ECE 405/511
 Error Control Coding

Reed-Solomon Codes

Irving Reed (1923-2012) Gus Solomon (1930-1996)

Polynomial Codes Over Certain Finite Fields, 1960

Reed-Solomon Codes

- Nonbinary BCH codes
- Consider GF(q) ($q=p^{r}, p$ prime)
- To construct a t error correcting nonbinary BCH code with symbols from $\operatorname{GF}(q)$, use the same technique as for binary BCH codes.
- Roots of $g(x)$ are in GF($\left.q^{m}\right), n \mid q^{m}-1$
$n-k \leq 2 m t$ product of at most $2 t$ minimal polynomials of degree m
$d \geq 2 t+1$
- Choose $2 t$ consecutive powers of α, an element of order n in $\operatorname{GF}\left(q^{m}\right)$, as roots of $g(x)$.
- For RS codes, $m=1$ and α is a primitive element in GF(q), then

$$
\begin{aligned}
& n=q-1 \\
& n-k \leq 2 t \rightarrow n-k=2 t \\
& d \geq 2 t+1 \rightarrow d \geq n-k+1
\end{aligned}
$$

Singleton Bound

- The minimum distance for an (n, k) linear code is bounded by

$$
d \leq n-k+1
$$

- For an RS code $d \geq n-k+1$, so $d=n-k+1$ and all RS codes meet the Singleton bound with equality
- they are optimal ($n, k, n-k+1$) codes, $n=q-1$
- Codes that meet the Singleton bound are called Maximum Distance Separable (MDS)

Reed-Solomon Codes - Minimal Polynomials

- Coefficients of $g(x)$ are in $G F(q)$, roots of $g(x)$ are also in GF(q).
- Minimal polynomial of α is $x-\alpha$. There are no conjugates since $\alpha^{q}=\alpha^{q-1} \alpha=\alpha$.
- $\mathrm{BCH}: \quad M_{1}(x)=(x-\alpha)\left(x-\alpha^{q}\right)\left(x-\alpha^{q^{2}}\right) \ldots$

RS: $\quad M_{1}(x)=(x-\alpha)$

- RS codes are a subclass of BCH codes with $m=1$.

Example $t=2 \mathrm{GF}(8)$

- $n=8-1=7$ Form $\mathrm{GF}(8)$ from $x^{3}+x+1$

α^{0}	1
α^{1}	α
α^{2}	α^{2}
α^{3}	$\alpha+1$
α^{4}	$\alpha^{2}+\alpha$
α^{5}	$\alpha^{2}+\alpha+1$
α^{6}	$\alpha^{2}+1$

$$
\begin{aligned}
& g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right) \\
& =x^{4}+\alpha^{3} x^{3}+x^{2}+\alpha x+\alpha^{3}
\end{aligned}
$$

$$
\mathbf{H}=\left[\begin{array}{cc}
1 \alpha \alpha^{2} \alpha^{3} \alpha^{4} \alpha^{5} \alpha^{6} \\
1 \alpha^{2} \alpha^{4} \alpha^{6} \alpha \alpha^{3} \alpha^{5} \\
1 \alpha^{3} \alpha^{6} \alpha^{2} \alpha^{5} \alpha \alpha^{4} \\
1 \alpha^{4} \alpha^{8} \alpha^{5} \alpha^{2} \alpha^{6} \alpha^{3}
\end{array}\right]
$$

- $(7,3,5)$ RS code

Comparison: RS vs Binary BCH

- RS:

$$
n=q^{m}-1 \quad q=8, m=1
$$

$(7,3,5)$

$$
g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)
$$

- Binary BCH: $n=q^{m}-1 \quad q=2, m=3$
$(7,1,7)$

$$
g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{5}\right)
$$

- RS code: $q^{k}=8^{3}=512$ codewords
- Binary BCH code: $q^{k}=2^{1}=2$ codewords

Comparison: RS vs Binary BCH

- Each symbol can be represented as 3 bits, a codeword has $n=7$ symbols $=21$ bits and $k=3$ data symbols $=9$ bits.
- The $(7,3,5)$ RS code can be considered as a $(21,9)$ binary code.
- $t=2$ symbol error correction
- since 5 bit errors may cover 3 symbols, corrects any burst error of 4 bits or less.

Example $t=3$ GF(64)

- $n=64-1=63$
- α a root of the primitive polynomial $x^{6}+x+1$

$$
\begin{aligned}
g(x) & =(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)\left(x-\alpha^{5}\right)\left(x-\alpha^{6}\right) \\
& =x^{6}+\alpha^{59} x^{5}+\alpha^{48} x^{4}+\alpha^{43} x^{3}+\alpha^{55} x^{2}+\alpha^{10} x+\alpha^{21}
\end{aligned}
$$

- $(63,57,7)$ RS code
- $64^{57}=8.96 \times 10^{102}$ codewords
- $64^{63}=6.16 \times 10^{113}$ vectors
- sphere volume is 9.94×10^{9} so the spheres fill about 14.5% of the vector space

GF(7) Example

- RS codes can be constructed over any finite field
- Consider $q=7$ so that $n=q-1=6$, and $t=2$
- First find a primitive element in GF(7)
$\varnothing(6)=2$ so two primitive elements
$3^{1}=3 \quad 3^{2}=2 \quad 3^{3}=6 \quad 3^{4}=4 \quad 3^{5}=5 \quad 3^{6}=1 \rightarrow 3$ is primitive $b=1$ $g(x)=\left(x-3^{1}\right)\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)$ $=(x-3)(x-2)(x-6)(x-4) \quad(6,2,5)$ RS code
$b=2 \quad g(x)=\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)\left(x-3^{5}\right)$ $=(x-2)(x-6)(x-4)(x-5) \quad(6,2,5)$ RS code

One can pick any group of consecutive roots

$$
\begin{aligned}
g(x) & =\left(x-3^{1}\right)\left(x-3^{2}\right)\left(x-3^{3}\right) \\
& =(x-3)(x-2)(x-6) \quad(6,3,4) \text { RS code } \\
& =x^{3}+3 x^{2}+x+6 \\
g(x) & =\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right) \\
& =(x-2)(x-6)(x-4) \quad(6,3,4) \text { RS code } \\
& =x^{3}+2 x^{2}+2 x+1=g^{*}(x) \quad \text { self reciprocal }
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\left(x-3^{1}\right)\left(x-3^{2}\right)\left(x-3^{3}\right)\left(x-3^{4}\right)\left(x-3^{5}\right) \\
& =(x-3)(x-2)(x-6)(x-4)(x-5) \quad(6,1,6) \text { RS code } \\
& =x^{5}+x^{4}+x^{3}+x^{2}+x+1=g^{*}(x) \quad \text { self reciprocal }
\end{aligned}
$$

Properties of RS Codes

- The dual code of an RS code is also MDS
- $C(6,2,5)$ code over GF(7)
$-C^{\perp}(6,4,3)$ code over GF(7)
- Since RS codes are cyclic codes, they can always be put in systematic form $x^{n-k} m(x)+d(x)$
- A shortened RS codes is MDS

$$
(n, k, n-k+1) \rightarrow(n-u, k-u, n-k+1)(6,4,3) \rightarrow(5,3,3)
$$

- A punctured RS code is MDS

$$
(n, k, n-k+1) \rightarrow(n-u, k, n-k-u+1) \quad(6,4,3) \rightarrow(5,4,2)
$$

Example: Bar Codes over GF(64)

$(63,53,11)$ RS code

Extended RS Codes

- An (n, k) RS code over $\operatorname{GF}(q)$ with $n=q-1$ can be extended twice to a ($q+1, k$) MDS code
- There is a technique for constructing such codes which are cyclic
- A very few RS codes can be triply extended to obtain an MDS code with $n=q+2$
$-k=3$ or $n-k=3$ and $q=2^{m}$

$$
\left[\begin{array}{ccccccc}
1 & 1 & \cdots & 1 & 1 & 0 & 0 \\
1 & \alpha & \cdots & \alpha^{q-2} & 0 & 1 & 0 \\
1 & \alpha^{2} & \cdots & \alpha^{2(q-2)} & 0 & 0 & 1
\end{array}\right]
$$

Extended RS Codes

- The $(6,3,4)$ RS code over $G F(4)$ has generator matrix

$$
\mathbf{G}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & \alpha & \alpha^{2} & 0 & 1 & 0 \\
1 & \alpha^{2} & \alpha & 0 & 0 & 1
\end{array}\right]
$$

Example: NASA/JPL Code

- $q=256, n=q-1=255$
- $(255,223,33)$ RS code over GF(2^{8})
\# of codewords \times volume

$$
=2.78 \times 10^{-14}
$$ size of vector space

Example: Compact Discs

- 44.1 kHz sample rate
- 16 bit stereo samples
- $2 \times 16 \times 44100=1.41 \mathrm{Mbps}$
- Original CD capacity: 74 minutes of audio or 650 MB of data
- Data stored on a spiral, not concentric circles

- length 5.38 km
- velocity $1.2-1.4 \mathrm{~m} / \mathrm{s}$

Kees Schouhamer Immink (1946-)

Sources of Error

1) Defects caused during disc production

- inferior disc pits and bubbles during disc formation
- defects in the aluminum film and a poor reflective index

2) Defects caused in handling

- fingerprints and scratches
- dust

3) Variations and disturbances during playback

- disturbance of the servo mechanism

4) Jitter - time variation of the signal
5) Interference
(1)-(3) cause burst errors
(4) and (5) cause random errors

Causes of Disc Errors

- Fingerprints cause 43% of errors
- General wear and tear causes 25% of errors
- Player-related issues cause 15% of errors
- User-related issues cause 12% of errors
- Manufacturing defects cause 2% of errors

Causes of Disc Errors

Error Correction

- Reed-Solomon code
- $(255,251,5)$ code over GF($\left.2^{8}\right)$
- Shortened to a $(28,24,5)$ outer code
- These codewords are interleaved to reduce the effects of burst errors
- $(32,28,5)$ inner code
- Overall code rate is

$$
\frac{24}{28} \times \frac{28}{32}=0.75
$$

CIRC Encoder

- CIRC - Cross Interleaved Reed-Solomon Code

- Interleaving disperses the codewords so they are not contiguous on the disc
- mitigates long burst errors associated with scratches and fingerprints
- Maximum correctable burst error length
- 3874 bits $\approx 2.5 \mathrm{~mm}$

Encoding Algorithm

- Samples are split into two 8 bit symbols
- Six samples from each channel are grouped to obtain 24 symbols
- Four outer RS code parity symbols are generated to give a frame of 28 symbols
- Symbols are interleaved over 109 frames
- Four inner RS parity symbols are generated to give 32 symbols
- These frames are also interleaved

Control and Error Correction

- Skips are caused by physical disturbances
- Wait for disturbance to subside
- Retry
- Read errors caused by disc/servo problems
- Detect error
- Choose location for retry
- Retry, if it fails interpolate if applicable

Interpolation

- Used when decoding fails
- Fill missing audio data using adjacent data
- time or channel
- Only valid for audio CDs

Decoding Reed-Solomon Codes

- $c(x)$ is the transmitted codeword
- $2 t$ consecutive powers of α are roots

$$
c\left(\alpha^{b}\right)=c\left(\alpha^{b+1}\right)=\cdots=c\left(\alpha^{b+2 t-1}\right)=0
$$

- The received word is $r(x)=c(x)+e(x)$
- The error polynomial is

$$
e(x)=e_{0}+e_{1} x+\ldots+e_{n-1} x^{n-1}
$$

- The syndromes are

$$
S_{j}=r\left(\alpha^{j}\right)=e\left(\alpha^{j}\right)=\sum_{k=0}^{n-1} e_{k}\left(\alpha^{j}\right)^{k}, \quad j=1, \cdots, 2 t
$$

Decoding Reed-Solomon Codes

- Suppose there are v errors in locations

$$
i_{1}, i_{2}, \cdots, i_{v}
$$

- The syndromes can be expressed in terms of these error locations

$$
S_{j}=\sum_{l=1}^{v} e_{i_{l}}\left(\alpha^{j}\right)^{i_{l}}=\sum_{l=1}^{v} e_{i_{l}}\left(\alpha^{i_{l}}\right)^{j}=\sum_{l=1}^{v} e_{i_{l}} X_{l,}^{j}, \quad j=1, \cdots, 2 t
$$

- The X_{1} are the error locators
- The $2 t$ syndrome equations can be expanded in terms of the v unknown error locations

GF(8) formed from $x^{3}+x^{2}+1$

Power of α
$-\infty$
0
1
2
3
4
5
6
Polynomial in α
$\quad 0$
1
α
α^{2}
$\alpha^{2}+1$
$\alpha^{2}+\alpha+1$
$\alpha+1$
$\alpha^{2}+\alpha$

Vector
000
100
010
001
101
111
110
011

$2 t$ Equations in $2 v$ Unknowns

$$
\begin{aligned}
& S_{1}=e_{i_{1}} X_{1}+e_{i_{2}} X_{2}+\cdots+e_{i_{v}} X_{v} \\
& S_{2}=e_{i_{1}} X_{1}^{2}+e_{i_{2}} x_{2}^{2}+\cdots+e_{i_{v}} X_{v}^{2} \\
& S_{3}=e_{i_{1}} X_{1}^{3}+e_{i_{2}} X_{2}^{3}+\cdots+e_{i_{v}} X_{v}^{3} \\
& \vdots \\
& S_{2 t}=e_{i_{1}} X_{1}^{2 t}+e_{i_{2}} X_{2}^{2 t}+\cdots+e_{i_{v}} X_{v}^{2 t}
\end{aligned}
$$

The Error Locator Polynomial

- The error locator polynomial $\Lambda(x)$ has as its roots the inverses of the v error locators $\left\{X_{I}\right\}$

$$
\Lambda(x)=\prod_{l=1}^{v}\left(1-X_{l} x\right)=\Lambda_{v} x^{v}+\ldots+\Lambda_{1} x+\Lambda_{0}
$$

- The roots of $\Lambda(x)$ are then $X_{1}{ }^{-1}, X_{2}{ }^{-1}, \ldots, X_{v}{ }^{-1}$

$$
\begin{aligned}
& \Lambda\left(X_{l}^{-1}\right)=\Lambda_{v} X_{l}^{-v}+\ldots+\Lambda_{1} X_{l}^{-1}+\Lambda_{0}=0 \\
& e_{i} X_{l}^{j}\left(\Lambda_{v} X_{l}^{-v}+\ldots+\Lambda_{1} X_{l}^{-1}+\Lambda_{0}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda\left(X_{l}^{-1}\right)=\Lambda_{v} x_{l}^{-v}+\ldots+\Lambda_{1} X_{l}^{-1}+\Lambda_{0}=0 \\
& e_{i_{l}} X_{l}^{j}\left(\Lambda_{v} X_{l}^{-v}+\ldots+\Lambda_{1} X_{l}^{-1}+\Lambda_{0}\right)=0 \\
& e_{i_{l}}\left(\Lambda_{v} X_{l}^{j-v}+\ldots+\Lambda_{1} X_{l}^{j-1}+\Lambda_{0} X_{l}^{j}\right)=0 \\
& \sum_{l=1}^{v} e_{i_{l}}\left(\Lambda_{v} X_{l}^{j-v}+\ldots+\Lambda_{1} X_{l}^{j-1}+\Lambda_{0} X_{l}^{j}\right) \\
& =\Lambda_{v} \sum_{l=1}^{v} e_{i l} X_{l}^{j-v}+\ldots+\Lambda_{1} \sum_{l=1}^{v} e_{i_{l}} X_{l}^{j-1}+\Lambda_{0} \sum_{l=1}^{v} e_{i l} X_{l}^{j} \\
& =\Lambda_{v} S_{j-v}+\ldots+\Lambda_{1} S_{j-1}+\Lambda_{0} S_{j}=0 \\
& \Lambda_{v} S_{j-v}+\ldots+\Lambda_{1} S_{j-1}=-S_{j}
\end{aligned}
$$

$$
\left[\begin{array}{ccccccc}
S_{1} & S_{2} & S_{3} & S_{4} & \cdots & S_{t-1} & S_{t} \\
S_{2} & S_{3} & S_{4} & S_{5} & \cdots & S_{t} & S_{t+1} \\
S_{3} & S_{4} & S_{5} & S_{6} & \cdots & S_{t+1} & S_{t+2} \\
S_{4} & S_{5} & S_{6} & S_{7} & \cdots & S_{t+2} & S_{t+3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
S_{t-1} & S_{t} & S_{t+1} & S_{t+2} & \cdots & S_{2 t-3} & S_{2 t-2} \\
S_{t} & S_{t+1} & S_{t+2} & S_{t+3} & \cdots & S_{2 t-2} & S_{2 t-1}
\end{array}\right]\left[\begin{array}{c}
\Lambda_{t} \\
\Lambda_{t-1} \\
\Lambda_{t-2} \\
\Lambda_{t-3} \\
\vdots \\
\Lambda_{2} \\
\Lambda_{1}
\end{array}\right]=\left[\begin{array}{c}
-S_{t+1} \\
-S_{t+2} \\
-S_{t+3} \\
-S_{t+4} \\
\vdots \\
-S_{2 t-1} \\
-S_{2 t}
\end{array}\right]
$$

$\mathbf{A}^{\prime} \boldsymbol{\Lambda}=\mathbf{S}$

Berlekamp-Massey Algorithm

$$
\Lambda_{\nu} S_{j-v}+\ldots+\Lambda_{1} S_{j-1}=-S_{j}
$$

Figure 9-3. LFSR Interpretation of Eq. (9-27)

Berlekamp-Massey Algorithm

1. Compute the syndromes $S_{1}, S_{2}, \ldots, S_{2 t}$ for the received word.
2. Set $k=0, \wedge^{(0)}(x)=1, L=0, T(x)=x$
3. Set $k=k+1$. Compute the discrepancy $\Delta^{(k)}=S_{k}-\sum_{i=1}^{L} \Lambda_{i}^{(k-1)} S_{k-i}$
4. If $\Delta^{(k)}=0$, go to step 8 .
5. Modify the connection polynomial $\Lambda^{(k)}=\Lambda^{(k-1)}(x)-\Delta^{(k)} T(x)$
6. If $2 L \geq k$, go to step 8 .
7. Set $L=k-L$ and $T(x)=\Lambda^{(k-1)}(x) / \Delta^{(k)}$
8. Set $T(x)=x T(x)$
9. If $k<2 t$, go to step 3 .
10. Determine the roots of $\Lambda(x)=\Lambda^{(2 t)}(x)$. If the roots are distinct and lie in the right field, then determine the error magnitudes, correct the corresponding locations in the received word, and STOP.
11. Declare a decoding failure and STOP.

$(7,3,5)$ Reed-Solomon Code

$$
\begin{array}{lcl}
\alpha^{0} & 1 & g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right) \\
\alpha^{1} & \alpha & =x^{4}+\alpha^{3} x^{3}+x^{2}+\alpha x+\alpha^{3} \\
\alpha^{2} & \alpha^{2} & r(x)=\alpha^{2} x^{6}+\alpha^{2} x^{4}+x^{3}+\alpha^{5} x^{2} \\
\alpha^{3} & \alpha+1 & \\
\alpha^{4} & \alpha^{2}+\alpha & \\
\alpha^{5} & \alpha^{2}+\alpha+1 & \\
\alpha^{6} & \alpha^{2}+1 &
\end{array}
$$

Berlekamp-Massey Algorithm

Berlekamp-Massey Algorithm

k	S_{k}	$\Lambda^{(k)}(x)$	$\Delta^{(k)}(x)$	L	$T(x)$
0	-	1	-	0	x
1	α^{6}	$1+\alpha^{6} x$	$S_{1}-0=\alpha^{6}$	1	αx
2	α^{3}	$1+\alpha^{4} x$	$S_{2}-\alpha^{5}=\alpha^{2}$	1	αx^{2}
3	α^{4}	$1+\alpha^{4} x+\alpha^{6} x^{2}$	$S_{3}-1=\alpha^{5}$	2	$\alpha^{2} x+\alpha^{6} x^{2}$
4	α^{3}	$1+\alpha^{2} x+\alpha x^{2}$	$S_{4}-\alpha^{4}=\alpha^{6}$	-	-

Berlekamp-Massey Algorithm

Decoding Reed-Solomon Codes

1. Compute the syndromes
2. Determine the error locator polynomial $\Lambda(x)$
3. Determine the error magnitudes from $\Lambda^{\prime}(x)$ and $\Omega(x)$

$$
\begin{gathered}
\Omega(x)=[1+\mathrm{S}(x)] \Lambda(x) \bmod x^{2 t+1} \\
e_{i_{k}}=\frac{-X_{k} \Omega\left(X_{k}^{-1}\right)}{\Lambda^{\prime}\left(X_{k}^{-1}\right)}
\end{gathered}
$$

4. Evaluate the error locations and the error values at those locations

CD Errors due to a Ball Point Pen

A Highly Corroded Disc

- Two minutes can still be played.

Audio Data Format

