2 + x + 1$ $m(x)x^{n-k} = x^5 + x^4 + x^3$ divide by $g(x) = x^3 + x + 1 \rightarrow d(x) = x$ $c(x) = x^5 + x^4 + x^3 + x$ c = 0101110

Another Example

- $R_{23} = GF(2)[x]/(x^{23}-1)$
- $x^{23}-1 =$ $(x+1)(x^{11}+x^{10}+x^6+x^5+x^4+x^2+1)(x^{11}+x^9+x^7+x^6+x^5+x+1)$ $= (x+1)g_1(x)g_2(x)$
- $g_1(x) = g_2^*(x)$
- $g_1(x)$ and $g_2(x)$ both generate (23,12,7) codes

Ternary Example

- $x^{11}-1 = (x-1)(x^5+x^4-x^3+x^2-1)(x^5-x^3+x^2-x-1)$ over GF(3) = $(x-1)g_1(x)g_2(x)$
- $g_1(x)$ and $g_2(x)$ both generate (11,6,5) codes

Implementation of Cyclic Codes

- Encoding
 - in non-systematic form: c(x) = m(x)g(x)
 - in systematic form: $c(x) = m(x)x^{n-k}+d(x)$ d(x) is the remainder of $m(x)x^{n-k}/g(x)$
- Thus we require circuits for multiplying and dividing polynomials
- Solution: use shift registers

Nonsystematic Binary Cyclic Code Encoder

- Encoding can be done by multiplying two polynomials
 - a message polynomial m(x) and the generator polynomial g(x)
- The generator polynomial is

 $g(x) = g_0 + g_1 x + ... + g_r x^r$ of degree r = n-k

• If a message vector *m* is represented by a polynomial m(x) of degree k-1, m(x) is encoded as c(x) = m(x)g(x) using the following shift register circuit

Nonsystematic Shift Register Encoder

Encoder for the (7,3) Binary Cyclic Code with $g(x) = 1+x^2+x^3+x^4$

Shift Register Cell Contents

• Encoding $m(x) = x^2 + 1$

SR cells	<i>r</i> ₀	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄	<i>r</i> ₅	<i>r</i> ₆
Initial state	0	0	0	0	0	0	0
Input $m_2 = 1$	1	0	1	1	1	0	0
Input $m_1 = 0$	0	1	0	1	1	1	0
Input $m_0 = 1$	1	0	0	1	0	1	1
Final state = c_4	1	0	0	1	0	1	1

Shift Register Multiplication

• Multiplication of m(x) by x^{n-k}

Polynomial Division

- Polynomial division is performed using a Linear Feedback Shift Register (LFSR)
- This circuit divides a polynomial *a*(*x*) by the polynomial *g*(*x*)
- The result in the register is the remainder d(x)
- Consider the long division

 $g_r x^r + g_{r-1} x^{r-1} + \dots + g_1 x + g_0 \overline{\big)} a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$

• The first term in the quotient is $\frac{a_{n-1}}{g_r}x^{k-1}$

• The remainder after subtracting $\frac{a_{n-1}}{g_r}x^{k-1}g(x)$ from a(x) is

$$\left(a_{n-2} - \frac{a_{n-1}}{g_r}g_{r-1}\right)x^{n-2} + \dots + \left(a_{k-1} - \frac{a_{n-1}}{g_r}g_0\right)x^{k-1} + a_{k-2}x^{k-2} + \dots + a_1x + a_0$$

• Since $g_r = 1$ this is

 $(a_{n-2} - a_{n-1}g_{r-1}) x^{n-2} + \dots + (a_{k-1} - a_{n-1}g_0) x^{k-1} + a_{k-2}x^{k-2} + \dots + a_1x + a_0$

- After n shifts, a(x) has been input and the remainder
 d(x) is located in the shift register
- For a binary generator polynomial

$$-g_0 = 1$$

Polynomial Division

• Division of a(x) by g(x)

Shift Register Division

• Division of $x^6 + x^4$ by $x^4 + x^3 + x^2 + 1$

Shift Register Cell Contents

• Division of $x^6 + x^4$ by $x^4 + x^3 + x^2 + 1$

SR cells	r 0	<i>r</i> ₁	<i>r</i> ₂	r 3	Q. 10
Initial state	0	0	0	0	
Input $a_6 = 1$	1	0	0	0	
Input $a_5 = 0$	0	1	0	0	
Input $a_4 = 1$	1	0	1	0	
Input $a_3 = 0$	0	1	0	···· 1 -) ··	
Input $a_2 = 0$	1	0	0	1	
Input $a_1 = 0$	1	1	1	1	
Input $a_0 = 0$	1	1	0	0	
Final state = r	· 1	1	0	0	$\Leftrightarrow d(x) = x + 1$

Encoder for an (*n*,*k*) Cyclic Code

Encoder for a Binary (n,k) Cyclic Code

Encoder for the (7,4) Cyclic Code Generated by $g(x) = 1+x+x^3$

Encoding $m(x) = 1 + x^2 + x^3$

input	r ₀	<i>r</i> ₁	r ₂	output
1	1	1	0	1
1	1	0	1	1
0	1	0	0	0
1	1	0	0	1
-		1	0	0
-			1	0
-				1

Encoding $1+x^2$ with $g(x) = 1+x^2+x^3+x^4$

input	r ₀	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	output
1	1	0	1	1	1
0	1	1	1	0	0
1	1	1	0	0	1
-		1	1	0	0
-			1	1	0
-				1	1
-					1

Binary Syndrome Computation Circuit

Syndrome Circuit for the (7,4) Cyclic Code Generated by $g(x) = 1+x+x^3$

Syndrome for $x^2 + x^4 + x^5$

input	<i>s</i> ₀	s ₁	s ₂
0	0	0	0
1	1	0	0
1	1	1	0
0	0	1	1
1	0	1	1
0	1	1	1
0	1	0	1

Shortened Cyclic Codes

- Systematic cyclic codes can be shortened by setting the *j* most significant bits of the codeword (message bits) to zero
- The resulting length is only limited by the length of the original cyclic code *n* and the redundancy *r=n-k*
- An (*n*,*k*) code is shortened to an (*n*-*j*, *k*-*j*) code
- Since we are using a subset of the original codewords, the error correction and detection capability is at least as good as the original cyclic code

- Shortened cyclic codes are usually not cyclic, but we can still use the same shift registers for encoding and decoding as the original cyclic codes.
- Shortened cyclic codes are often called polynomial codes
- Widely used shortened cyclic codes:
 - Cyclic Redundancy Check (CRC) codes
- CRC codes are used for error detection and as hash functions

Cyclic Redundancy Check Codes

- A common choice for the generator polynomial is
 g(x) = (x+1)b(x) (to detect all odd error patterns)
 where b(x) is a primitive polynomial
- Example: CRC-12

 $g(x) = (x^{11} + x^2 + 1)(x + 1)$

This is a cyclic code of length $n = 2^{11}-1 = 2047$ and dimension k = 2047-12 = 2035

• Only 12 bits of redundancy (parity bits)

CRC CODE

GENERATION POLYNOMIAL

CRC-4	$g_4(x) = x^4 + x^3 + x^2 + x + 1$
CRC-7	$g_7(x) = x^7 + x^6 + x^4 + 1 = (x^4 + x^3 + 1)(x^2 + x + 1)(x + 1)$
CRC-8	$g_8(x) = (x^5 + x^4 + x^3 + x^2 + 1)(x^2 + x + 1)(x + 1)$
CRC-12	$g_{12}(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1 = (x^{11} + x^2 + 1)(x + 1)$
CRC-ANSI	$g_{ANSI}(x) = x^{16} + x^{15} + x^2 + 1 = (x^{15} + x + 1)(x + 1)$
CRC-CCITT	$g_{CCITT}(x) = x^{16} + x^{12} + x^5 + 1$
CRC-SDLC	$= (x^{15} + x^{14} + x^{13} + x^{12} + x^4 + x^3 + x^2 + x + 1)(x + 1)$ $g_{SDLC}(x) = x^{16} + x^{15} + x^{13} + x^7 + x^4 + x^2 + x + 1$ $= (x^{14} + x^{13} + x^{12} + x^{10} + x^8 + x^6 + x^5 + x^4 + x^3 + x + 1)$
	$(x+1)^2$
CRC24	$g_{24}(x) = x^{24} + x^{23} + x^{14} + x^{12} + x^8 + 1$ - $(x^{10} + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1)$
	$= (x^{10} + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1)$ $\cdot (x^{10} + x^9 + x^6 + x^4 + 1)(x^3 + x^2 + 1)(x + 1)$
$CRC32_A[Mer]$	$x^{32} + x^{30} + x^{22} + x^{15} + x^{12} + x^{11} + x^7 + x^6 + x^5 + x$
	$(x^{10} + x^9 + x^8 + x^6 + x^2 + x + 1)(x^{10} + x^7 + x^6 + x^3 + 1)$
	$\cdot (x^{10} + x^8 + x^5 + x^4 + 1)(x+1)(x)$
$CRC-32_B[Ga12]$	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5$
	$+x^4 + x^2 + x + 1$

Long CRC Polynomials

CRC	<i>g</i> (<i>x</i>)
CRC-32 _B (IEEE 802)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
CRC-32	$ \begin{array}{l} x^{32} + x^{30} + x^{29} + x^{28} + x^{26} + x^{20} + x^{19} + x^{17} + x^{16} + x^{15} + x^{11} \\ + x^{10} + x^7 + x^6 + x^4 + x^2 + x + 1 = \\ (x^{28} + x^{22} + x^{20} + x^{19} + x^{16} + x^{14} + x^{12} + x^9 + x^8 + x^6 + 1)(x+1) \\ (x^3 + x^2 + 1) \end{array} $
CRC-40 (GSM)	$x^{40} + x^{26} + x^{23} + x^{17} + x^3 + 1$
CRC-64 (SWISS- PROT)	x ⁶⁴ +x ⁴ +x ³ +x+1
CRC-64 (improved)	$\begin{array}{c} x^{64} + x^{63} + x^{61} + x^{59} + x^{58} + x^{56} + x^{55} + x^{52} + x^{49} + x^{48} + x^{47} \\ + x^{46} + x^{44} + x^{41} + x^{37} + x^{36} + x^{34} + x^{32} + x^{31} + x^{28} + x^{26} + x^{23} \\ + x^{22} + x^{19} + x^{16} + x^{13} + x^{12} + x^{10} + x^8 + x^7 + x^5 + x^3 + 1 \end{array}$

 Coverage is the fraction of words that will be detected in error should the input be completely corrupted (worst case: a random sequence of symbols)

$$\lambda = \frac{q^n - q^k}{q^n} = 1 - q^{-(n-k)} = 1 - q^{-r}$$

• For example, CRC-12

 $\lambda = 1 - 2^{-12} = 0.999756$

• The larger *r*=*n*-*k*, the greater the coverage

Burst Errors

- Hardware faults and multipath fading environments cause burst errors
 - Error patterns of the form

e = ...0000NXXX...XXXN0000...

N≠0, X any symbol

A binary burst error of length 6 is

e = ...0001XXXX100...

• CRC codes are particularly well suited for detecting burst errors

- It can be shown that a *q*-ary CRC code constructed from a cyclic code can detect
 - All burst error patterns of length n-k = r or less
 where r is the degree of g(x)
 - A fraction $1-q^{1-r}/(q-1)$ of all burst error patterns of length r+1
 - A fraction $1-q^{-r}$ of all burst error patterns of length b > r+1
- Example: CRC-12 (*q*=2, *r*=12)
 - detects 99.95% of all length 13 burst errors
 - detects 99.976% of all length > 13 burst errors