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Introduction to Groups, Rings
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ISBN Codes
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The ISBN-10 Code
Most books have an International Standard Book Number which is a 10 digit 
codeword produced by the publisher with the following structure

l                  p m w =        c1 … c10

language   publisher   number weighted check sum
0               470         02920 X

such that

An X is placed in the 10th position if c10 = 10
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Example

• Essentials of Error Control Coding
ISBN 0-470-02920-X

0 - English
470 - Wiley

4

( ) ( )
9

10
1

mod  11 120 mod  11 10i
i

c ic
=

= = =∑



ISBN Errors
• Single Error Detection

– Let c = c1 … c10 be the correct codeword and let
r = c1 … cj-1 rj cj+1 … c10 with rj = cj + x, x ≠ 0

• Transposition Error Detection
– Let cJ and ck be exchanged
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Erasure Example
• Received ISBN codeword:

0-470-02e20-X
• Compute the parity equation:

1×0+2×4+3×7+4×0+5×0+6×2+7×e+8×2+9×0+10×10 = 0 mod 11

7e+157 = 0 mod 11
7e+3 = 0 mod 11

7e = -3 mod 11 
-3 = 8 mod 11 →  e = 8/7 mod 11 = 8×8 mod 11

e = 64 mod 11 = 9
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Inverses Modulo 11
• Additive inverses

0+0 = 0, 1+10 = 0, 2+9 = 0, 3+8 = 0, 4+7 = 0, 5+6 = 0
– Every element has an additive inverse

• Multiplicative inverses
1 = 1-1, 2 = 6-1, 3 = 4-1, 5 = 9-1, 7 = 8-1, 10 = 10-1

1×1 = 1, 2×6 = 1, 3×4 = 1, 5×9 = 1, 7×8 = 1, 10×10 = 1
– Every nonzero element has a multiplicative inverse
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Groups
Definition A group (G,•) is a set of objects G on which a 
binary operation • is defined: a•b ∈ G for all a,b ∈ G

The operation must satisfy the following requirements: 

(i) Associativity: a•(b•c) = (a•b) •c

(ii) Identity: there exists e ∈ G such that for all a ∈ G,                  
a•e = e•a = a   e: identity element of G

(iii) Inverse: for all a ∈ G, there exists a unique element, a-1 ∈ G  
such that a•a-1 = a-1•a = e a-1 : inverse of a

A group is said to be commutative or abelian if it also satisfies 
(iv) for all a,b ∈ G,  a•b = b•a



Niels Henrik Abel (1802-1829)
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Examples
• (Z,+) integers with addition 

– identity 0, a-1 = -a 

• (Zn,+) integers modulo n with addition 
– identity 0, a-1 = n-a  (0-1 = 0)
– (Z4,+)

• What about (R,•)?   Multiplication with R the real numbers
No, 0 has no inverse
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Integers Modulo p and Multiplication

• The set S = {1,2, …, p-1} and multiplication 
modulo p is a commutative group if and only 
if p is prime

• Example: p = 5
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The cardinality of the group is called the order

Definition Let g be an element in (G,•).
Let g1 = g,  g2 = g•g,   g3 = g•g•g,  …
The order of g is the smallest positive integer

ord(g)
such that gord(g) is the identity element.

Order of Group Elements



Order of Group Elements
• (Z4,+) integers modulo 4 with addition 

– identity 0
– 0 = 0 order of 0 is 1
– 1+1+1+1 = 0 order of 1 is 4
– 2+2 = 0 order of 2 is 2
– 3+3+3+3=0 order of 3 is 4

• Order of the group elements divides the group 
order
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Binary Linear Block Codes

• Binary linear block codes are also called
Group Codes

• Operation is codeword addition
• Identity is the all-zero codeword
• The inverse of a codeword c is?

c as c + c = 0
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Rings
Definition A ring (R,+,•) is a set of objects R on 
which two binary operations + and • are defined. 
The following three properties hold:
1. (R,+) is a commutative group under + with 

identity `0  ́
2. The operation • is associative 

a•(b•c) = (a•b)•c  for all a, b, c ∈ R
3. The operation • distributes over  +

a•(b+c) = (a•b) + (a•c)
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Rings
A ring is said to be a commutative ring if
4. The operation • commutes  a•b =  b•a

A ring is said to be a ring with identity if
5. The operation • has an identity element `1 ́

A ring that satisfies both properties 4 and 5 is said 
to be a commutative ring with identity or a 
commutative, unitary ring
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Commutative, Unitary Ring Z4

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

• 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Additive identity is 0      Multiplicative identity is 1



Ring Examples

• (Zn,+,•) 
– additive identity is 0
– multiplicative identity is 1

• F2[x] – polynomials with binary coefficients under 
polynomial addition and multiplication
– additive identity is 0
– multiplicative identity is 1

• n×n square matrices with integer elements
– additive identity is the all-zero matrix 0n
– multiplicative identity is the identity matrix In
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Rings

• Let R* = R - {0} 
• If in addition to property 5

(R*,•) is a group, the ring is said to be a 
division ring

• If (R*,•) is a commutative group, the ring is 
said to be a field
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Fields
Definition A field (F,+,•) is a set of objects F on 
which two binary operations + and • are defined. 
F is said to be a field if and only if:
1. (F,+) is a commutative group under + with 

additive identity `0  ́
2. (F*,•) is a commutative group under • with  

multiplicative identity `1 ́
3. The operation • distributes over +

a•(b+c) = (a•b) + (a•c)



Field Examples

• Rational numbers (Q,+,•)
• Real numbers (R,+,•)
• Complex numbers (C,+,•)

• These are infinite fields
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Smallest Possible Field

(Z2,+,•)
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Finite Fields

• Finite fields were discovered by Evariste Galois 
and thus are also known as Galois fields

• The cardinality of the field is called the order
• A finite field of order q is denoted GF(q) or Fq

• Example: GF(3)
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Evariste Galois (1811-1832)
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Finite Fields

• Theorem The integers S = {0,1,2, …, p-1} where 
p is a prime form the field GF(p) under modulo 
p addition and multiplication

• (Zn,+,•) n prime

• Are there any other finite fields?
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Properties of Finite Fields

• Let β be a nonzero element of GF(q) and let 1 
be the multiplicative identity

• Definition The order of β is the smallest 
positive integer m such that βm = 1

• Theorem If t = ord(β) then t | (q-1)
• Definition In any finite field, there are one or 

more elements of order q-1 called primitive 
elements
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• Example: GF(5)  
S = {0,1,2,3,4} with modulo 5 addition and 
multiplication

• Order of the elements of the multiplicative group

• The number of elements of order t is given by 
Euler’s totient function ø(t)

1
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1 2 3 4

1 2

1 1

2 2    2 4   2 3   2 1

3 3     3 4   3 2  3 1

4 4   4 1

=

= = = =

= = = =

= =

2 and 3 are 
primitive 
elements



Euler’s Totient Function ø(t)

• Consider the number of positive integers less than t
which are relatively prime to t
– Example: t = 10
– complete set of values {1,2,3,4,5,6,7,8,9} 
– Relatively prime values {1,3,7,9}

• The number of elements in the set that are relatively 
prime to t is given by Euler’s totient function ø(t) 
– ø(10) = 4
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Euler’s Totient Function ø(t)
• to compute ø(t), consider the number of 

elements to be excluded
• in general the prime factorization of t is needed

– for a prime p ø(p) = p-1 

• examples
– ø(37) = 36
– ø(31) = 30
– ø(1)  = 1
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Euler’s Totient Function ø(t)

Definition

30
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1( ) 1
p t
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t t
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 
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φ φ

φ φ

φ φ

  = ⋅ = − − =  
  

  = ⋅ = − − =  
  

  = ⋅ ⋅ = − − =  
  

1 1(6) (2 3) 6 1 1 2
2 3

1,5    relatively prime to 6
1 1(15) (3 5) 15 1 1 8
3 5

1,2,4,7,8,11,13,14   relatively prime to 15
1 1(63) (3 3 7) 63 1 1 36
3 7
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• The number of elements in GF(q) of
order t is ø(t) 

• In GF(q), there are exactly ø(q-1)
elements of order q-1

• A primitive element α is an element of order 
q-1 and              

• Therefore, the q-1 elements 

must be the non-zero elements of GF(q)

1 1qα − =

2 21, , , , qα α α −

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Example GF(5)
• q-1=4 nonzero elements {1,2,3,4} 

• All non-zero elements of GF(5) are given by 4 
consecutive powers of 2 or 3.
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order 1

order 2

order 4

order 4



ECE 405/511 Test

• Friday, February 17, 2023 10:30 AM
– constitutes 20% of the final grade 

• Test will cover material up to bounds on codes
• Shortening and extending are included but not 

the Hamming, Gilbert, and Gilbert-Varshamov
bounds.
– Moreira and Farrell Chapter 2 (not Section 2.11)
– Assignments 1 and 2 (Problems 1-4)

• Aids allowed: 1 sheet of paper 8.5 × 11 in2

calculator
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Non-Prime Finite Fields

• Theorem A finite field exists for all prime 
powers - GF(pm)

• How to construct non-prime fields?
• Consider all m-tuples (vectors of length m) 

over GF(p)
– Number of m-tuples is pm

– Addition is just element by element (vector) 
addition modulo p

– How to do multiplication?
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• Consider the elements of GF(pm) as 
polynomials over GF(p) of degree less than m

• Addition is still element by element addition 
modulo p (the polynomial exponents are only 
placeholders)

• But, multiplication can produce a result of 
degree greater than m-1

35
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Solution
• Multiplication can be done modulo a polynomial 

p(x) of degree m, for example with m=2

• If we choose

this is because                                        is not 
irreducible over GF(2)

2( 1)x x x x+ = +

= +2p( ) 1x x
2 2

2 2

( 1)  mod ( 1) 1

( 1)( 1) 1 mod ( 1) 0

x x x x x x

x x x x

+ = + + = +

+ + = + + =

Polynomial has 
degree greater 
than m-1=1

doesn’t 
work

= + = + +2p( ) 1 ( 1)( 1)x x x x



Irreducible Polynomials
• x2+1 has no real roots (no roots in R)
• x2+1 = (x+j)(x-j)                 (roots in C) 

• x2+x+1 has no roots in GF(2)[x]
• x2+x+1 has roots in GF(3)[x]

x2+x+1 = (x+2)(x+2)
• x2+1 has no roots in GF(3)[x]
• x2+1 has roots in GF(2)[x]

x2+1 = (x+1)(x+1)
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• With 

38

+ 1 x x+1 0
1 0 x+1 x 1
x x+1 0 1 x

x+1 x 1 0 x+1
0 1 x x+1 0

= +2p( ) 1x x

• 1 x x+1
1 1 x x+1
x x 1 x+1

x+1 x+1 x+1 0



• With                               irreducible in GF(2) 
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+ 1 x x+1 0
1 0 x+1 x 1
x x+1 0 1 x

x+1 x 1 0 x+1
0 1 x x+1 0

= + +2p( ) 1x x x

• 1 x x+1
1 1 x x+1
x x x+1 1

x+1 x+1 1 x
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• Requirement: an element of order                      
to construct the multiplicative group of GF(q)

• Consider the powers of x modulo an 
irreducible polynomial p(x)
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= −

= −
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1 1

1

1
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which means that p( )q( ) 1

m m

m

p p

p

x

x x

x x

x x x x

x x x
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• The smallest n such that                     is called 
the order of p(x)

• We require an irreducible polynomial p(x) 
such that the smallest positive integer n for 
which p(x) divides xn-1 is

This is called a primitive polynomial
• The order of a primitive polynomial p(x) is   

1mn p= −

1mp −

−p( )| 1nx x
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• Definition The roots of a degree m primitive 
polynomial are primitive elements in GF(pm)

• Let α be a root of p(x), a primitive polynomial 
over GF(2) of degree m

• Then

• Thus are distinct and closed 
under multiplication

2 1

2 1

1 0

or 1

m

m

α

α

−

−

− =

=

2 2 21, , , ,
m

α α α −


(2 1) (2 1)m mi j i j r r rα α α α α α α+ − + −⋅ = = = =
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Example GF(4)=GF(22)

• Take a primitive polynomial of degree 2 over 
GF(2)

p(x) = x2+x+1
Let α be a root of p(x), then 

α2+α+1=0
or 

α2= α+1
• The field elements are 0, 1, α, α2= α+1



44

Power 
representation

Polynomial
representation

2-tuple
representation

α-∞=0 0 ( 0 0 )    0
α0=1 1 ( 1 0 )    1

α α ( 0 1 )    2
α2 1  + α ( 1 1 )    3
α3 1                ( 1 0 )    1

GF(4)=GF(22), p(x) = 1 + x + x2     (p(α) = 1 + α + α2 = 0)

Integer 
representation

3 2 2( 1) 1 1α α α α α α α α α= ⋅ = + = + = + + =Note:
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GF(4) using the Integer Labels

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Additive identity is 0 Multiplicative identity is 1

• 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

2

0 0 1 1

2 3α α

= =

= =
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Power 
representation

Polynomial
representation

3-tuple
representation

0 0 ( 0 0 0 )    0
1 1 ( 1 0 0 )    1
α α ( 0 1 0 )    2
α2 α2 ( 0 0 1 )    4
α3 1 + α ( 1 1 0 )   3
α4 α + α2 ( 0 1 1 )   6
α5 1 + α + α2 ( 1 1 1 )   7
α6 1        + α2 ( 1 0 1 )  5
α7 1 ( 1 0 0 )  1

GF(8) = GF(23), p(x) = 1 + x + x3 ( p(α) = 1 + α + α3= 0 )

Integer 
representation
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More About GF(8) 

• primitive polynomial p(x) = x3+x+1
• Roots of p(x) are α, α2, α4

• (x+α)(x+α2)(x+α4) = (x2+(α+α2)x+α3)(x+α4) 
= (x2+α4x+α3)(x+α4)
= (x3+(α4+α4)x2+(α8+α3)x+α7

= x3+x+1



• The number of primitive elements in GF(8) is             
ø(q-1) = ø(7) = 6

• The roots of a primitive polynomial are 
primitive elements

• Therefore the number of primitive 
polynomials of degree 3 is 6/3 = 2

• What is the other primitive polynomial?
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• If α is a primitive element, so is α-1

• α-1 = α7-1 = α6

• α-2 = α7-2 = α5

• α-4 = α7-4 = α3

• (x+α6)(x+α5)(x+α3) = (x2+(α6+α5)x+α4)(x+α3) 
= (x2+αx+α3)(x+α3)
= (x3+(α+α3)x2+(α4+α4)x+α7

= x3+x2+1
• If p(x) is primitive, so is the reciprocal polynomial

p*(x) = xmp(x-1)



Binary Primitive Polynomials

• The number of binary primitive polynomials of 
degree m is ø(q-1)/m where q = 2m

50

x2+x+1

x3+x+1, x3+x2+1 

x4+x+1, x4+x3+1

x5+x2+1, x5+x3+1, x5+x3+x2+x+1, x5+x4+x3+x2+1, x5+x4+x2+x+1, x5+x4+x3+x+1

x6+x+1,x6+x5+1,x6+x4+x3+x+1,x6+x5+x3+x2+1,x6+x5+x2+x+1,x6+x5+x4+x+1
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Power 
representation

Polynomial
representation

4-tuple
representation

0 0 ( 0 0 0 0 )    0
1 1 ( 1 0 0 0 )    1
α α ( 0 1 0 0 )    2
α2 α2 ( 0 0 1 0 )    4
α3 α3 ( 0 0 0 1 )    8
α4 1+α ( 1 1 0 0 )    3
α5 α+α2 ( 0 1 1 0 )    6
α6 α2+α3 ( 0 0 1 1 )  12
α7 1+α        +α3 ( 1 1 0 1 )  11
α8 1+α2 ( 1 0 1 0 )    5
α9 α        + α3 ( 0 1 0 1 )  10
α10 1+α+ α2 ( 1 1 1 0 )    7
α11 α+ α2+ α3 ( 0 1 1 1 )  14
α12 1+α + α2+ α3 ( 1 1 1 1 )  15
α13 1       + α2+ α3 ( 1 0 1 1 )  13
α14 1              + α3 ( 1 0 0 1 )    9

GF(16)=GF(24), p(x) = 1 + x + x4      (p(α) = 1 + α + α 4 = 0)

α15 = 1

Integer 
representation
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