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ISBN Codes

Essentials of &

Jorge Castifieira Moreira, University of Mar de! Plata, Argentina
Patrick Guy Farrell, tancaster University, UK

Rapid advances in electironic and optica technology have enabled the implementation of pewerful
error-cantrol codes, which are now used in almest the entire ranga of information systems with dose
w0 optimal performance. These codes and decoding methads are required for the detection and
corvection of the errors and erasures which inevitably eccur in digital information during transmissior,
storage and processing because of noise, interterence and other imperfections,

Error-contal coding is a complex, neve' and unfamiliar area, not yel widely understood and appreciated
This boak sets out lo provide a dear desaription of the essentials of the subject, with comprehensive
and up-to-date coverage of the most useful codes and their decoding algorithms. A practical engineering
and infarmation technology emphasis, as well as relevant backgreund material and fundamental
theoretical aspects, provides &n in-depth guide to the essentials of enor-control coding.

© Provides extensive and detailed coverage of Block, Cyclic, BCH, Reed-Soloman,
Convolutional, Turbo, and Low-Density Parity Check (LDPC) codes, together with
relevant aspects of Information Theory

O Presents EXIT chart performance analysis for iteratively decoded error-control techniques
© Heavily illustrated with tables, diagrams, graphs, worked examples, and exercises

Offering & complete overview of error-cantrol coding, this book is an indispensable resource for students,
engineers ard researchers in the areas of telecommunications engineering, communication nztworks,
elecronic engineering, computer science, information systems and technology, digital signal processing
and applied mathematics.

Companion website features slides of figures, algorithm h.

software, updates and detailed solutions to problems

ISBN 0-470-02920-X

e

9780470




The ISBN-10 Code

Most books have an International Standard Book Number which is a 10 digit
codeword produced by the publisher with the following structure

I P m W = €y .. Cqp

language publisher number weighted check sum
0 470 02920 X

10 9
suchthat ) ic, =0 (mod 11) ¢, = _ic, (mod 11)

i=1 i=1

An X is placed in the 10th position if ¢;, = 10



Example

* Essentials of Error Control Coding
ISBN 0-470-02920-X

0 - English
470 - Wiley

9
C,o = Y ic; (mod 11)=120(mod 11)=10
i=1



ISBN Errors

* Single Error Detection
— Letc=c; ... ¢, be the correct codeword and let

r=cy..C 1l Cyy.. CgWithri=¢+x, x#0

10 10
Y ir=>ic,+jx#0 (mod 11)

i=1 i=1

* Transposition Error Detection

— Let ¢, and ¢, be exchanged

er—21c+ j)e, +(i—k)c,

:(k—j)(cj—ck);tO (mod 11) ifk#jandc, #c,



Erasure Example

Received ISBN codeword:
0-470-02e20-X

Compute the parity equation:
1x0+2x443x7+4x0+5x0+6%2+7xe+8x2+9x0+10x10 =0 mod 11

7e+157 =0 mod 11
7e+3=0mod 11
7e=-3mod 11
-3=8mod 11> e=8/7 mod 11 =8x8 mod 11
e=64mod11=9



Inverses Modulo 11

e Additive inverses
0+0=0,1+10=0,2+9=0,3+8=0,4+7=0,5+6=0

— Every element has an additive inverse

* Multiplicative inverses
1=112=6%3=41,5=917=8110=10"
1x1=1,2x6=1,3x4=1,5x9=1, 7x8=1, 10x10=1

— Every nonzero element has a multiplicative inverse



Groups

Definition A group (G, *) is a set of objects G on which a
binary operation ¢ is defined: aeb € G foralla,b € G

The operation must satisfy the following requirements:
(i) Associativity: ae(bec) = (aeb) ec

(ii) Identity: there exists e € G such that for all a € G,
aee =eea=a e: identity element of G

(iii) Inverse: for all a € G, there exists a unique element, al € G
such that aeat=alea=e al:inverseofa

A group is said to be commutative or abelian if it also satisfies
(iv) for alla,b € G, aeb =bea



Niels Henrik Abel (1802-1829)




Examples

e (Z,+) integers with addition
— identity 0, a! = -a

¢ (Z,,%) integers modulo n with addition
— identity 0, at=n-a (01 =0)
— (2t 4lo 1 2 3
0(0 1 2 3
111 2 3 0
212 3 0 1
313 0 1 2

 What about (R,®)? Multiplication with R the real numbers
No, O has no inverse



Integers Modulo p and Multiplication

e ThesetS=1{1,2, ..., p-1} and multiplication
modulo p is a commutative group if and only
if p is prime

* Example: p=5 |1 2 3 4
111 2 3 4
212 4 1 3
313 1 4 2
414 3 2 1




Order of Group Elements

The cardinality of the group is called the order

Definition Let g be an element in (G, e).

letgt=g, g’=geg, g>=ge°gesg, ..

The order of g is the smallest positive integer
ord(g)

such that god(e) js the identity element.



Order of Group Elements

* (Z,,+) integers modulo 4 with addition

— identity O

| +10 1 2 3
—0=0 orderof Ois 1 olo 1 2 3
—1+41+1+1 =0 orderoflis4 1|11 2 3 0
— 242 =0 order of 2 is 2 212 3 0 1
— 3+3+343=0 orderof3is4 313 0 12

* Order of the group elements divides the group
order



Binary Linear Block Codes

Binary linear block codes are also called
Group Codes

Operation is codeword addition

ldentity is the all-zero codeword

The inverse of a codeword ¢ is?
casc+c=0



Rings

Definition A ring (R,+,) is a set of objects R on
which two binary operations + and e are defined.
The following three properties hold:
1. (R,+) is a commutative group under + with
identity 0°
2. The operation e is associative
ae(bec) = (aeb)ec foralla,b,ceR
3. The operation e distributes over +
ae(b+c) = (aeb) + (aec)



Rings

A ring is said to be a commutative ring if
4. The operation e commutes aeb = bea

A ring is said to be a ring with identity if
5. The operation ¢ has an identity element 'T

A ring that satisfies both properties 4 and 5 is said
to be a commutative ring with identity or a
commutative, unitary ring



Commutative, Unitary Ring Z,

w N P O+
w N P OO
O W N P |F
R, O W N[N
N P O W lw
©O O O oo
W N P O R
N O N OfN
R, N W O |lw

w NN - O

Additive identityis0  Multiplicative identity is 1



Ring Examples

¢ (Zo+0)
— additive identity is O
— multiplicative identity is 1
* F,[x] — polynomials with binary coefficients under
polynomial addition and multiplication
— additive identity is O
— multiplicative identity is 1
* nxn square matrices with integer elements
— additive identity is the all-zero matrix O,
— multiplicative identity is the identity matrix | |



Rings

 Let R* =R -{0}

 |f in addition to property 5
(R*,e) is a group, the ring is said to be a
division ring

* |f (R*,®)is a commutative group, the ring is
said to be a field



Fields

Definition A field (F,+,¢) is a set of objects F on
which two binary operations + and e are defined.
F is said to be a field if and only if:
1. (F+) is a commutative group under + with
additive identity 0’
2. (F*,®) is a commutative group under e with
multiplicative identity 1
3. The operation e distributes over +
ae(b+c) = (aeb) + (aec)



Field Examples

Rational numbers (Q,+,°)
Real numbers (R,+,¢)
Complex numbers (C,+,e)

These are infinite fields



Smallest Possible Field

(ZZI+I .)
+10 1 « |0 1
010 1 010 0O
L1 O 110 1




Finite Fields

Finite fields were discovered by Evariste Galois
and thus are also known as Galois fields

The cardinality of the field is called the order
A finite field of order q is denoted GF(q) or F,

Example: GF(3) | |g 1 2 .10 1 2
010 1 2 010 O O
111 2 0 110 1 2
212 0 1 210 2 1




Evariste Galois (1811-1832)

24



Finite Fields

* Theorem The integers S ={0,1,2, ..., p-1} where
p is a prime form the field GF(p) under modulo
p addition and multiplication

* (Z ,+,°) n prime

* Are there any other finite fields?



Properties of Finite Fields

Let B be a nonzero element of GF(g) and let 1
be the multiplicative identity

Definition The order of B is the smallest
positive integer m such that =1

Theorem If t = ord(B) then t | (g-1)

Definition In any finite field, there are one or
more elements of order g-1 called primitive
elements



 Example: GF(5)
S$=1{0,1,2,3,4} with modulo 5 addition and
multiplication

* Order of the elements of the multiplicative group

1'=1

2'=2 2°=4 2°=3 |2*=1|+—2and3are

3'=3 32—4 3P =7 |3%=1 ‘/primitive
elements

4' =4 4% =1

* The number of elements of order t is given by
Euler’s totient function @(t)



Euler’s Totient Function @(t)

* Consider the number of positive integers less than t
which are relatively prime to t

— Example: t =10
— complete set of values {1,2,3,4,5,6,7,8,9}
— Relatively prime values {1,3,7,9}

* The number of elements in the set that are relatively
prime to t is given by Euler’s totient function @(t)

— 9(10) =4



Euler’s Totient Function @(t)

e to compute ¢(t), consider the number of
elements to be excluded

* in general the prime factorization of t is needed
—foraprimep @(p)=p-1
* examples
— 9(37) =36
—9(31) =30
—¢(1) =1



Euler’s Totient Function @(t)

Definition P(t) =t H (1_1j
p!t p
1 1 pprime
¢(6)—¢(2-3)—6(1—5j(1—§j—2
1,5 relatively primeto 6

1 1
#(15) = #(3-5) = 15(1—§j(1—§j =8

1,2,4,7,8,11,13,14 relatively prime to 15
1

1
#(63)=d(3-3-7) = 63(1—§j(1—7j =36



The number of elements in GF(qg) of
order tis @(t)
In GF(q), there are exactly @¢(g-1)
elements of order g-1
A primitive element a is an element of order
g-1and o =1
Therefore, the g-1 elements
g2

2
l,a,a” -, ¢

must be the non-zero elements of GF(q)



Example GF(5)

* g-1=4 nonzero elements {1,2,3,4}
1' =1 order 1
2'=2 2°=4 2°=3 2%*=1 order4
3'=3 3¥=4 3°=2 3*=1 order4
4'=4 4°=1  order2

H1)=1 $2)=1 $(4)=2

e All non-zero elements of GF(5) are given by 4
consecutive powers of 2 or 3.



ECE 405/511 Test

* Friday, February 17, 2023 10:30 AM
— constitutes 20% of the final grade

* Test will cover material up to bounds on codes

* Shortening and extending are included but not

the Hamming, Gilbert, and Gilbert-Varshamov
bounds.

— Moreira and Farrell Chapter 2 (not Section 2.11)
— Assignments 1 and 2 (Problems 1-4)

* Aids allowed: 1 sheet of paper 8.5 x 11 in?
calculator

33



Non-Prime Finite Fields

 Theorem A finite field exists for all prime
powers - GF(p™)

* How to construct non-prime fields?

e Consider all m-tuples (vectors of length m)
over GF(p) (a,,a,,---,a,_,)

’7" " m-1

— Number of m-tuples is p™

— Addition is just element by element (vector)
addition modulo p

— How to do multiplication?



e Consider the elements of GF(p™) as
polynomials over GF(p) of degree less than m

fix)=a,+a,x+..+a__x"*+a__x""

m-—1

e Addition is still element by element addition

modulo p (the polynomial exponents are only
placeholders)

e But, multiplication can produce a result of
degree greater than m-1



Solution

* Multiplication can be done modulo a polynomial
p(x) of degree m, for example with m=2

5 Polynomial has
X(x+1)=x"+x <~ degree greater
than m-1=1

* If we choose p(x)=x"+1
x(x+1)=x"4+x mod (x> +1)=x+1

(x+1)(x+1)=x>+1 mod (x*+1)=0

doesn’t
— work

this is because p(x)=x"+1=(x+1)(x+1) is not
irreducible over GF(2)



Irreducible Polynomials

x%+1 has no real roots (no roots in R)
x*+1 = (x+j)(x-j) j=+/-1 (rootsin C)

x*+x+1 has no roots in GF(2)[x]

x*+x+1 has roots in GF(3)[x]
x2+x+1 = (x+2)(x+2)

x%+1 has no roots in GF(3)[x]

x%+1 has roots in GF(2)[x]
x>+1 = (x+1)(x+1)



« With p(x)=x*+1

+ 1 x xt1 O o 1 X x+1
1 0 x+1 x 1 1 1 X x+1
x | xt1 O 1 X X X 1 x+1

x+1| X 1 0 x+1 x+1 | x+1 x+1 0
0 1 x x+t1 O




* With p(x)=x°+x+1 irreducible in GF(2)

+ 1 x xt1 O o 1 X x+1
1 0 x+1 x 1 1 1 X x+1
x | xt1 O X X X X+1 1

x+1l| X 1 0 x+1 x+1 | x+1 1 X
0 1 x x+t1 O




 Requirement: an element of order g—1=p" -1
to construct the multiplicative group of GF(q)

* Consider the powers of x modulo an
irreducible polynomial p(x)

x°=1
X' =x
x? = x*

p" -1

X mod p(x)=1 or p(x)|x" *-1

which means that p(x)g(x) = x* *—1



* The smallest n such that p(x)|x" —1 is called
the order of p(x)

 We require an irreducible polynomial p(x)
such that the smallest positive integer n for
which p(x) divides x"-1 is

n=p" -1

This is called a primitive polynomial
 The order of a primitive polynomial p(x) is

p" -1



Definition The roots of a degree m primitive
polynomial are primitive elements in GF(p™)

Let o be a root of p(x), a primitive polynomial
over GF(2) of degree m

Then 41 _1=0

ora’ =1

Thus 1,a,a?,---,a® 2 are distinct and closed
under multiplication

ai .aj :ai+j :a(z —1)+r :a(z —l)ar —

r



Example GF(4)=GF(2?)

* Take a primitive polynomial of degree 2 over
GF(2)

p(x) = x%+x+1
Let a be a root of p(x), then
o?+a+1=0
or
a’= o+l
* The field elements are 0, 1, o, a?= a+1



GF(4)=GF(22),p(x)=1+x+x? (p(la)=1+oa +a?=0)

Power Polynomial 2-tuple
representation representation representation Integer
o =0 0 (00) O representation
a=1 1 (10) 1 /
a o (01) 2
o2 1 +a (11) 3
o3 1 (10) 1

Note: o> =’ a=(a+l)a=a’+a=a+1+a =1



GF(4) using the Integer Labels

+ 0 1 2 3 e 01 2 3
0,0 1 2 3 0,0 0 O O
111 0 3 2 110 1 2 3
212 3 0 1 2,0 2 3 1
313 2 10 3/0 3 1 2

Additive identity is O Multiplicative identity is 1

[E

0=0 1=
a=2 a’°=3



GF(8) = GF(23), p(x) =1+ x + x3

(p(a)=1+a+a3=0)

Power
representation

Polynomial
representation

3-tuple
representation
Integer

(OOO) 0 representation
(100) 1

(010) 2/

(001) 4

(110) 3

(011) 6

(111) 7

(101) 5

(100) 1



More About GF(8)

* primitive polynomial p(x) = x3+x+1
* Roots of p(x) are a, a?, a*
o (x+a)(x+a?)(x+a?) = (x2+(a+a?)x+o3)(x+a?)
= (x2+a*x+a3)(x+o?)
= (x3+(a*+ot)x2+(ad+a3)x+a’

= x3+x+1



The number of primitive elements in GF(8) is
?(g-1) =0(7) =6

The roots of a primitive polynomial are
primitive elements

Therefore the number of primitive
polynomials of degree 3is 6/3 =2

What is the other primitive polynomial?



If ais a primitive element, so is a?
ol=q’l=qgb
oa2=q’2=q5
o= 74 = g3
(x+0a®)(x+a)(x+a3) = (x>+(ab+a>)x+a?)(x+a3)
= (x2+ox+0o3) (x+a3)
= (x3+(a+a3)x2+(a+at)x+a’
= x3+x%2+1
If p(x)k is primitive, so is the reciprocal polynomial
p (x) =x"p(x?)



Binary Primitive Polynomials

* The number of binary primitive polynomials of
degree mis ¢(g-1)/m where g = 2™

x2+x+1

X3+x+1, x3+x2+1

xX4x+1, xH+x3+1

X+x2+1, X203+, X3 +x2Hx+1, X+ HX2+ 1, X +xAHx2+x+1, X +xA+x3+x+1

XO4x+1, X04+x2+1 X0+ x4 )3 +x+ 1 X0+ X0 +x3+x2+ 1 X0+ X0 +x2+x+1, X0+ X +x4+x+1



GF(16)=GF(2%), p(x)=1+x+x* (pla)=1+oa+ o *=0)

Power
representation

Polynomial
representation

1+a

o+0t?

o2+a3

1+a +a3
1+a?

a + a3
1+0+ o

a+ a2+ a3
1+o + o2+ o3

1 +o2+ad

1 + a3

al>=1

4-tuple

representation

(0000) O
(1000)
(0100)
(0010)
(0001)
(1100)
(0110)
(0011) 12
(1101) 11
(1010) 5
(0101) 10
(1110) 7
(0111) 14
(1111) 15
(1011) 13
(1001) 9

a W 0 &~ N BB

Integer
representation

/



CCSDSs RECOMMENDED STANDAED FOR TM SYNCHEONIZATION AND CHANNEL CODING

Table F-1: Equivalence of erel:lresn‘rntm:i-:u:ls"’s

B r
o poLY o pOLY

: sro: fo1234567 : sron fi1234567
E RLPHR —agand E RLEHR =23anl
1 z

+ Q0000000 00000000 31 11001101 01111010
0 00000001 01111011 32 00011101 10011110
1 oooooolo 10101111 33 00111010 DOI11111
2 pooooloo 10011001 34 01110100 00011100
3 pooolooo 11111010 35 11101000 01110

4 oooLOCOD 10000110 36 01010111 00100100
5 00100000 11101100 37 10101110 10101101
&  0L000000 11101111 38 11011011 11001010
7 10000000 10001101 33 00110001 00010001
5 10000111 11000000 40 01100010 10101100
5 10001001 00001100 41 11000100 11111011
10 10010101 11101001 4z 00001111 10110111
11 10101101 01111001 43 0OOL11l0 01001010
12 11011101 11111100 44 00111100 00001001
12 00111101 01110010 45 01111000 01111111
14 01111010 11010000 46 11110000 00001000
15 11110100 10010001 47 01100111 01001110
16 01101111 10110100 48 11001110 10101110
17 11011110 00101000 45 00011011 10101000
18 00111011 01000100 50 00110110 01011100
18 01110110 10110011 51 01101100 01100000
20 11101100 11101101 52 11011000 00011110
21 0101111l 11011110 53 00110111 00100111
22 10111110 00101011 54 01101110 11001111
23 11111011 00100110 55 11011100 10000111
24 g11lo001 11111110 56 00111111 11011101
25 11100010 00100001 57 01111110 01001001
26 01000011 00111011 58 11111100 01101011
27 10000110 10111011 53 01111111 00110010
28 10001011 10100011 €0 11111110 11000100
29 10010001 01110000 €1 01111011 10101011
30 10100101 10000011 €2 11110110 00111110

*+From table 4 of reference [£4]. Note: Coefficients of the “Pelynommal m Alpha’ column are histed in
descending powers of o, starting with o’

* The underlined entries correspond to values with exactly one non-zero element and match a row in
the matrix.

CCSDs 131.0-B4 Page F-5 April 2022
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