ECE 405/511 Error Control Coding

Reed-Solomon Codes

Irving Reed (1923-2012) Gus Solomon (1930-1996)

Polynomial Codes Over Certain Finite Fields, 1960

Reed-Solomon Codes

- Nonbinary BCH codes
- Consider GF(q) ($q=p^r$, p prime)
- To construct a t error correcting nonbinary BCH code with symbols from GF(q), use the same technique as for binary BCH codes.
- Roots of g(x) are in GF(q^m), n | q^m-1
 n-k ≤ 2mt product of at most 2t minimal polynomials of degree m
 d ≥ 2t+1

- Choose 2t consecutive powers of α, an element of order n in GF(q^m), as roots of g(x).
- For RS codes, m=1 and α is a primitive element in GF(q), then

n = q-1 $n-k \le 2t \longrightarrow n-k = 2t$ $d \ge 2t+1 \longrightarrow d \ge n-k+1$

Singleton Bound

• The minimum distance for an (*n*,*k*) linear code is bounded by

 $d \le n - k + 1$

For an RS code d ≥ n-k+1, so d = n-k+1 and all RS codes meet the Singleton bound with equality

- they are optimal (n,k,n-k+1) codes, n = q-1

• Codes that meet the Singleton bound are called Maximum Distance Separable (MDS)

Reed-Solomon Codes – Minimal Polynomials

- Coefficients of g(x) are in GF(q), roots of g(x) are also in GF(q).
- Minimal polynomial of α is x- α . There are no conjugates since $\alpha^q = \alpha^{q-1}\alpha = \alpha$.

• BCH:
$$M_1(x) = (x - \alpha)(x - \alpha^q)(x - \alpha^{q^2})\cdots$$

RS: $M_1(x) = (x - \alpha)$

• RS codes are a subclass of BCH codes with *m* = 1.

Example *t*=2 GF(8)

• n = 8 - 1 = 7 Form GF(8) from $x^3 + x + 1$

α^{0}	1	$g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)(x - $	¹)		
α^{1}		$= x^4 + \alpha^3 x^3 + x^2 + \alpha x + \alpha^3$			
	α^2				
α^{3}	α + 1	$1 \alpha \alpha^2 \alpha^3 \alpha^4 \alpha^5 \alpha^6$			
α^4	$\alpha^2 + \alpha$	$\mathbf{H} = \begin{bmatrix} 1 \ \alpha^2 \alpha^4 \alpha^6 \alpha \ \alpha^3 \alpha^5 \end{bmatrix}$			
α^{5}	$\alpha^2 + \alpha + 1$	$1 \alpha^{3} \alpha^{6} \alpha^{2} \alpha^{5} \alpha \alpha^{4}$			
$lpha^{6}$	α^2 + 1	$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 \alpha^3 \alpha^4 \alpha^5 \alpha^6 \\ 1 & \alpha^2 \alpha^4 \alpha^6 \alpha & \alpha^3 \alpha^5 \\ 1 & \alpha^3 \alpha^6 \alpha^2 \alpha^5 \alpha & \alpha^4 \\ 1 & \alpha^4 \alpha^8 \alpha^5 \alpha^2 \alpha^6 \alpha^3 \end{bmatrix}$			

• (7,3,5) RS code

Comparison: RS vs Binary BCH

• RS: $n = q^{m} - 1$ q = 8, m = 1 (7,3,5)

$$g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)$$

- Binary BCH: $n = q^m 1$ q = 2, m = 3 (7,1,7) $g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)(x - \alpha^6)(x - \alpha^5)$
- RS code: $q^k = 8^3 = 512$ codewords
- Binary BCH code: $q^k = 2^1 = 2$ codewords

Comparison: RS vs Binary BCH

- Each symbol can be represented as 3 bits, a codeword has n = 7 symbols = 21 bits and k = 3 data symbols = 9 bits.
- The (7,3,5) RS code can be considered as a (21,9) binary code.
- *t* = 2 symbol error correction
 - since 5 bit errors may cover 3 symbols, corrects any burst error of 4 bits or less.

Example t=3 GF(64)

- *n* = 64-1 = 63
- α a root of the primitive polynomial $x^{6}+x+1$ $g(x) = (x - \alpha)(x - \alpha^{2})(x - \alpha^{3})(x - \alpha^{4})(x - \alpha^{5})(x - \alpha^{6})$ $= x^{6} + \alpha^{59}x^{5} + \alpha^{48}x^{4} + \alpha^{43}x^{3} + \alpha^{55}x^{2} + \alpha^{10}x + \alpha^{21}$
- (63,57,7) RS code
- 64⁵⁷ = 8.96x10¹⁰² codewords
- 64⁶³ = 6.16x10¹¹³ vectors
- sphere volume is 9.94x10⁹ so the spheres fill about 14.5% of the vector space

GF(7) Example

- RS codes can be constructed over any finite field
- Consider *q* = 7 so that *n* = *q*-1 = 6, and *t* = 2
- First find a primitive element in GF(7) $\phi(6) = 2$ so two primitive elements $3^{1}=3$ $3^{2}=2$ $3^{3}=6$ $3^{4}=4$ $3^{5}=5$ $3^{6}=1 \rightarrow 3$ is primitive b=1 $g(x) = (x-3^{1})(x-3^{2})(x-3^{3})(x-3^{4})$ = (x-3)(x-2)(x-6)(x-4) (6,2,5) RS code b=2 $g(x) = (x-3^{2})(x-3^{3})(x-3^{4})(x-3^{5})$ = (x-2)(x-6)(x-4)(x-5) (6,2,5) RS code

• One can pick any group of consecutive roots

$$g(x) = (x-3^1)(x-3^2)(x-3^3)$$

 $= (x-3)(x-2)(x-6)$ (6,3,4) RS code
 $= x^3+3x^2+x+6$
 $g(x) = (x-3^2)(x-3^3)(x-3^4)$
 $= (x-2)(x-6)(x-4)$ (6,3,4) RS code
 $= x^3+2x^2+2x+1 = g^*(x)$ self reciprocal

$$g(x) = (x-3^{1})(x-3^{2})(x-3^{3})(x-3^{4})(x-3^{5})$$

= (x-3)(x-2)(x-6)(x-4)(x-5) (6,1,6) RS code
= x⁵+x⁴+x³+x²+x+1 = g*(x) self reciprocal

Properties of RS Codes

- The dual code of an RS code is also MDS
 - C (6,2,5) code over GF(7)
 - $-C^{\perp}$ (6,4,3) code over GF(7)
- Since RS codes are cyclic codes, they can always be put in systematic form x^{n-k}m(x)+d(x)
- A shortened RS codes is MDS

 $(n,k,n-k+1) \rightarrow (n-u,k-u,n-k+1) (6,4,3) \rightarrow (5,3,3)$

• A punctured RS code is MDS

 $(n,k,n-k+1) \rightarrow (n-u,k,n-k-u+1) (6,4,3) \rightarrow (5,4,2)$

Example: Bar Codes over GF(64)

Extended RS Codes

- An (n,k) RS code over GF(q) with n = q-1 can be extended twice to a (q+1,k) MDS code
- There is a technique for constructing such codes which are cyclic
- A very few RS codes can be triply extended to obtain an MDS code with n = q+2

$$-k = 3 \text{ or } n - k = 3 \text{ and } q = 2^m$$

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 0 & 0 \\ 1 & \alpha & \cdots & \alpha^{q-2} & 0 & 1 & 0 \\ 1 & \alpha^2 & \cdots & \alpha^{2(q-2)} & 0 & 0 & 1 \end{bmatrix}$$

Extended RS Codes

• The (6,3,4) RS code over GF(4) has generator matrix

$$\mathbf{G} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \alpha & \alpha^2 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \alpha^2 & \alpha & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Example: NASA/JPL Code

- *q* = 256, *n* = *q*-1 = 255
- (255,223,33) RS code over GF(2⁸)

 $\frac{\text{\# of codewords} \times \text{volume}}{\text{size of vector space}} = 2.78 \times 10^{-14}$

Example: Compact Discs

- 44.1 kHz sample rate
- 16 bit stereo samples
- 2×16×44100=1.41 Mbps
- Original CD capacity: 74 minutes of audio or 650 MB of data
- Data stored on a spiral, not concentric circles
 - length 5.38 km
 - velocity 1.2-1.4 m/s

Kees Schouhamer Immink (1946-)

Sources of Error

- 1) Defects caused during disc production
 - inferior disc pits and bubbles during disc formation
 - defects in the aluminum film and a poor reflective index
- 2) Defects caused in handling
 - fingerprints and scratches
 - dust
- 3) Variations and disturbances during playback
 - disturbance of the servo mechanism
- 4) Jitter time variation of the signal
- 5) Interference

(1)-(3) cause burst errors(4) and (5) cause random errors

Causes of Disc Errors

- Fingerprints cause 43% of errors
- General wear and tear causes 25% of errors
- Player-related issues cause 15% of errors
- User-related issues cause 12% of errors
- Manufacturing defects cause 2% of errors

Causes of Disc Errors

Error Correction

• Reed-Solomon code

- (255,251,5) code over GF(2⁸)

- Shortened to a (28,24,5) outer code
- These codewords are interleaved to reduce the effects of burst errors
- (32,28,5) inner code
- Overall code rate is

$$\frac{24}{28} \times \frac{28}{32} = 0.75$$

CIRC Encoder

• CIRC – Cross Interleaved Reed-Solomon Code

- Interleaving disperses the codewords so they are not contiguous on the disc
- mitigates long burst errors associated with scratches and fingerprints
 - Maximum correctable burst error length
 - 3874 bits ≈ 2.5 mm

Encoding Algorithm

- Samples are split into two 8 bit symbols
- Six samples from each channel are grouped to obtain 24 symbols
- Four outer RS code parity symbols are generated to give a frame of 28 symbols
- Symbols are interleaved over 109 frames
- Four inner RS parity symbols are generated to give 32 symbols
- These frames are also interleaved

Control and Error Correction

- Skips are caused by physical disturbances
 - Wait for disturbance to subside
 - Retry
- Read errors caused by disc/servo problems
 - Detect error
 - Choose location for retry
 - Retry, if it fails interpolate if applicable

Interpolation

- Used when decoding fails
- Fill missing audio data using adjacent data
 time or channel
- Only valid for audio CDs

Decoding Reed-Solomon Codes

- c(x) is the transmitted codeword
- 2t consecutive powers of α are roots $c(\alpha^{b}) = c(\alpha^{b+1}) = \cdots = c(\alpha^{b+2t-1}) = 0$
- The received word is r(x) = c(x)+e(x)
- The error polynomial is

$$e(x) = e_0 + e_1 x + \dots + e_{n-1} x^{n-1}$$

• The syndromes are

$$S_{j} = r(\alpha^{j}) = e(\alpha^{j}) = \sum_{k=0}^{n-1} e_{k}(\alpha^{j})^{k}, \quad j = 1, \cdots, 2t$$

Decoding Reed-Solomon Codes

• Suppose there are *v* errors in locations

$$i_1, i_2, \cdots, i_v$$

• The syndromes can be expressed in terms of these error locations

$$S_{j} = \sum_{l=1}^{v} e_{i_{l}} (\alpha^{j})^{i_{l}} = \sum_{l=1}^{v} e_{i_{l}} (\alpha^{i_{l}})^{j} = \sum_{l=1}^{v} e_{i_{l}} X_{l}^{j}, \quad j = 1, \cdots, 2t$$

- The X_I are the error locators
- The 2*t* syndrome equations can be expanded in terms of the *v* unknown error locations

GF(8) formed from x^3+x^2+1

Power of α	Polynomial in α	Vector
-∞-	0	000
0	1	100
1	α	010
2	$lpha^2$	001
3	α ² +1	101
4	$\alpha^2 + \alpha + 1$	111
5	α+1	110
6	$\alpha^2 + \alpha$	011

2t Equations in 2v Unknowns

The Error Locator Polynomial

The error locator polynomial Λ(x) has as its roots the inverses of the v error locators {X_i}

$$\Lambda(\mathbf{x}) = \prod_{l=1}^{\nu} (1 - X_l \mathbf{x}) = \Lambda_{\nu} \mathbf{x}^{\nu} + \dots + \Lambda_1 \mathbf{x} + \Lambda_0$$

• The roots of $\Lambda(x)$ are then $X_1^{-1}, X_2^{-1}, ..., X_v^{-1}$

$$\Lambda(X_{l}^{-1}) = \Lambda_{v}X_{l}^{-v} + \dots + \Lambda_{1}X_{l}^{-1} + \Lambda_{0} = 0$$
$$e_{i_{l}}X_{l}^{j}(\Lambda_{v}X_{l}^{-v} + \dots + \Lambda_{1}X_{l}^{-1} + \Lambda_{0}) = 0$$

$$\Lambda(X_{l}^{-1}) = \Lambda_{v}X_{l}^{-v} + \dots + \Lambda_{1}X_{l}^{-1} + \Lambda_{0} = 0$$

$$e_{i_{l}}X_{l}^{j}\left(\Lambda_{v}X_{l}^{-v} + \dots + \Lambda_{1}X_{l}^{-1} + \Lambda_{0}\right) = 0$$

$$e_{i_{l}}\left(\Lambda_{v}X_{l}^{j-v} + \dots + \Lambda_{1}X_{l}^{j-1} + \Lambda_{0}X_{l}^{j}\right) = 0$$

$$\sum_{l=1}^{v}e_{i_{l}}\left(\Lambda_{v}X_{l}^{j-v} + \dots + \Lambda_{1}X_{l}^{j-1} + \Lambda_{0}X_{l}^{j}\right)$$

 $\begin{bmatrix} S_{1} & S_{2} & S_{3} & S_{4} & \cdots & S_{t-1} & S_{t} \\ S_{2} & S_{3} & S_{4} & S_{5} & \cdots & S_{t} & S_{t+1} \\ S_{3} & S_{4} & S_{5} & S_{6} & \cdots & S_{t+1} & S_{t+2} \\ S_{4} & S_{5} & S_{6} & S_{7} & \cdots & S_{t+2} & S_{t+3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ S_{t-1} & S_{t} & S_{t+1} & S_{t+2} & S_{t+3} & \cdots & S_{2t-3} & S_{2t-2} \\ S_{t} & S_{t+1} & S_{t+2} & S_{t+3} & \cdots & S_{2t-2} & S_{2t-1} \end{bmatrix} \begin{bmatrix} \Lambda_{t} \\ \Lambda_{t-1} \\ \Lambda_{t-1} \\ \Lambda_{t-2} \\ \Lambda_{t-3} \\ \vdots \\ \Lambda_{2} \\ \Lambda_{1} \end{bmatrix} = \begin{bmatrix} -S_{t+1} \\ -S_{t+3} \\ -S_{t+4} \\ \vdots \\ -S_{2t-1} \\ -S_{2t} \end{bmatrix}$

 $A'\Lambda = S$

Figure 9-3. LFSR Interpretation of Eq. (9-27)

- 1. Compute the syndromes S_1 , S_2 , ..., S_{2t} for the received word.
- 2. Set k = 0, $\Lambda^{(0)}(x) = 1$, L = 0, T(x) = x
- 3. Set k = k + 1. Compute the discrepancy $\Delta^{(k)} = S_k \sum_{i=1}^{L} \Lambda_i^{(k-1)} S_{k-i}$
- 4. If $\Delta^{(k)} = 0$, go to step 8.
- 5. Modify the connection polynomial $\Lambda^{(k)} = \Lambda^{(k-1)}(x) \Delta^{(k)}T(x)$
- 6. If $2L \ge k$, go to step 8.
- 7. Set L = k L and $T(x) = \Lambda^{(k-1)}(x) / \Delta^{(k)}$
- 8. Set T(x) = xT(x)
- 9. If *k* < 2*t*, go to step 3.
- 10. Determine the roots of $\Lambda(x) = \Lambda^{(2t)}(x)$. If the roots are distinct and lie in the right field, then determine the error magnitudes, correct the corresponding locations in the received word, and STOP.
- 11. Declare a decoding failure and STOP.

(7,3,5) Reed-Solomon Code

 $q(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)$ α^{0} 1 $= x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}$ α^{1} α $r(x) = \alpha^2 x^6 + \alpha^2 x^4 + x^3 + \alpha^5 x^2$ $\alpha^2 \qquad \alpha^2$ $\alpha^3 \qquad \alpha + 1$ $\alpha^4 \qquad \alpha^2 + \alpha$ $\alpha^5 \quad \alpha^2 + \alpha + 1$ α^6 $\alpha^2 + 1$

k	S_k	$\Lambda^{(k)}(\mathbf{x})$	$\Delta^{(k)}(\mathbf{x})$	L	<i>T</i> (<i>x</i>)
0	_	1	_	0	X
1	$lpha^{6}$	$1+\alpha^6 x$	$S_1 - 0 = \alpha^6$	1	αχ
2	$lpha^3$	$1+\alpha^4 x$	$S_2 - \alpha^5 = \alpha^2$	1	αx^2
3	$lpha^4$	$1+\alpha^4x+\alpha^6x^2$	S_{3} -1 = α^{5}	2	$\alpha^2 x + \alpha^6 x^2$
4	$lpha^3$	$1+\alpha^2x+\alpha x^2$	$S_4 - \alpha^4 = \alpha^6$	_	_

Decoding Reed-Solomon Codes

- 1. Compute the syndromes
- 2. Determine the error locator polynomial $\Lambda(x)$
- 3. Determine the error magnitudes from $\Lambda'(x)$ and $\Omega(x)$ $\Omega(x) = [1 + S(x)]\Lambda(x) \mod x^{2t+1}$

$$e_{i_k} = \frac{-X_k \Omega(X_k^{-1})}{\Lambda'(X_k^{-1})}$$

4. Evaluate the error locations and the error values at those locations

CD Errors due to a Ball Point Pen

A Highly Corroded Disc

 Two minutes can still be played.

Audio Data Format

