ELEC 515
 Information Theory

Review

Final Exam

- Monday, December 19, 7:00 PM ECS 124
- 3 hour exam
- ALL course content is covered
- emphasis on topics after the test
- Materials Allowed:
- Calculator
- Two pages of notes on $8.5^{\prime \prime} \times 11.5^{\prime \prime}$ paper

Entropy

$$
H(X)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right)
$$

- Joint Entropy H(XY)
- Conditional Entropy H(X|Y)
- Mutual Information I(X;Y)

$I(X ; Y)$

Information Channels

- An information channel is described by an
- Input alphabet X
- Output alphabet Y
- Set of conditional probabilities $\mathrm{p}\left(y_{j} \mid x_{i}\right)$

Binary Symmetric Channel

The Data Processing Inequality Cascaded Channels

The mutual information I(W;Y) for the cascade cannot be larger than $\mathrm{I}(\mathrm{W} ; \mathrm{X})$ or $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$, so that

$$
I(W ; Y) \leq I(W ; X) \quad I(W ; Y) \leq I(X ; Y)
$$

Relative Entropy and Cross Entropy

$$
D[p(X) \| q(X)]=\sum_{i=1}^{N} p\left(x_{i}\right) \log _{b}\left[\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right]
$$

$$
H(p, q)=-\sum_{i=1}^{N} p\left(x_{i}\right) \log q\left(x_{i}\right)
$$

Shannon's Noiseless Coding Theorem

$$
\begin{aligned}
& \frac{\mathrm{H}(\mathrm{X})}{\log _{b} J} \leq \mathrm{L}(\mathrm{C})<\frac{\mathrm{H}(\mathrm{X})}{\log _{b} J}+1 \\
& \frac{\mathrm{H}(\mathrm{X})}{\log _{b} J} \leq \frac{\mathrm{L}_{N}(\mathrm{C})}{N}<\frac{\mathrm{H}(\mathrm{X})}{\log _{b} J}+\frac{1}{N}
\end{aligned}
$$

Typical Sequences

$$
\mathcal{T}_{X}(\delta) \equiv\left\{\mathbf{x}:\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|<\delta\right\}
$$

$$
\mathcal{T}_{X}^{c}(\delta) \equiv\left\{\mathbf{x}:\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right| \geq \delta\right\}
$$

Typical Sequences

Shannon-McMillan Theorem

a) The probability that a particular sequence \mathbf{x} of blocklength N belongs to the set of atypical sequences $\mathcal{T}_{X}^{c}(\delta)$ is upperbounded as:

$$
\operatorname{Pr}\left[\mathbf{x} \in \mathcal{T}_{X}^{c}(\delta)\right]<\epsilon
$$

b) If a sequence \mathbf{x} is in the set of typical sequences $\mathcal{T}_{X}(\delta)$ then its probability of occurrence $p(\mathbf{x})$ is approximately equal to $b^{-N H(X)}$, that is:

$$
b^{-N[H(X)+\delta]}<p(\mathbf{x})<b^{-N[H(X)-\delta]}
$$

c) The number of typical, or likely, sequences $\left\|\mathcal{T}_{X}(\delta)\right\|$ is bounded by:

$$
(1-\epsilon) b^{N[H(X)-\delta]}<\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]}
$$

- The essence of source coding or data compression is that as $N \rightarrow \infty$, atypical sequences almost never appear as the output of the source.
- Therefore, one can focus on representing typical sequences with codewords and ignore atypical sequences.
- Since there are only about $2^{\mathrm{NH}(\mathrm{X})}$ typical sequences of length N, and they are approximately equiprobable, it takes about $\mathrm{NH}(\mathrm{X})$ bits to represent them.
- On average it takes $H(X)$ bits to represent a source symbol.

Source Coding Algorithms

- Shannon
- Fano
- Huffman
- Tunstall
- Arithmetic
- Fixed Length Source Compaction
- Lempel-Ziv

$I(X ; Y)$ for the BSC

Channel Capacity

The maximum value of $I(X ; Y)$ as the input probabilities $p\left(x_{i}\right)$ are varied is called the Channel Capacity

$$
C=\max _{p\left(x_{i}\right)} I(X ; Y)
$$

Shannon's Noisy Coding Theorem

For any $\varepsilon>0$ and for any rate R less than the channel capacity C, there is an encoding and decoding scheme that can be used to ensure that the probability of decoding error is less than ε for a sufficiently large block length N.

Best Codes Comparison

- BSC $p=0.01 \mathrm{R}=2 / 3 \mathrm{M}=2^{N R}$

N	P_{e}	$\log _{2} M$
3	1.99×10^{-2}	2
12	6.17×10^{-3}	8
30	3.32×10^{-3}	20
51	1.72×10^{-3}	34
81	1.36×10^{-3}	54

- For fixed R, P_{e} can be decreased by increasing N

Code Matrix

$$
\mathcal{C}=\left[\begin{array}{c}
\mathbf{c}_{1} \\
\vdots \\
\mathbf{c}_{m} \\
\vdots \\
\mathbf{c}_{M}
\end{array}\right]=\left[\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, n} & \cdots & c_{1, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m, 1} & \cdots & c_{m, n} & \cdots & c_{m, N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{M, 1} & \cdots & c_{M, n} & \cdots & c_{M, N}
\end{array}\right]
$$

Binary Codes

- For given values of M and N, there are $2^{M N}$
possible binary codes.
- Of these, some will be bad, some will be best (optimal), and some will be good, in terms of P_{e}
- An average code will be good.

There are many classes of practical codes

- Hamming codes
- Convolutional codes
- Reed-Muller codes
- Cyclic codes (CRC codes)
- Reed-Solomon codes
- Product codes
- BCH codes
- LDPC codes
- Turbo codes
- Repeat-accumulate codes
- Polar codes
- ...

Deep Space Communications

Mars Rover 2021

