
ECE 405/511
Error Control Coding

Hamming Codes and
Bounds on Codes



Single Error Correcting Codes
• (3,1,3) code R = 1/3 n-k = 2

• (5,2,3) code R = 2/5 n-k = 3

• (6,3,3) code R = 3/6 n-k = 3
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Hamming Codes
• (7,4,3) Hamming code rate R = 4/7 n-k = 3

[ ]

1 0 0 0 0 1 1
0 1 0 0 1 0 1

  |   
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 
 
 = =
 
 
 

G I P

 
  = =   
  

T

0 1 1 1 1 0 0
  |   1 0 1 1 0 1 0

1 1 0 1 0 0 1
H P I

3



Theorem The minimum distance of a code is equal 
to the minimum number of columns of H which 
sum to zero.
Let h0, h1, …, hn-1 be the column vectors of H.
For any codeword c, cHT can be expressed as
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cHT is a linear combination of columns of H.
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Significance of H
• For a codeword of weight w (w ones), cHT is 

a linear combination of w columns of H.
• Thus there is a one-to-one mapping 

between weight w codewords and linear 
combinations of w columns of H that sum 
to 0.

• The minimum value of w which results in 
cHT=0, i.e. codeword c with weight w,
determines dmin.
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Example
• For the (7,4,3) code, a codeword with weight 

dmin = 3 is given by the first row of G
c = 1000011

• The linear combination of the first and last 2 
columns in H gives

• Thus a minimum of 3 columns (= dmin) are 
required to obtain cHT=0
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Hamming Codes
Definition Let m>1 be an integer and H be an m × (2m-1) matrix 
with columns which are the non-zero distinct vectors from Vm.
The code having H as its parity-check matrix is a binary 
Hamming code of length 2m-1.

The Hamming codes are (2m-1, 2m-1-m, 3) codes with
m = n–k the dimension of H

[ ]1 1 0
1 1 1

1 0 1
 

= ⇒ = 
 

H G

1 0 0 0 0 1 1
0 1 1 1 1 0 0

0 1 0 0 1 0 1
1 0 1 1 0 1 0

0 0 1 0 1 1 0
1 1 0 1 0 0 1

0 0 0 1 1 1 1

 
   
   = ⇒ =   
    

 

H G

7



Binary Hamming Code Parameters
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Coset Leaders for the Hamming Codes
• There are 2n-k = 2m coset leaders or correctable 

error patterns
• The number of single error patterns is n = 2m-1
• Thus the coset leaders are precisely the words 

of weight ≤ 1
• The syndrome of the word 0…010…0 with 1 in 

the jth position and 0 otherwise is the 
transpose of the jth column of H
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Decoding Hamming Codes
For the case that the columns of H are arranged 
in order of increasing binary numbers that 
represent the column numbers 1 to 2m-1

Step 1 Given r compute the syndrome s = rHT

Step 2 If s = 0, then r is assumed to be the 
codeword sent

Step 3 If s ≠ 0, then assuming a single error,
s gives the binary position of the error



Example
For the Hamming code with parity-check matrix

the received word
r = 1101011

has syndrome
s = 110

and therefore the error is in the sixth position.

Hamming codes were first used to deal with errors in 
long-distance telephone calls.
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Optimal Codes
• The (7,4,3) code is an optimal single error 

correcting code for n-k = 3
• An (8,5,3) code does not exist
• The (15,11,3) code is an optimal single error 

correcting code for n-k = 4
• A (16,12,3) code does not exist

• What is the limit on the dimension of a code 
of length n and minimum distance dmin?
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Optimal Codes

dmin = 1  (n, n, 1)      entire vector space

dmin = 2  (n, n-1, 2)   single parity check codes

dmin = 3   n = 2m-1 Hamming codes

what about other values of n?
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Shortening
• For 2m-1 ≤  n < 2m-1, k = n-m, use shortening
• To get a (6,3,3) code, delete one column say        

(1 1 1)T from H for the (7,4,3) code

n-k is constant
so both n and k are changed
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• Next delete (0 1 1)T which gives a (5,2,3) code

• Next delete (1 0 1)T which gives a (4,1,3) code

• The (4,1,4) repetition code has larger dmin,
but a code with n=4 and dmin=3 cannot have 
k>1
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Extending
• The process of deleting a message coordinate from a code is 

called shortening
(n, k) → (n-1, k-1)

• Adding an overall parity check to a code is called extending
(n, k) → (n+1, k)

• Example: 

16

1 0 0 0 0 1 1
0 1 0 0 1 0 1

  
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 
 
 =
 
 
 

G

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1

  
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

 
 
 ′ =
 
 
 

G



17

• If d(C) is odd, d(C') is even
– In this case, d(C') = d(C) + 1

• Example (7,4,3) → (8,4,4)

• The extended Hamming codes are optimal 
dmin = 4 codes



Optimal Codes
dmin = 1  (n, n, 1)      entire vector space

dmin = 2  (n, n-1, 2)   single parity check codes

dmin = 3  Hamming and shortened Hamming codes

dmin = 4 extended  dmin = 3 codes 
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Binary Spheres of Radius t
• Let c be a word of length n. The number of 

binary words (vectors) of length n and distance i
from c is

• For 0 ≤ t ≤ n, the number of words of length n a 
distance at most t from c is
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Hamming or Sphere Packing Bound
• Spheres of radius t around the M codewords

must be disjoint
• The volume of a sphere with radius t is the 

number of vectors in the sphere: Vol(n,t)
• The total volume of the spheres is: M×Vol(n,t)
• This volume must be less then the volume of 

the vector space: M×Vol(n,t) ≤ 2n
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Hamming Bound Example
• Give an upper bound on the size of a code C

of length n=11 and distance d=3

• A code with M=144 is known to exist
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Hamming Bound for Linear Codes
• For a binary linear code M = 2k

2k×Vol(n,t) ≤ 2n

Vol(n,t) ≤ 2n-k

log2(Vol(n,t)) ≤ n-k

2log ( , )Vol n t n k≤ −  

2log ( , )k n Vol n t≤ −   



Hamming Bound Example
• Give an upper bound on the size of a linear

code C of length n=11 and distance d=3

• An (11,7,3) code is known to exist
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Hamming Codes
• Consider an (n,k,d) binary Hamming code
• A sphere of radius 1 has volume

Vol(n,1) = 2m-1 + 1 = 2m

• The number of codewords is 2k

• The total volume of the spheres is
M×Vol(n,t) = 2k×2m = 2k×2n-k = 2n

• The spheres completely fill the n-dimensional 
vector space Vn
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Hamming Code Example
• (7,4,3) Hamming code
• Volume of each sphere is Vol(7,1)=1+7=8=23

• Number of spheres (codewords) is 2k = 16
• Volume of all spheres is

2k×23 = 24×23  = 27 = 2n

codeword 1 bit errors



Perfect Codes
• A binary linear code is called perfect if it 

meets the Hamming bound with equality
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Perfect Codes
• Binary Hamming codes t=1

• Odd binary repetition codes (2m+1,1,2m+1)
t=m

sphere volume =

• (n,n,1) codes (all vectors in Vn are codewords)
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Marcel Golay (1902-1989)
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Blaise Pascal (1623-1662)
• French religious philosopher, 

writer, physicist, inventor, and 
mathematician

• First mechanical calculator
(1642-1644) 

• Developed the modern theory of 
probability with Pierre de Fermat 
(1654)

• Pascal’s triangle was discovered 
by Chinese mathematician 
Yanghui, 500 years before Pascal 
and in the Eleventh century by 
Persian mathematician and poet    
Omar Khayam
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Pascal’s Triangle

30

1
1     1

1     2     1
1     3     3     1

1     4     6     4     1
1     5    10    10     5     1

1     6    15    20    15     6     1
1     7    21    35    35    21     7     1

1     8    28    56    70    56    28     8     1
1     9    36    84   126   126    84    36     9     1

1    10    45   120   210   252   210   120    45    10     1
1    11    55   165   330   462   462   330   165    55    11     1

1    12    66   220   495   792   924   792   495   220    66    12     1
1    13    78   286   715  1287  1716  1716  1287   715   286    78    13     1

1    14    91   364  1001  2002  3003  3432  3003  2002  1001   364    91    14     1
1    15   105   455  1365  3003  5005  6435  6435  5005  3003  1365   455   105    15     1



Rows 87 to 94
1 87 3741 105995 2225895 36949857 504981379

1 88 3828 109736 2331890 39175752 541931236

1 89 3916 113564 2441626 41507642 581106988

1 90 4005 117480 2555190 43949268 622614630

1 91 4095 121485 2672670 46504458 666563898

1 92 4186 125580 2794155 49177128 713068356

1 93 4278 129766 2919735 51971283 762245484

1 94 4371 134044 3049501 54891018 814216767
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Rows 19 to 26
1              19              171           969          3876            11628           27132      50388

1              20              190            1140        4845            15504           38760       77520 

1              21              210            1330            5985            20349           54264          116280  

1              22              231            1540            7315            26334           74613          170544 

1              23              253            1771          8855            33649          100947     245157

1              24              276            2024            10626           42504          134596          346104

1              25              300            2300            12650           53130          177100          480700

1              26              325            2600            14950 65780          230230          657800
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Golay Codes

• Marcel Golay considered the problem of 
perfect codes in 1949

• He found three more possible solutions to 
equality for the Hamming bound
– q = 2, n = 23, t = 3
– q = 2, n = 90, t = 2
– q = 3, n = 11, t = 2

• Only the first and third codes exist
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• There exists a code of length n, 
distance d, and M codewords with

• Note that the constructive proof does 
not result in a linear code

Gilbert Bound

( )-1

0

2 2
( , 1)

n n

d n
jj

M
Vol n d

=

≥ =
−∑

35

Edgar Nelson Gilbert
1923-2013



Bound Comparison
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• The Gilbert bound can be improved by considering 
linear codes
– There exists a binary linear code of length n, dimension 

k and minimum distance d if

– Proof: construct a parity check matrix based on the 
condition that any combination of up to d-1 columns of 
H is linearly independent

– Thus a binary (n,k,d) code exists with

Gilbert-Varshamov Bound
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Asymptotic Bounds
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Relative minimum distance: δ = d/n

Maximum possible code rate for fixed δ as n→∞: a(δ)



Hamming Bound for Linear Codes
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• Hamming Bound

• Gilbert-Varshamov Bound

Bounds on Binary Linear Codes
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