ECE 405/511
Error Control Coding

Hamming Codes and
Bounds on Codes



Single Error Correcting Codes

* (3,1,3) code R=1/3 n-k =2
G=[IIP]=[1 1 1]
* (5,2,3) code R=2/5 n-k =3
1 01 1 O
G=|I|P] { }
0O 1 1 0 1
* (6,3,3) code R=3/6 n-k =3
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Hamming Codes

4/7 n-k =3

e (7,4,3) Homming code rate R

1 00 0011
0100101
001011020
0 001111

G = [IIP] =
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Theorem The minimum distance of a code is equal

to the minimum number of columns of H which
sum to zero.

Let h,, h,, ..., h, be the column vectors of H.
For any codeword ¢, cH' can be expressed as

h,

T __ 1 _ _
cH' =(cy,CppenCos)| . |=Cho+Ch +otc, b, =0

n-1

T
_hn—l _

cH' is a linear combination of columns of H.



Significance of H

* For a codeword of weight w (w ones), cH' is
a linear combination of w columns of H.

* Thus there is a one-to-one mapping
between weight w codewords and linear
combinations of w columns of H that sum

to 0.

* The minimum value of w which results in
cH™=0, i.e. codeword c with weight w,
determines d, . .



Example

* For the (7,4,3) code, a codeword with weight
d. .= 3is given by the first row of G
c=1000011
* The linear combination of the first and last 2
columns in H gives

O 0 O
1+1+0=0
1 0 1 O

* Thus a minimum of 3 columns (=d ) are
required to obtain cH'=0



Hamming Codes

Definition Let m>1 be an integer and H be an m x (2™-1) matrix
with columns which are the non-zero distinct vectors from V.
The code having H as its parity-check matrix is a binary
Hamming code of length 2™m-1.

110
H:{ }:G:[l 1 1]
0 1
H=(1 0
11

10 1
0
0|=>G=
1
The Hamming codes are (2-1, 2™-1-m, 3) codes with
m = n—k the dimension of H
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Binary Hamming Code Parameters

C: n = 2" —1
k = 2" —-1—-m
d = 3

C*: n = 2"-1
k = m



Coset Leaders for the Hamming Codes

There are 2"k = 2Mm coset leaders or correctable
error patterns

The number of single error patterns is n = 2M-1

Thus the coset leaders are precisely the words
of weight <1

The syndrome of the word 0...010...0 with 1 in
the jth position and 0 otherwise is the
transpose of the jth column of H



Decoding Hamming Codes

For the case that the columns of H are arranged
in order of increasing binary numbers that
represent the column numbers 1 to 27-1

Step 1 Given r compute the syndrome s =rH'

Step 2 If s =0, then r is assumed to be the
codeword sent

Step 3 If s #0, then assuming a single error,
s gives the binary position of the error



Example

For the Hamming code with parity-check matrix

0 0 01 1 1 1]
H=|0 1 1 0 0 1 1
101010 1)

the received word

r=1101011
has syndrome

s =110
and therefore the error is in the sixth position.

Hamming codes were first used to deal with errors in
long-distance telephone calls.



Optimal Codes

The (7,4,3) code is an optimal single error
correcting code for n-k =3

An (8,5,3) code does not exist

The (15,11,3) code is an optimal single error
correcting code forn-k=4

A (16,12,3) code does not exist

What is the limit on the dimension of a code
of length n and minimum distance d_ . ?



Optimal Codes

d. =1 (nn, 1) entirevector space
d.. =2 (n n-1,2) single parity check codes
d..=3 n=2M-1 Hamming codes

m

what about other values of n?



Shortening

 For2m1< n<2m-1, k=n-m, use shortening
* To get a (6,3,3) code, delete one column say

(11 1) from H for the (7,4,3) code
i 111 | .
10 : (1) 0 n-k is constant
R=1110 0 0 so both n and k are changed
011100 1
(1 0110 0] (1. 0 01 1 0]
H=|11 0010 G=/010011
01100 1 00110 1




* Next delete (01 1)" which gives a (5,2,3) code

111 0 O]

, 2 {10110}
H=(1 0010 G =

0 1101

01001
* Next delete (1 0 1)" which gives a (4,1,3) code

(1 1 0 0

H=|1010 G=[111 0]
000 1

* The (4,1,4) repetition code has largerd._ .,
but a code with n=4 and d, =3 cannot have
k>1



Extending

 The process of deleting a message coordinate from a code is
called shortening

(n, k) — (n-1, k-1)

 Adding an overall parity check to a code is called extending
(n, k) — (n+1, k)

 Example:
(1 0 000 1 1 1 0 00 0 1 1 1
G01001016,01001011
" l0010110 100101101
0001111 00011110




e |f d(C)is odd, d(C') is even
— In this case, d(C') = d(C) + 1
 Example (7,4,3) — (8,4,4)

* The extended Hamming codes are optimal
d. . =4 codes

m



Optimal Codes
d. =1 (nn, 1) entirevector space
d...=2 (n, n-1,2) single parity check codes
d.. =3 Hamming and shortened Hamming codes

m

d..=4 extended d. . =3 codes



Binary Spheres of Radius t

* Let ¢ be a word of length n. The number of
binary words (vectors) of length n and distance i

from cis
ny nl
i) i(n-i)!

* For 0 £t <n, the number of words of length n a
distance at most t from c is

(gj+£,17j+(,27j+...+(:j=|/0/(f7,t)




Hamming or Sphere Packing Bound

Spheres of radius t around the M codewords
must be disjoint

The volume of a sphere with radius t is the
number of vectors in the sphere: Vol(n,t)

The total volume of the spheres is: M X Vol(n,t)

This volume must be less then the volume of
the vector space: M X Vol(n,t) < 2"

2 Gty
Vo/(n,t)




Hamming Bound Example

* Give an upper bound on the size of a code C

of length n=11 and distance d=3

211

11
0

M

11
1

)

2048

12

=170

e A code with M=144 is known to exist



Hamming Bound for Linear Codes

* For a binary linear code M = 2k
2KX Vol(n,t) < 2"
Vol(n,t) < 2"k
log,(Vol(n,t)) < n-k
log, Vol(n, t)|<n-k

k <n-|log,Vol(n,t)



Hamming Bound Example

* Give an upper bound on the size of a linear
code C of length n=11 and distance d=3

k<n-—

8

11
0

M

11
1

)

=11-|3.585|=7

 An (11,7,3) code is known to exist



Hamming Codes

Consider an (n,k,d) binary Hamming code
A sphere of radius 1 has volume
Vol(n,1) =2M-1+1=2"
The number of codewords is 2k
The total volume of the spheres is
M X Vol(n,t) = 2kX2m = 2k X 2n-k = 2n

The spheres completely fill the n-dimensional
vector space V,



Hamming Code Example

(7,4,3) Homming code

Volume of each sphere is Vol(7,1)=/‘1+7\=8=23

codeword 1 bit errors

Number of spheres (codewords) is 2k= 16
Volume of all spheres is
2kX23=24X23 =27=2n



Perfect Codes

* A binary linear code is called perfect if it
meets the Hamming bound with equality

2/(
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Perfect Codes

* Binary Hamming codes t=1

n n m m n—k
Vol(n,1) = + =1+2"-1=2"=2
0 1

* Odd binary repetition codes (2m+1,1,2m+1)
t=m

m (2m+1 B
spherevolume=2( I. j=22 =2""

i=0

* (n,n,1) codes (all vectors in V, are codewords)

t=0 Vol(n,0)=1 2"x1=2"



Marcel Golay (1902-1989)




Blaise Pascal (1623-1662)

French religious philosopher,
writer, physicist, inventor, and
mathematician

First mechanical calculator
(1642-1644)

Developed the modern theory of
probability with Pierre de Fermat
(1654)

Pascal’s triangle was discovered
by Chinese mathematician
Yanghui, 500 years before Pascal
and in the Eleventh century by
Persian mathematician and poet
Omar Khayam

29



Pascal’s Triangle

1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1



87

88

89

90

91

92

93

94

3741

3828

3916

4005

4095

4186

4278

4371

Rows 87 to 94

105995

109736

113564

117480

121485

125580

129766

134044

2225895

2331890

2441626

2555190

2672670

2794155

2919735

3049501

36949857

39175752

41507642

43949268

46504458

49177128

51971283

54891018

504981379

541931236

581106988

622614630

666563898

713068356

762245484

814216767



19

20

21

22

23

24

25

26

171

190

210

231

253

276

300

325

Rows 19 to 26

969

1140

1330

1540

1771

2024

2300

2600

3876

4845

5985

7315

8855

10626

12650

14950

11628

15504

20349

26334

33649

42504

53130

65780

27132

38760

54264

74613

100947

134596

177100

230230

50388

77520

116280

170544

245157

346104

480700

657800



Golay Codes

* Marcel Golay considered the problem of
perfect codes in 1949

* He found three more possible solutions to
equality for the Hamming bound
—qg=2,n=23,t=3
—q=2,n=90,t=2
—qg=3,n=11,t=2

* Only the first and third codes exist

33
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Notes on Digital Coding*

The consideration of message coding asa
means for approaching the theoretical capac-
ity of a communication channel, while reduc-
ing the probability of errors, has suggested
the interesting number theoretical problem
of devising lossless binary (or other) coding
schemes serving to insure the reception of a
correct, but reduced, message when an up-
per limit to the number of transmission er-
rors is postulated.

An example of lossless binary coding is
treated by Shannon! who considers the case
of blocks of seven symhbols, one or none of
which can be in error. The solution of this
case can be extended to blocksof 2% — 1-binary
symbols, and, more generally, when coding
schemes based on the prime number $ are
employed, to blocks of ¢*—1/p—1 symbols
which are transmitted, and received with
complete equivecation of one or no symbal,
each block comprising # redundant symbols
designed to remove the equivocation. When
encoding the message, the n redundant sym-
bols %, are determined in terms of the mes-
sage symbols ¥ from the congruent rela-
tions

=(p"—1)] p=1}—=

E.=X.+ wt ¥ = 0 (mod p).

k=l

In the decoding process, the E's are recalcu-
lated with the received symbols, and their
ensemble forms a number on the base
which determines univocally the mistrans-
mitted symbol and its correction.

In passing from # to #-+1, the matrix
with n rows and $*—=1/p—1 columns formed

* Reeeived by the Institute, February 23, 1949,

1 C. E. Shannon, *A mathematical theory of com-
munication,” Bell Sys. Tech. Jowr., val. 27, p. 418;
July, 1948,

with the coefficients of the A's and ¥"sin the
expression above is repeated $ times hori-
zontally, while an (n+41) st row added, con-
sisting of p*—1/p—1 zeroes, followed by as
many one's etc. up to p —1; an added column
of # zeroes with a one for the lowest term
completes the new matrix for n+41,

If we except the trivial case of blocks of
2541 binary symbols, of which any group
comprising up to S symbols can be received
in error which equal probability, it does not
appear that a search for lossless coding
schemes, in which the number of errors is
limited but larger than one, can be sys-
tematized so as to yield a family of solutions.
A necessary but not sufficient condition for
the existence of such a lossless coding scheme
in the binary system is the existence of three
or more first numbers of a line of Pascal's tri-
angle which add up to an exact power of 2. A
limited search has revealed two such cases;
namely, that of the first three numbers of the
90th line, which add up to 2'* and that of the

first four numbers of the 23rd line, which add .

up to 21, The first case does not correspond
to a lossless coding scheme, for, were such a
scheme to exist, we could designate by r the
number of E. ensembles corresponding to
one error and having an odd number of 1's
and by 90—r the remaining (even) ensem-
bles. The odd ensembles corresponding to

two transmission errors could be formed hy
re-entering term by term all the conbina-
tions of one even and one odd ensemble cor-
responding each to one error, and would
number r{90—r). We should have r+4
r(90—r)=2", which is impassible for inte-
gral values of r.

On the other side, the second case can be
coded so as to vield 12 sure symbaols, and the
@mp matrix of this case is given in Table L.
A second matrix is also given, which is that
of the only other lossless coding scheme en-
countered (in addition to the general class
mentioned above) in which blocks of eleven
ternary symbols are transmitted with no
more than 2 errors, and out of which six sure
symbols can be obtained.

It must be mentioned that the use of the
ternary coding scheme just mentioned will
always result in a power loss, whereas the
coding scheme for 23 binary symbols and a
maximum of three transmission errors yields
a power saving of 14 db for vanishing prob-
abilities of errors. The saving realized with
the coding scheme for blocks of 2* =1 binary
symbols approaches 3 db for increasing #'s
and decreasing probabilities of error, but a
loss 1s always encountered when n =3.

MarceL J. E. GoLay
Signal Corps Engineering Laboratories
Fort Monmouth, N. ]

TABLE I

i Fo Vo Vi ¥Fi Fiu ¥Yi ¥o Fo Fuu ¥u ¥Fu Yo Kh- ¥y ¥y Fa ¥,
X, | i UG e ARG el ) e e [ R | X 1 b e e Rt o |
Xy 1 ¢ 1 @9-1 1 ¢ L 1 o0 09 1 X 1 T T i, L )
X T | TSRS ST R | e R R WRES M | L X IR T G e MRt
- o P Wi A L s B el i T TR | R o TR BT R L
X : el | RSR E SIS O NAeR | TEREE M T SR | X - e e
X R SRR TR AR - RN T oo sl Rl (R Sty |
»of o R T N S (i TR T IR i TR I
2 o liepees " L | R - BR 1R TEES TRt T T MR T
o i (S Loion W PR LT R, TR BT TR S R |
Xu al 1 1 1 o 0 o o 1 1 0 1
Xa 0 1 Rl St 1 e e | 1 TN |
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Gilbert Bound

* There exists a code of length n,
distance d, and M codewords with

M > 2 — 2 Edgar Nelson Gilbert
Zd‘l ( n ) Vol(n,d —1) 1923-2013
j=0\/

* Note that the constructive proof does
not result in a linear code
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CodeRedundancy (r=n-k)

Lh Ov ~J 0O

Bound Comparison

Gilbert Bound

Hamming Bound

| I J | I | | | I J

100 200 300 400 500 600 700 800 900 1000
Code Word Length (n)

Figure 4-3. A comparison of the Hamming and Gilbert bounds on required redun-
dancy for binary single-error-correcting codes
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Gilbert-Varshamov Bound

 The Gilbert bound can be improved by considering
linear codes

— There exists a binary linear code of length n, dimension
k and minimum distance d if

(”'1)+(”1'1)+...+(Zj):Vo/(n—l,d—2)<2”'k

0

— Proof: construct a parity check matrix based on the
condition that any combination of up to d-1 columns of
H is linearly independent

— Thus a binary (n,k,d) code exists with

k>n-— Llogz (Zjﬁ)( i ))J -



Asymptotic Bounds

Relative minimum distance: 6 = d/n
Maximum possible code rate for fixed 6 as n—o0: a(6)

0.8

0.6
McEliece-Rodemich-

Rumsey-Welch Bound

a(d)

04

021 Gilbert-Varsharmov
Bound

I |
0.2 0.3
d

0.5

|
0.4

0.1

Figure 4-4. Upper and lower bounds for asymptotic binary code performance
38



Hamming Bound for Linear Codes




Bounds on Binary Linear Codes

* Hamming Bound

cer-Jouf (7))

e Gilbert-Varshamov Bound

k>n- Iog{di(”jtl)] -1

.

j:
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