ECE 405/511

 Error Control Coding

 Error Control Coding}

Cyclic Codes

Definition

- A code C is cyclic if

1) C is a linear block code
2) a cyclic shift of any codeword

$$
\mathbf{c}_{i}=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)
$$

is another codeword

$$
\mathbf{c}_{j}=\left(c_{n-1}, c_{0}, c_{1}, \cdots, c_{n-2}\right)
$$

- Examples:

$$
\begin{aligned}
& C_{1}=\{000,111\} \\
& C_{2}=\{000,101,011,110\}
\end{aligned}
$$

Another Example

- $C_{3}=\{0000,1001,0110,1111\}$ is not cyclic
- Interchange positions 3 and 4

(equivalent code)

- $C_{3^{\prime}}=\{0000,1010,0101,1111\}$ is cyclic
- Code polynomials

$$
c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}, \quad c_{i} \in \operatorname{GF}(q)
$$

- $\operatorname{GF}(q)[x]$ is the set of polynomials with coefficients from GF(q)
- $\mathrm{GF}(q)[x]$ is a commutative ring with identity (not a field)
- Define the ring of polynomials modulo $f(x)$ of degree n as $\operatorname{GF}(q)[x] / f(x)$
- This is a finite ring
- Example: choose $f(x)=x^{2}-1$ which in GF(2) is $x^{2}+1$
- then the ring is $\mathrm{GF}(2)[x] /\left(x^{2}+1\right)$
$-x^{2}+1$ is not irreducible
- elements are $\{0,1, x, x+1\}$
- Over any field GF(q)

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)
$$

so $x^{n}-1$ is never irreducible for $n>1$

- Let R_{n} denote GF(2)[x]/($\left.x^{n}-1\right)$
- Any polynomial of degree $\geq n$ can be reduced modulo $x^{n}-1$ to a polynomial of degree less than n

$$
\begin{aligned}
& x^{n} \rightarrow 1 \\
& x^{n+1} \rightarrow x \\
& x^{n+2} \rightarrow x^{2}
\end{aligned}
$$

ECE 405/511 Test

- Friday, February 17, 2023 10:30 AM
- constitutes 20% of the final grade
- Test will cover material up to bounds on codes
- Shortening and extending are included but not the Hamming, Gilbert, and Gilbert-Varshamov bounds.
- Moreira and Farrell Chapter 2 (not Section 2.11)
- Assignments 1 and 2 (Problems 1-4)
- Aids allowed: 1 sheet of paper $8.5 \times 11 \mathrm{in}^{2}$ calculator

Ideals

- Let R be a ring. A nonempty subset $I \subseteq R$ is called an Ideal if it satisfies the following
- I forms a group under addition
- $a \cdot r \in I$ for all $a \in I$ and $r \in R$
- superclosed under multiplication
- Examples
$-\{0\}$ and R are trivial Ideals in R
$-\left\{0, x^{4}+x^{3}+x^{2}+x+1\right\}$ is an Ideal in $R_{5}=\mathrm{GF}(2)[x] /\left(x^{5}-1\right)$
- even numbers in Z (even integers)

Ideal Example

- $R_{3}=\mathrm{GF}(2)[x] /\left(x^{3}-1\right)$

$$
\begin{array}{llll}
0 & \rightarrow 000 & 1 & \rightarrow 100 \\
x & \rightarrow 010 & 1+x & \rightarrow 110 \\
x^{2} & \rightarrow 001 & 1+x^{2} & \rightarrow 101 \\
x+x^{2} & \rightarrow 011 & 1+x+x^{2} & \rightarrow 111
\end{array}
$$

$I=\left\{0,1+x, 1+x^{2}, x+x^{2}\right\}$ is an Ideal in R_{3}
$\{000,110,101,011\}$ is a cyclic code

Theorem

A code which is a vector subspace over a field $\mathrm{GF}(q)$ is a cyclic code iff it corresponds to an ideal in $\mathrm{GF}(q)[x] /\left(x^{n}-1\right)$ (the ring of polynomials modulo $x^{n}-1$)

Cyclic Code Generation

- Let $f(x)$ be any polynomial in R_{n} and let $\langle f(x)>$ denote the subset of R_{n} consisting of all multiples of $f(x)$ modulo $x^{n}-1$

$$
<f(x)>=\left\{r(x) f(x) \mid r(x) \in R_{n}\right\}
$$

- $\langle f(x)\rangle$ is the cyclic code generated by $f(x)$
- Example: $C=<1+x^{2}>$ in $R_{3}=G F(2)[x] /\left(x^{3}-1\right)$
- Multiplying by all 8 elements in R_{3} produces only 4 distinct codewords

$$
C=\left\{0,1+x, 1+x^{2}, x+x^{2}\right\}
$$

Generator Polynomial

- Any cyclic code can be generated by a polynomial from R_{n}
- Let C be a cyclic code in R_{n}. Then we have the following facts:

1. There exists a unique monic polynomial $g(x)$ of smallest degree in C
2. $C=\langle g(x)>$
3. $g(x) \mid x^{n}-1$
$g(x)$ is called the generator polynomial of the cyclic code

Cyclic Codes

- Any polynomial $c(x)$ of degree less than n is in C iff $g(x) \mid c(x)$
- If $g(x)$ has degree $n-k,|C|=q^{k}$
- Every codeword has the form

$c(x)=m(x) g(x)$		
codeword	message	generator
polynomial of	polynomial of	polynomial of
degree n-1 or	degree k-1 or	degree $n-k$
less	less	

- To determine the possible $g(x)$, factor $x^{n}-1$
- Example:

$$
x^{3}-1=(x+1)\left(x^{2}+x+1\right) \text { over GF(2) }
$$

Generator polynomial	Code in R_{3}	Code in 3-tuples
1	R_{3}	V_{3}
$x+1$	$\left\{0,1+x, 1+x^{2}, x+x^{2}\right\}$	$\{000,110,101,011\}$
$x^{2}+x+1$	$\left\{0,1+x+x^{2}\right\}$	$\{000,111\}$
$x^{3}-1$	$\{0\}$	$\{000\}$

Generator Matrix

- Since

$$
\begin{aligned}
c(x) & =m(x) g(x)=\left(m_{0}+m_{1} x+\cdots+m_{k-1} x^{k-1}\right) g(x) \\
& =m_{0} g(x)+m_{1} x g(x)+\cdots+m_{k-1} 1^{k-1} g(x) \\
& =\left[\begin{array}{llll}
m_{0} & m_{1} & \cdots & m_{k-1}
\end{array}\right]\left[\begin{array}{l}
g(x) \\
x g(x) \\
\vdots \\
x^{k-1} g(x)
\end{array}\right]=\mathbf{m G}
\end{aligned}
$$

$$
\mathbf{G}=\left[\begin{array}{cccccc}
g_{0} & g_{1} & \cdots & g_{n-k} & & \\
& g_{0} & g_{1} & \cdots & g_{n-k} & \\
& \ddots & \ddots & & \ddots & \\
& & g_{0} & g_{1} & \cdots & g_{n-k} \\
\mathbf{0} & & & g_{0} & g_{1} & \cdots \\
g_{n-k}
\end{array}\right]
$$

is a generator matrix for the cyclic code

Generator Matrix Example

- $R_{7}=\mathrm{GF}(2)[x] /\left(x^{7}-1\right)$
- $x^{7}-1=\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)(1+x)$
- $g(x)=1+x+x^{3}$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $\quad C$ is a $(7,4,3)$ code - a binary cyclic code
- All binary cyclic codes with $g(x)$ a primitive polynomial are equivalent to Hamming codes

Example

- $g(x)=\left(1+x+x^{3}\right)(1+x)=1+x^{2}+x^{3}+x^{4}$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- C is a $(7,3,4)$ binary cyclic code

Parity Check Matrix

- The generator matrix is not in systematic form. How to find the parity check matrix?
- $g(x)$ is a factor of x^{n}-1, i.e. $g(x) h(x)=x^{n}-1$
- $h(x)$ is a monic polynomial with degree k, and is the generator polynomial of a cyclic code C^{\prime}, but not necessarily of the dual code of C.
- For the $(7,4,3)$ code example

$$
h(x)=\left(1+x^{2}+x^{3}\right)(1+x)=1+x+x^{2}+x^{4}
$$

- $x^{7}-1=\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)(1+x)$
- $g(x)=1+x+x^{3}$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $h(x)=\left(1+x^{2}+x^{3}\right)(1+x)=1+x+x^{2}+x^{4}$

$$
\mathbf{H}^{\prime}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $g(x) h(x)=0 \bmod x^{n}-1\left(\right.$ in $\left.R_{n}\right)$ is not the same as vectors in V_{n} being orthogonal.
- Let \mathbf{H} be the matrix generated from $h^{*}(x)=x^{k} h\left(x^{-1}\right)=h_{k}+x h_{k-1}+\ldots+x^{k} h_{0} \quad$ reciprocal poly. of $h(x)$

$$
\mathbf{H}=\left[\begin{array}{ccccccccc}
h_{k} & h_{k-1} & \cdots & h_{1} & h_{0} & & & 0 \\
& h_{k} & h_{k-1} & \cdots & h_{1} & h_{0} & & \\
& \ddots & \ddots & & \ddots & \ddots & \\
& & h_{k} & h_{k-1} & \cdots & h_{1} & h_{0} \\
0 & & & h_{k} & h_{k-1} & \cdots & h_{1} & h_{0}
\end{array}\right]
$$

Parity Check Matrix H

- $c(x) h(x)=m(x) g(x) h(x)=m(x)\left(x^{n}-1\right)=-m(x)+x^{n} m(x)$
- $m(x)$ has degree $<k$, thus the coefficients of x^{k} to x^{n-1} in $c(x) h(x)$ must be zero

$$
\begin{aligned}
& c_{0} h_{k}+c_{1} h_{k-1}+\cdots+c_{k} h_{0}=0 \\
& c_{1} h_{k}+c_{2} h_{k-1}+\cdots+c_{k+1} h_{0}=0 \quad \Rightarrow \quad \mathbf{c H}^{\top}=\mathbf{0} \\
& \vdots \\
& c_{n-k-1} h_{k}+c_{n-k} h_{k-1}+\cdots+c_{n-1} h_{0}=0
\end{aligned}
$$

Hamming Code Example (Cont.)

- $h^{*}(x)=1+x^{2}+x^{3}+x^{4}$ generates the parity check matrix and the dual cyclic code of the code generated by $g(x)$

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- \mathbf{H} is the parity check matrix for the $(7,4,3)$ Hamming code
- $h^{*}(x)=1+x^{2}+x^{3}+x^{4}$ is the generator polynomial for a
$(7,3,4)$ cyclic code since $h^{*}(x) \mid x^{n}-1$

Hamming Code Example (Cont.)

- $h^{*}(x)=1+x^{2}+x^{3}+x^{4}$ is the generator polynomial for a $(7,3,4)$ cyclic code since $h^{*}(x) \mid x^{n}-1$
- $g(x)=1+x^{2}+x^{3}+x^{4}$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Hamming Code Example (Cont.)

- To construct the parity check matrix for the $(7,3,4)$ code, use $h(x)=1+x^{2}+x^{3}$
- $h^{*}(x)=1+x+x^{3}$ is the generator polynomial for a $(7,4,3)$ cyclic code since $h^{*}(x) \mid x^{n}-1$
- $h^{*}(x)$ generates the parity check matrix \mathbf{H} as well as the dual cyclic code

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Binary Cyclic Codes of Length 7

- $x^{7}-1=\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)(1+x)$
- $g(x)=1+x \quad(7,6,2)$
dual code $\quad h^{*}(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6} \quad(7,1,7)$
- $g(x)=1+x+x^{3} \quad(7,4,3)$
dual code $\quad h^{*}(x)=1+x^{2}+x^{3}+x^{4}$
$(7,3,4)$
- $g(x)=1+x^{2}+x^{3}(7,4,3)$
dual code $\quad h^{*}(x)=1+x+x^{2}+x^{4}$
$(7,3,4)$

Systematic Cyclic Codes

- $R_{7}=\mathrm{GF}(2)[x] /\left(x^{7}-1\right)$
- $x^{7}-1=\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)(1+x)$
- $g(x)=1+x+x^{3}$

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- C is a $(7,4,3)$ code - not in systematic form
- To transform into systematic form:
- permute columns 1 and 4, then add rows 2 and 4 to get a new row 4

Systematic Generator Matrix

- Permute columns 1 and 4 , then add rows 2 and 4 to get a new row 4.
- The resulting generator matrix has a systematic form $\left[\mathbf{P} \mathbf{I}_{k}\right]$, but is not cyclic

$$
\mathbf{G}^{\prime}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Check: divide the last row of \mathbf{G}^{\prime} by $g(x)$
$-1+x+x^{2}+x^{6}$ is not divisible by $g(x)=1+x+x^{3}$

Systematic Generator Matrix

- We require an algebraic means of generating a systematic code while preserving divisibility by $g(x)$.
- Approach: divide x^{i} by $g(x), i=n-k$ to $n-1$
$x^{i}=g(x) q_{i}(x)+d_{i}(x) \quad d_{i}(x)$ has degree less than $n-k$ rearranging $x^{i}-d_{i}(x)=g(x) q_{i}(x) \quad$ divisible by $g(x)$
- $x^{i}-d_{i}(x)$ has only one non-zero coefficient for degrees $n-k$ to $n-1$
- Use $x^{i}-d_{i}(x)$ to form \mathbf{G}

$$
\mathbf{G}=\left[\begin{array}{ll}
\mathbf{P} & \mathbf{I}_{k}
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{ll}
\mathbf{I}_{n-k} & -\mathbf{P}^{\top}
\end{array}\right]
$$

Example

- $g(x)=1+x+x^{3}$

x^{i}	$g(x) q_{i}(x)$	$d_{i}(x)$	$x^{i}+d_{i}(x)$
x^{3}	$\left(1+x+x^{3}\right) \cdot 1$	$1+x$	$1+x+x^{3}$
x^{4}	$\left(1+x+x^{3}\right) \cdot x$	$x+x^{2}$	$x+x^{2}+x^{4}$
x^{5}	$\left(1+x+x^{3}\right) \cdot\left(1+x^{2}\right)$	$1+x+x^{2}$	$1+x+x^{2}+x^{5}$
x^{6}	$\left(1+x+x^{3}\right) \cdot\left(1+x+x^{3}\right)$	$1+x^{2}$	$1+x^{2}+x^{6}$

$$
\mathbf{G}=\left[\begin{array}{lll:llll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Systematic Encoding

- Systematic encoding is achieved by multiplying $m(x)$ by x^{n-k} and dividing this product by $g(x)$ to obtain $d(x)$
- $c(x)=m(x) x^{n-k}+m(x) x^{n-k} / g(x)$
- Example $(7,4,3)$ code use the remainder $d(x)$ $m(x)=x^{2}+x+1$ $m(x) x^{n-k}=x^{5}+x^{4}+x^{3}$ divide by $g(x)=x^{3}+x+1 \rightarrow d(x)=x$ $c(x)=x^{5}+x^{4}+x^{3}+x$
c $=0101110$

Another Example

- $R_{23}=\mathrm{GF}(2)[x] /\left(x^{23}-1\right)$
- $x^{23}-1=$

$$
\begin{aligned}
& (x+1)\left(x^{11}+x^{10}+x^{6}+x^{5}+x^{4}+x^{2}+1\right)\left(x^{11}+x^{9}+x^{7}+x^{6}+x^{5}+x+1\right) \\
& \quad=(x+1) g_{1}(x) g_{2}(x)
\end{aligned}
$$

- $g_{1}(x)=g_{2}{ }^{*}(x)$
- $g_{1}(x)$ and $g_{2}(x)$ both generate $(23,12,7)$ codes

Ternary Example

- $x^{11}-1=(x-1)\left(x^{5}+x^{4}-x^{3}+x^{2}-1\right)\left(x^{5}-x^{3}+x^{2}-x-1\right)$ over GF(3)

$$
=(x-1) g_{1}(x) g_{2}(x)
$$

- $g_{1}(x)$ and $g_{2}(x)$ both generate $(11,6,5)$ codes

Implementation of Cyclic Codes

- Encoding
- in non-systematic form: $c(x)=m(x) g(x)$
- in systematic form: $c(x)=m(x) x^{n-k}+d(x)$ $d(x)$ is the remainder of $m(x) x^{n-k} / g(x)$
- Thus we require circuits for multiplying and dividing polynomials
- Solution: use shift registers

Nonsystematic Binary Cyclic Code Encoder

- Encoding can be done by multiplying two polynomials
- a message polynomial $m(x)$ and the generator polynomial $g(x)$
- The generator polynomial is

$$
g(x)=g_{0}+g_{1} x+\ldots+g_{r} x^{r} \quad \text { of degree } r=n-k
$$

- If a message vector m is represented by a polynomial $m(x)$ of degree $k-1, m(x)$ is encoded as $c(x)=m(x) g(x)$ using the following shift register circuit

Nonsystematic Shift Register Encoder

$m_{0}, m_{1}, \ldots, m_{k-1}$

Encoder for the $(7,3)$ Binary Cyclic Code with $g(x)=1+x^{2}+x^{3}+x^{4}$

Shift Register Cell Contents

- Encoding $m(x)=x^{2}+1$

SR cells	r_{0}	r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}
Initial state	0	0	0	0	0	0	0
Input $m_{2}=1$	1	0	1	1	1	0	0
Input $m_{1}=0$	0	1	0	1	1	1	0
Input $m_{0}=1$	1	0	0	1	0	1	1
Final state $=\mathrm{c}_{4}$	1	0	0	1	0	1	1

Shift Register Multiplication

- Multiplication of $m(x)$ by x^{n-k}
$m_{0}, m_{1}, \ldots, m_{k-1}$

Polynomial Division

- Polynomial division is performed using a Linear Feedback Shift Register (LFSR)
- This circuit divides a polynomial $a(x)$ by the polynomial $g(x)$
- The result in the register is the remainder $d(x)$
- Consider the long division

$$
g _ { r } x ^ { r } + g _ { r - 1 } x ^ { r - 1 } + \cdots + g _ { 1 } x + g _ { 0 } \longdiv { a _ { n - 1 } x ^ { n - 1 } + a _ { n - 2 } x ^ { n - 2 } + \cdots + a _ { 1 } x + a _ { 0 } }
$$

- The first term in the quotient is $\frac{a_{n-1}}{g_{r}} x^{k-1}$
- The remainder after subtracting $\frac{a_{n-1}}{g_{r}} x^{k-1} g(x)$ from $a(x)$ is
$\left(a_{n-2}-\frac{a_{n-1}}{g_{r}} g_{r-1}\right) x^{n-2}+\cdots+\left(a_{k-1}-\frac{a_{n-1}}{g_{r}} g_{0}\right) x^{k-1}+a_{k-2} x^{k-2}+\cdots+a_{1} x+a_{0}$
- Since $g_{r}=1$ this is
$\left(a_{n-2}-a_{n-1} g_{r-1}\right) x^{n-2}+\cdots+\left(a_{k-1}-a_{n-1} g_{0}\right) x^{k-1}+a_{k-2} x^{k-2}+\cdots+a_{1} x+a_{0}$
- After n shifts, $a(x)$ has been input and the remainder $d(x)$ is located in the shift register
- For a binary generator polynomial
$-g_{0}=1$

Polynomial Division

- Division of $a(x)$ by $g(x)$

Shift Register Division

- Division of $x^{6}+x^{4}$ by $x^{4}+x^{3}+x^{2}+1$

Shift Register Cell Contents

- Division of $x^{6}+x^{4}$ by $x^{4}+x^{3}+x^{2}+1$

SR cells	r_{0}	r_{1}	$r_{\mathbf{2}}$	$r_{\mathbf{3}}$
Initial state	0	0	0	0
Input $a_{6}=1$	1	0	0	0
Input $a_{5}=0$	0	1	0	0
Input $a_{4}=1$	1	0	1	0
Input $a_{3}=0$	0	1	0	1
Input $a_{2}=0$	1	0	0	1
Input $a_{1}=0$	1	1	1	1
Input $a_{0}=0$	1	1	0	0
Final state $=r$	1	1	0	0

Encoder for an (n, k) Cyclic Code

Encoder for a Binary (n, k) Cyclic Code

Encoder for the $(7,4)$ Cyclic Code Generated by $g(x)=1+x+x^{3}$

Encoding $m(x)=1+x^{2}+x^{3}$

input	r_{0}	r_{1}	r_{2}	output
1	1	1	0	1
1	1	0	1	1
0	1	0	0	0
1	1	0	0	1
-		1	0	0
-			1	0
-				1

Encoding $1+x^{2}$ with $g(x)=1+x^{2}+x^{3}+x^{4}$

input	r_{0}	r_{1}	r_{2}	r_{3}	output
1	1	0	1	1	1
0	1	1	1	0	0
1	1	1	0	0	1
-		1	1	0	0
-			1	1	0
-				1	1
-					1

Binary Syndrome Computation Circuit

Syndrome Circuit for the $(7,4)$ Cyclic Code Generated by $g(x)=1+x+x^{3}$

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Syndrome for $x^{2}+x^{4}+x^{5}$

input	s_{0}	s_{1}	s_{2}
0	0	0	0
1	1	0	0
1	1	1	0
0	0	1	1
1	0	1	1
0	1	1	1
0	1	0	1

Shortened Cyclic Codes

- Systematic cyclic codes can be shortened by setting the j most significant bits of the codeword (message bits) to zero
- The resulting length is only limited by the length of the original cyclic code n and the redundancy $r=n-k$
- An (n, k) code is shortened to an ($n-j, k-j$) code
- Since we are using a subset of the original codewords, the error correction and detection capability is at least as good as the original cyclic code
- Shortened cyclic codes are usually not cyclic, but we can still use the same shift registers for encoding and decoding as the original cyclic codes.
- Shortened cyclic codes are often called polynomial codes
- Widely used shortened cyclic codes:
- Cyclic Redundancy Check (CRC) codes
- CRC codes are used for error detection and as hash functions

Cyclic Redundancy Check Codes

- A common choice for the generator polynomial is

$$
g(x)=(x+1) b(x) \quad \text { (to detect all odd error patterns) }
$$

where $b(x)$ is a primitive polynomial

- Example: CRC-12

$$
g(x)=\left(x^{11}+x^{2}+1\right)(x+1)
$$

This is a cyclic code of length $n=2^{11}-1=2047$ and dimension $k=2047-12=2035$

- Only 12 bits of redundancy (parity bits)

CRC CODE

GENERATION POLYNOMIAL

CRC-4

$$
g_{4}(x)=x^{4}+x^{3}+x^{2}+x+1
$$

CRC-7

$$
g_{7}(x)=x^{7}+x^{6}+x^{4}+1=\left(x^{4}+x^{3}+1\right)\left(x^{2}+x+1\right)(x+1)
$$

CRC-8

$$
g_{8}(x)=\left(x^{5}+x^{4}+x^{3}+x^{2}+1\right)\left(x^{2}+x+1\right)(x+1)
$$

CRC-12

$$
g_{12}(x)=x^{12}+x^{11}+x^{3}+x^{2}+x+1=\left(x^{11}+x^{2}+1\right)(x+1)
$$

CRC-ANSI

$$
g_{\text {ANSI }}(x)=x^{16}+x^{15}+x^{2}+1=\left(x^{15}+x+1\right)(x+1)
$$

CRC-CCITT

$$
g_{C C I T T}(x)=x^{16}+x^{12}+x^{5}+1
$$

$$
=\left(x^{15}+x^{14}+x^{13}+x^{12}+x^{4}+x^{3}+x^{2}+x+1\right)(x+1)
$$

CRC-SDLC

$$
g_{S D L C}(x)=x^{16}+x^{15}+x^{13}+x^{7}+x^{4}+x^{2}+x+1
$$

$$
=\left(x^{14}+x^{13}+x^{12}+x^{10}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x+1\right)
$$

$$
\cdot(x+1)^{2}
$$

CRC24

$$
\begin{aligned}
& g_{24}(x)=x^{24}+x^{23}+x^{14}+x^{12}+x^{8}+1 \\
& =\left(x^{10}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x+1\right) \\
& \cdot\left(x^{10}+x^{9}+x^{6}+x^{4}+1\right)\left(x^{3}+x^{2}+1\right)(x+1)
\end{aligned}
$$

$\mathrm{CRC} 32_{A}$ [Mer]

$$
\begin{aligned}
& x^{32}+x^{30}+x^{22}+x^{15}+x^{12}+x^{11}+x^{7}+x^{6}+x^{5}+x \\
& \left(x^{10}+x^{9}+x^{8}+x^{6}+x^{2}+x+1\right)\left(x^{10}+x^{7}+x^{6}+x^{3}+1\right) \\
& \left(x^{10}+x^{8}+x^{5}+x^{4}+1\right)(x+1)(x)
\end{aligned}
$$

CRC-32 ${ }_{B}[\mathrm{Ga} 12]$

$$
x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}
$$

$$
+x^{4}+x^{2}+x+1
$$

Long CRC Polynomials

CRC	$g(x)$
CRC-32 802)	IEEE
CRC-32	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}$ $+x^{5}+x^{4}+x^{2}+x+1$
$x^{32}+x^{30}+x^{29}+x^{28}+x^{26}+x^{20}+x^{19}+x^{17}+x^{16}+x^{15}+x^{11}$ $+x^{10}+x^{7}+x^{6}+x^{4}+x^{2}+x+1=$ $\left(x^{28}+x^{22}+x^{20}+x^{19}+x^{16}+x^{14}+x^{12}+x^{9}+x^{8}+x^{6}+1\right)(x+1)$ $\left(x^{3}+x^{2}+1\right)$	
CRC-40 (GSM)	$x^{40}+x^{26}+x^{23}+x^{17}+x^{3}+1$
CRC-64 (SWISS- PROT)	$x^{64}+x^{4}+x^{3}+x+1$
CRC-64 (improved)	$x^{64}+x^{63}+x^{61}+x^{59}+x^{58}+x^{56}+x^{55}+x^{52}+x^{49}+x^{48}+x^{47}$ $+x^{46}+x^{44}+x^{41}+x^{37}+x^{36}+x^{34}+x^{32}+x^{31}+x^{28}+x^{26}+x^{23}$ $+x^{22}+x^{19}+x^{16}+x^{13}+x^{12}+x^{10}+x^{8}+x^{7}+x^{5}+x^{3}+1$

- Coverage is the fraction of words that will be detected in error should the input be completely corrupted (worst case: a random sequence of symbols)

$$
\lambda=\frac{q^{n}-q^{k}}{q^{n}}=1-q^{-(n-k)}=1-q^{-r}
$$

- For example, CRC-12

$$
\lambda=1-2^{-12}=0.999756
$$

- The larger $r=n-k$, the greater the coverage

Burst Errors

- Hardware faults and multipath fading environments cause burst errors
- Error patterns of the form
e = ...0000NXXX...XXXN0000...
$\mathrm{N} \neq 0, \mathrm{X}$ any symbol
- A binary burst error of length 6 is e = ...0001XXXX100...
- CRC codes are particularly well suited for detecting burst errors
- It can be shown that a q-ary CRC code constructed from a cyclic code can detect
- All burst error patterns of length $n-k=r$ or less where r is the degree of $g(x)$
- A fraction 1- $q^{1-r} /(q-1)$ of all burst error patterns of length $r+1$
- A fraction 1- q^{-r} of all burst error patterns of length $b>r+1$
- Example: CRC-12 ($q=2, r=12$)
- detects 99.95\% of all length 13 burst errors
- detects 99.976\% of all length > 13 burst errors

