ECE 515 Information Theory

Distortionless Source Coding 1

Source Coding

Source Coding

Two requirements

1. The source sequence can be recovered from the encoded sequence with no ambiguity.
2. The average number of output symbols per source symbol is as small as possible.

Variable Length Codes

Variable Length Codes

Variable Length Codes

- Let $K=4, X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, J=2$
- Prefix code (also prefix-free or instantaneous)

$$
C_{1}=\{0,10,110,111\}
$$

- Example sequence of codewords: 001110100110
- Decodes to:

$$
\begin{array}{ccccccc}
0 & 0 & 111 & 0 & 10 & 0 & 110 \\
x_{1} & x_{1} & x_{4} & x_{1} & x_{2} & x_{1} & x_{3}
\end{array}
$$

Instantaneous Codes

- Definition:

A uniquely decodable code is said to be instantaneous if it is possible to decode each codeword in a sequence without reference to succeeding codewords.

A necessary and sufficient condition for a code to be instantaneous is that no codeword is a prefix of some other codeword.

Variable Length Codes

- Uniquely decodable code (which is not prefix)

$$
C_{2}=\{0,01,011,0111\}
$$

- Example sequence of codewords: 001110100110
- Decodes to:

$$
\begin{array}{lllllll}
0 & 0111 & 01 & 0 & 011 & 0 \\
x_{1} & x_{4} & x_{2} & x_{1} & x_{3} & x_{1}
\end{array}
$$

Variable Length Codes

- Non-singular code (which is not uniquely decodable)

$$
C_{3}=\{0,1,00,11\}
$$

- Example sequence of codewords:

001110100110

- Decodes to:

$$
\begin{aligned}
& 001110100110 \\
& x_{1} x_{1} x_{2} x_{2} x_{2} x_{1} x_{2} x_{1} x_{1} x_{2} x_{2} x_{1} \\
& 001110100110
\end{aligned}
$$

Variable Length Codes

- Singular code

$$
C_{4}=\{0,10,11,10\}
$$

- Example sequence of codewords: 001110100110
- Decodes to:

$$
\begin{array}{llllllll}
0 & 0 & 11 & 10 & 10 & 0 & 11 & 0 \\
x_{1} & x_{1} & x_{3} & x_{2} & x_{2} & x_{1} & x_{3} & x_{1} \\
x_{1} & x_{1} & x_{3} & x_{4} & x_{2} & x_{1} & x_{3} & x_{1}
\end{array}
$$

Variable Length Codes

Variable Length Codes

Source
Symbol

Codeword
Codeword Length

Average Codeword Length

$$
\left.\mathrm{L}(\mathrm{C})=\sum_{k=1}^{K} \mathrm{p}\left(x_{k}\right)\right)_{k}
$$

Two Binary Prefix Codes

- Five source symbols: $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
- $K=5, J=2$
- $c_{1}=0, c_{2}=10, c_{3}=110, c_{4}=1110, c_{5}=1111$
- codeword lengths 1,2,3,4,4
- $\mathrm{c}_{1}=00, \mathrm{c}_{2}=01, \mathrm{c}_{3}=10, \mathrm{c}_{4}=110, \mathrm{c}_{5}=111$
- codeword lengths 2,2,2,3,3

Kraft Inequality for Prefix Codes

Code Tree

Five Binary Codes

Source symbols	Code A	Code B	Code C	Code D	Code E
x_{1}	00	0	0	0	0
x_{2}	01	100	10	100	10
x_{3}	10	110	110	110	110
x_{4}	11	111	111	11	11

Ternary Code Example

- Ten source symbols: $x_{1}, x_{2}, \ldots, x_{9}, x_{10}$
- $K=10, J=3$
- $I_{k}=1,2,2,2,2,2,3,3,3,3$
- $I_{k}=1,2,2,2,2,2,3,3,3$
- $I_{k}=1,2,2,2,2,2,3,3,4,4$

Average Codeword Length Bound

$$
\mathrm{L}(\mathrm{C}) \geq \frac{\mathrm{H}(\mathrm{X})}{\log _{b} J}
$$

Four Symbol Source

- $\mathrm{p}\left(x_{1}\right)=1 / 2 \mathrm{p}\left(x_{2}\right)=1 / 4 \mathrm{p}\left(x_{3}\right)=\mathrm{p}\left(x_{4}\right)=1 / 8$
- $H(X)=1.75$ bits
$x_{1} 0$
$x_{1} 00$
$x_{2} 10$
$x_{2} 01$
$x_{3} 110$
$x_{3} 10$
$x_{4} 111$
$x_{4} 11$
$L(C)=1.75$ bits
$\mathrm{L}(\mathrm{C})=2$ bits

Code Efficiency

$$
\zeta=\frac{\mathrm{H}(\mathrm{X})}{\mathrm{L}(\mathrm{C}) \log _{b} J} \leq 1
$$

- First code $\zeta=1.75 / 1.75=100 \%$
- Second code $\zeta=1.75 / 2.0=87.5 \%$

Compact Codes

A code C is called compact for a source X if its average codeword length $L(C)$ is less than or equal to the average length of all other uniquely decodable codes for the same source and alphabet Y size J.

Codeword Lengths

$$
\begin{aligned}
& H(X)=-\sum_{k=1}^{K} p\left(x_{k}\right) \log p\left(x_{k}\right) \\
& L(C)=\sum_{k=1}^{K} p\left(x_{k}\right) l_{k}
\end{aligned}
$$

Upper and Lower Bounds for a Compact Code

$$
\frac{\mathrm{H}(\mathrm{X})}{\log _{b} J} \leq \mathrm{L}(\mathrm{C})<\frac{\mathrm{H}(\mathrm{X})}{\log _{b} J}+1
$$

if $b=J$

$$
H(X) \leq L(C)<H(X)+1
$$

The Shannon Algorithm

- Order the symbols from largest to smallest probability
- Choose the codeword lengths according to

$$
I_{k}=\left\lceil-\log , \mathrm{p}\left(x_{k}\right)\right\rceil
$$

- Construct the codewords according to the cumulative probability P_{k}

$$
P_{k}=\sum_{i=1}^{k-1} \mathrm{p}\left(x_{i}\right)
$$

expressed as a base J number

Example

- $K=10, J=2$
- $\mathrm{p}\left(x_{1}\right)=\mathrm{p}\left(x_{2}\right)=1 / 4$
- $\mathrm{p}\left(x_{3}\right)=\mathrm{p}\left(x_{4}\right)=1 / 8$
- $\mathrm{p}\left(x_{5}\right)=\mathrm{p}\left(x_{6}\right)=1 / 16$
- $\mathrm{p}\left(x_{7}\right)=\mathrm{p}\left(x_{8}\right)=\mathrm{p}\left(x_{9}\right)=\mathrm{p}\left(x_{10}\right)=1 / 32$

Converting Decimal Fractions to Binary

- To convert a fraction to binary, multiply it by 2
- If the integer part is 1 , the binary digit is 1 , otherwise it is 0
- Delete the integer part
- Continue multiplying by 2 and obtaining binary digits until the resulting fractional part is 0 or the required number of binary digits have been obtained

Example

- Convert $5 / 8=0.625_{10}$ to binary
- $2 \times 0.625=1.25=1+0.25$
- $2 \times 0.250=0.50=0+0.50$
- $2 \times 0.500=1.00=1+0.00$ LSB
- $0.625_{10}=0.101_{2}$

Example

Symbol	$p\left(x_{k}\right)$	P_{k}	l_{k}	Codeword
x_{1}	$1 / 4$	0	2	00
x_{2}	$1 / 4$	$1 / 4$	2	01
x_{3}	$1 / 8$	$1 / 2$	3	100
x_{4}	$1 / 8$	$5 / 8$	3	101
x_{5}	$1 / 16$	$3 / 4$	4	1100
x_{6}	$1 / 16$	$13 / 16$	4	1101
x_{7}	$1 / 32$	$7 / 8$	5	11100
x_{8}	$1 / 32$	$29 / 32$	5	11101
x_{9}	$1 / 32$	$15 / 16$	5	11110
x_{10}	$1 / 32$	$31 / 32$	5	11111

Shannon Algorithm

- $\mathrm{p}\left(x_{1}\right)=.4 \mathrm{p}\left(x_{2}\right)=.3 \mathrm{p}\left(x_{3}\right)=.2 \mathrm{p}\left(x_{4}\right)=.1$
- $H(X)=1.85$ bits

Shannon Code
$x_{1} 00$
$x_{2} 01$
$x_{3} 101$
$x_{4} 1110$
$\mathrm{L}(\mathrm{C})=2.4$ bits
$\zeta=77.1 \%$

Alternate Code
$x_{1} 0$
$x_{2} 10$
$x_{3} 110$
$x_{4} 111$
$\mathrm{L}(\mathrm{C})=1.9$ bits
$\zeta=97.4 \%$

Shannon's Noiseless Coding Theorem

$$
\begin{aligned}
& \frac{N H(X)}{\log _{b} J} \leq \mathrm{L}_{N}(\mathrm{C})<\frac{N \mathrm{H}(\mathrm{X})}{\log _{b} J}+1 \\
& \frac{\mathrm{H}(\mathrm{X})}{\log _{b} J} \leq \frac{\mathrm{L}_{N}(\mathrm{C})}{N}<\frac{\mathrm{H}(\mathrm{X})}{\log _{b} J}+\frac{1}{N}
\end{aligned}
$$

Shannon's Noiseless Coding Theorem

$$
\begin{aligned}
& \text { If } b=J \\
& \qquad N H(\mathrm{X}) \leq \mathrm{L}_{N}(\mathrm{C})<N H(\mathrm{X})+1
\end{aligned}
$$

$$
H(X) \leq \frac{\mathrm{L}_{N}(\mathrm{C})}{N}<\mathrm{H}(\mathrm{X})+\frac{1}{N}
$$

Robert M. Fano (1917-2016)

The Fano Algorithm

- Arrange the symbols in order of decreasing probability
- Divide the symbols into J approximately equally probable groups
- Each group receives one of the J code symbols as the first codeword symbol
- This division process is repeated within the groups as many times as possible

Example

Symbol	$p\left(x_{k}\right)$						
x_{1}	$1 / 4$	0	0				
x_{2}	$1 / 4$	0	1				
		$1 / 8$	1	0	0		
x_{3}	$1 / 8$	1	0	1			
x_{5}	$1 / 16$	1	1	0	0		
x_{6}	$1 / 16$	1	1	0	1		
x_{7}	$1 / 32$	1	1	1	0	0	
x_{8}	$1 / 32$	1	1	1	0	1	
x_{9}	$1 / 32$	1	1	1	1	0	
x_{10}	$1 / 32$	1	1	1	1	1	

Shannon Algorithm vs Fano Algorithm

- $\mathrm{p}\left(x_{1}\right)=.4 \mathrm{p}\left(x_{2}\right)=.3 \mathrm{p}\left(x_{3}\right)=.2 \mathrm{p}\left(x_{4}\right)=.1$
- $\mathrm{H}(\mathrm{X})=1.85$ bits

Shannon Code
$x_{1} 00$
$x_{2} 01$
$x_{3} 101$
$x_{4} 1110$
$\mathrm{L}(\mathrm{C})=2.4$ bits
$\zeta=77.1 \%$
$\zeta=97.4 \%$

Upper Bound for the Fano Code $J \in\{2,3\}$

$$
\mathrm{L}(\mathrm{C}) \leq \frac{\mathrm{H}(\mathrm{X})}{\log _{b} J}+1-p_{\text {min }}
$$

where $p_{\text {min }}$ is the smallest nonzero symbol probability
if $b=J$

$$
\mathrm{L}(\mathrm{C}) \leq \mathrm{H}(\mathrm{X})+1-p_{\min }
$$

David A. Huffman (1925-1999)

- "It was the most singular moment in my life. There was the absolute lightning of sudden realization."
- David Huffman
- "Is that all there is to it!"
- Robert Fano

The Binary Huffman Algorithm

1. Arrange the K symbols of the source X in order of decreasing probability.
2. Assign a 1 to the last digit of the K th codeword c_{K} and a 0 to the last digit of the ($K-1$)th codeword c_{K-1}. Note that this assignment is arbitrary.
3. Form a new source X^{\prime} with $x^{\prime}{ }_{k}=x_{k}, k=1, \ldots, k-2$, and

$$
x_{K-1}^{\prime}=x_{K-1} \cup x_{K} \quad \mathrm{p}\left(x_{k-1}^{\prime}\right)^{K}=p\left(x_{K-1}\right)+p\left(x_{K}\right)
$$

4. Set $K=K-1$.
5. Repeat Steps 1 to 4 until all symbols have been combined.

To obtain the codewords, trace back to the original symbols.

Five Symbol Source

- $\mathrm{p}\left(x_{1}\right)=.35 \mathrm{p}\left(x_{2}\right)=.22 \mathrm{p}\left(x_{3}\right)=.18 \mathrm{p}\left(x_{4}\right)=.15 \mathrm{p}\left(x_{5}\right)=.10$
- $\mathrm{H}(\mathrm{X})=2.2$ bits

$$
\begin{aligned}
& \begin{array}{l}
p\left(x_{1}\right)=0.35 \longrightarrow 0.35 \longrightarrow 0.35 \\
p\left(x_{2}\right)=0.22 \longrightarrow 0 . \\
p\left(x_{3}\right)=0.18 \longrightarrow 0.22 \\
p\left(x_{4}\right)=0.15 \longrightarrow \\
\hline
\end{array} \\
& p\left(x_{5}\right)=0.10 \quad 1
\end{aligned}
$$

$$
L(C)=2.25 \text { bits } \quad \zeta=97.8 \%
$$

Shannon and Fano Codes

- $\mathrm{p}\left(x_{1}\right)=.35 \mathrm{p}\left(x_{2}\right)=.22 \mathrm{p}\left(x_{3}\right)=.18 \mathrm{p}\left(x_{4}\right)=.15 \mathrm{p}\left(x_{5}\right)=.10$
- $\mathrm{H}(\mathrm{X})=2.2$ bits

Shannon Code	Fano Code
$x_{1} 00$	$x_{1} 00$
$x_{2} 010$	$x_{2} 01$
$x_{3} 100$	$x_{3} 10$
$x_{4} 110$	$x_{4} 110$
$x_{5} 1110$	$x_{5} 111$
$\mathrm{~L}(\mathrm{C})=2.75$ bits	$\mathrm{L}(\mathrm{C})=2.25$ bits
$\zeta=80.4 \%$	$\zeta=97.8 \%$

Huffman Code for the English Alphabet

Six Symbol Source

- $\mathrm{p}\left(x_{1}\right)=.4 \mathrm{p}\left(x_{2}\right)=.3 \mathrm{p}\left(x_{3}\right)=.1 \mathrm{p}\left(x_{4}\right)=.1 \mathrm{p}\left(x_{5}\right)=.06$ $p\left(x_{6}\right)=.04$
- $\mathrm{H}(\mathrm{X})=2.1435$ bits

First Code
$x_{1} 1$
$x_{2} 00$
$x_{3} 0100$
$x_{4} 0101$
$x_{5} 0110$
$x_{6} 0111$

Second Code
$x_{1} 1$
$x_{2} 00$
$x_{3} 010$
$x_{4} 0110$
$x_{5} 01110$
$x_{6} 01111$

Second Five Symbol Source

- $\mathrm{p}\left(x_{1}\right)=.4 \mathrm{p}\left(x_{2}\right)=.2 \mathrm{p}\left(x_{3}\right)=.2 \mathrm{p}\left(x_{4}\right)=.1 \mathrm{p}\left(x_{5}\right)=.1$
- $H(X)=2.1219$ bits

C_{1}

C_{2}

Second Five Symbol Source

	C_{1}	C_{2}
x_{1}	0	11
x_{2}	10	01
x_{3}	111	00
x_{4}	1101	101
x_{5}	1100	100

Which code is preferable?

Second Five Symbol Source

- $\mathrm{p}\left(x_{1}\right)=.4 \mathrm{p}\left(x_{2}\right)=.2 \mathrm{p}\left(x_{3}\right)=.2 \mathrm{p}\left(x_{4}\right)=.1 \mathrm{p}\left(x_{5}\right)=.1$
- $\mathrm{H}(\mathrm{X})=2.122$ bits $\mathrm{L}(\mathrm{C})=2.2$ bits
- variance of code C_{1}

$$
\sigma_{1}^{2}=0.4(1-2.2)^{2}+0.2(2-2.2)^{2}+0.2(3-2.2)^{2}+0.2(4-2.2)^{2}=1.36
$$

- variance of code C_{2}

$$
\sigma_{2}^{2}=0.8(2-2.2)^{2}+0.2(3-2.2)^{2}=0.16
$$

Midterm Test

- Friday, October 21, 2022
- During class time (11:30-12:20)
- Counts for 20% of the final mark
- Aids allowed
- One page of notes on $8.5^{\prime \prime} \times 11.5^{\prime \prime}$ paper (both sides)
- Calculator
- Cellphones, tablets, laptops, or any other electronic devices are NOT ALLOWED

Nonbinary Codes

- The Huffman algorithm for nonbinary codes $(J>2)$ follows the same procedure as for binary codes except that J symbols are combined at each stage.
- This requires that the number of symbols in the source X is $K^{\prime}=J+c(J-1), K^{\prime} \geq K$

$$
c=\left\lceil\frac{K-J}{J-1}\right\rceil
$$

Nonbinary Example

- J=3 K=6
- $\mathrm{p}\left(x_{1}\right)=1 / 3 \mathrm{p}\left(x_{2}\right)=1 / 6 \mathrm{p}\left(x_{3}\right)=1 / 6 \mathrm{p}\left(x_{4}\right)=1 / 9 \mathrm{p}\left(x_{5}\right)=1 / 9$ $p\left(x_{6}\right)=1 / 9$
- $H(X)=1.544$ trits

Nonbinary Example

- J=3 K=6
- $c=\left\lceil\frac{K-J}{J-1}\right\rceil=2$ so $K^{\prime}=J+c(J-1)=3+2(2)=7$
- Add an extra symbol x_{7} with $p\left(x_{7}\right)=0$
- $\mathrm{p}\left(x_{1}\right)=1 / 3 \mathrm{p}\left(x_{2}\right)=1 / 6 \mathrm{p}\left(x_{3}\right)=1 / 6 \mathrm{p}\left(x_{4}\right)=1 / 9 \mathrm{p}\left(x_{5}\right)=1 / 9$ $p\left(x_{6}\right)=1 / 9 p\left(x_{7}\right)=0$

Nonbinary Example with an Extra Symbol

x_{1}	1
x_{2}	00
x_{3}	01
x_{4}	02
x_{5}	20
x_{6}	21
x_{7}	22
$\mathrm{~L}(\mathrm{C})=1.667$ trits	
$\mathrm{H}(\mathrm{X})=1.544$ trits	
$\zeta=92.6 \%$	

Nonbinary Example with no Extra Symbol

$$
\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 01 \\
x_{3} & 02 \\
x_{4} & 000 \\
x_{5} & 001 \\
x_{6} & 002 \\
\\
\mathrm{~L}(\mathrm{C})=2.0 \text { trits } \\
\mathrm{H}(\mathrm{X})=1.544 \text { trits } \\
\zeta=77.2 \%
\end{array}
$$

Codes for Different Output Alphabets

- $K=13$
- $\mathrm{p}\left(x_{1}\right)=1 / 4 \mathrm{p}\left(x_{2}\right)=1 / 4$

$$
\begin{aligned}
& \mathrm{p}\left(x_{3}\right)=1 / 16 \quad \mathrm{p}\left(x_{4}\right)=1 / 16 \quad \mathrm{p}\left(x_{5}\right)=1 / 16 \quad \mathrm{p}\left(x_{6}\right)=1 / 16 \\
& \mathrm{p}\left(x_{7}\right)=1 / 16 \quad \mathrm{p}\left(x_{8}\right)=1 / 16 \quad \mathrm{p}\left(x_{9}\right)=1 / 16 \\
& \mathrm{p}\left(x_{10}\right)=1 / 64 \quad \mathrm{p}\left(x_{11}\right)=1 / 64 \quad \mathrm{p}\left(x_{12}\right)=1 / 64 \quad \mathrm{p}\left(x_{13}\right)=1 / 64
\end{aligned}
$$

- J=2 to 13

Codes for Different Output Alphabets

$\mathrm{p}\left(x_{i}\right)$	x_{i}	13	12	11	10	9	8	7	6	5	4	3	2
$\frac{1}{4}$	x_{1}	0	0	0	0	0	0	0	0	0	0	0	00
$\frac{1}{4}$	x_{2}	1	1	1	1	1	1	1	1	1	1	1	01
$\frac{1}{16}$	x_{3}	2	2	2	2	2	2	2	2	2	20	200	1000
$\frac{1}{16}$	x_{4}	3	3	3	3	3	3	3	3	30	21	201	1001
$\frac{1}{16}$	x_{5}	4	4	4	4	4	4	4	4	31	22	202	1010
$\frac{1}{16}$	x_{6}	5	5	5	5	5	5	5	50	32	23	210	1011
$\frac{1}{16}$	x_{7}	6	6	6	6	6	6	60	51	33	30	211	1100
$\frac{1}{16}$	x_{8}	7	7	7	7	7	70	61	52	34	31	212	1101
$\frac{1}{16}$	x_{9}	8	8	8	8	80	71	62	53	40	32	220	1110
$\frac{1}{64}$	x_{10}	9	9	9	90	81	72	63	54	41	330	221	111100
$\frac{1}{64}$	x_{11}	A	A	A 0	91	82	73	64	550	42	331	2220	111101
$\frac{1}{64}$	x_{12}	B	B 0	A 1	92	83	74	65	551	43	332	2221	111110
$\frac{1}{64}$	x_{13}	C	B 1	A 2	93	84	75	66	552	44	333	2222	111111
Average													
length	$\mathrm{L}(\mathrm{C})$	1	$\frac{33}{32}$	$\frac{67}{64}$	$\frac{17}{16}$	$\frac{9}{8}$	$\frac{19}{1} 9$	$\frac{5}{4}$	$\frac{87}{64}$	$\frac{23}{16}$	$\frac{25}{16}$	$\frac{131}{64}$	$\frac{25}{8}$

Codes for Different Output Alphabets

J	$L(C)$
2	3.125
3	2.047
4	1.563
5	1.438
6	1.359
7	1.250
8	1.188
9	1.125
10	1.063
11	1.047
12	1.031
13	1.000

Codes for Different Output Alphabets

J	$\mathrm{~L}(\mathrm{C})$	ζ
2	3.125	1.000
3	2.047	0.963
4	1.563	1.000
5	1.438	0.936
6	1.359	0.889
7	1.250	0.891
8	1.188	0.877
9	1.125	0.876
10	1.063	0.885
11	1.047	0.863
12	1.031	0.845
13	1.000	0.844

Code Efficiency

Binary and Quaternary Codes

x_{1}	00	0
x_{2}	01	1
x_{3}	1000	20
x_{4}	1001	21
x_{5}	1010	22
x_{6}	1011	23
x_{7}	1100	30
x_{8}	1101	31
x_{9}	1110	32
x_{10}	111100	330
x_{11}	111101	331
x_{12}	111110	332
x_{13}	111111	333

Huffman Codes

- Symbol probabilities must be known a priori
- The redundancy of the code

$$
\mathrm{L}(\mathrm{C})-\mathrm{H}(\mathrm{X})(\text { for } J=b)
$$

is typically nonzero

- Error propagation can occur
- Codewords have variable length

Variable to Fixed Length Codes

Variable to Fixed Length Codes

- Two questions:

1. What is the best mapping from sourcewords to codewords?
2. How to ensure unique encodability?

Average Bit Rate

$A B R=\frac{\text { average codeword length }}{\text { average sourceword length }}$

$$
\begin{aligned}
& =\frac{L}{\mathrm{~L}(\mathrm{~S})} \\
& \mathrm{L}(\mathrm{~S})=\sum_{i=1}^{M} \mathrm{p}\left(s_{i}\right) m_{i}
\end{aligned}
$$

M - number of sourcewords
s_{i} - sourceword i
m_{i} - length of sourceword i
$\mathrm{p}\left(s_{i}\right)$ - probability of sourceword i

Average Bit Rate

- For fixed to variable length codes

$$
\begin{aligned}
\mathrm{ABR} & =\frac{\text { average codeword length }}{\text { average sourceword length }} \\
& =\frac{\mathrm{L}(\mathrm{C})}{1} \text { or } \frac{\mathrm{L}_{N}(\mathrm{C})}{N}
\end{aligned}
$$

- Design criterion: minimize $\mathrm{L}(\mathrm{C})$ or $\mathrm{L}_{N}(\mathrm{C})$
- minimize the $A B R$

Variable to Fixed Length Codes

- Design criterion: minimize the Average Bit Rate

$$
A B R=\frac{L}{L(S)}
$$

- $A B R \geq H(X) \quad(L(C) \geq H(X)$ for fixed to variable length codes)
- $L(S)$ should be as large as possible so that the $A B R$ is close to $H(X)$

Code Efficiency

- Fixed to variable length codes

$$
\zeta=\frac{H(X)}{L(C)} \leq 1
$$

- Variable to fixed length codes

$$
\zeta=\frac{H(X)}{A B R} \leq 1
$$

Binary Tunstall Code $K=3, L=3$

Let $x_{1}=\mathrm{a}, x_{2}=\mathrm{b}$ and $x_{3}=\mathrm{c}$

a	000
b	001
$c a$	010
$c b$	011
$c c a$	100
$c c b$	101
$c c c$	110

Unused codeword is 111

Tunstall Codes

Tunstall codes must satisfy the Kraft inequality

$$
\sum_{i=1}^{M} K^{-m_{i}} \leq 1
$$

M - number of sourcewords
K - source alphabet size
m_{i} - length of sourceword i

Binary Tunstall Code Construction

- Source X with K symbols
- Choose a codeword length L where $2^{L}>K$

1. Form a tree with a root and K branches labelled with the symbols
2. If the number of leaves is greater than $2^{L}-(K-1)$, go to Step 4
3. Find the leaf with the highest probability and extend it to have K branches, go to Step 2
4. Assign codewords to the leaves

$$
\begin{aligned}
& K=3, L=3 \\
& p(a)=.7, p(b)=.2, p(c)=.1
\end{aligned}
$$

$\mathrm{ABR}=3 /[3(.343+.098+.049)+2(.14+.07)+.2+.1]$
$=1.37$ bits per symbol
$H(X)=1.16$ bits per symbol
$\zeta=H(X) / A B R=84.7 \%$

The Codewords

aaa 000

$$
\text { aab } 001
$$

$$
\text { aac } 010
$$

$$
\text { ab } 011
$$

$$
\text { ac } \quad 100
$$

$$
\text { b } \quad 101
$$

$$
\text { c } \quad 110
$$

- What if a or aa is left at the end of the sequence of source symbols?
- there are no corresponding codewords
- Solution: use the unused codeword 111
- a 1110 or 111000
- aa 1111 or 111001

Tunstall Codes for a Binary Source

- $L=3, K=2, J=2, \mathrm{p}\left(x_{1}\right)=0.7, \mathrm{p}\left(x_{2}\right)=0.3$
- $J^{L}=8$

Seven sourcewords Eight sourcewords Codewords
$x_{1} x_{1} x_{1} x_{1} x_{1}$
$x_{1} x_{1} x_{1} x_{1} x_{2}$
$x_{1} x_{1} x_{1} x_{2}$
$x_{1} x_{1} x_{2}$
$x_{1} x_{2}$
$x_{2} x_{1}$
$x_{2} x_{2}$
$x_{1} x_{1} x_{1} x_{1} x_{1}$
$x_{1} x_{1} x_{1} x_{1} x_{2}$
$x_{1} x_{1} x_{1} x_{2}$
$x_{1} x_{1} x_{2}$
$x_{1} x_{2} x_{1}$
$x_{1} x_{2} x_{2}$
$x_{2} x_{1}$
$x_{2} x_{2}$

000
001
010
011
100
101
110
111

- The end of the sequence of source symbols can be

$$
x_{1}, x_{2}, x_{1} x_{1}, x_{1} x_{1} x_{1}, \text { or } x_{1} x_{1} x_{1} x_{1}
$$

- With $M=7$ sourcewords the codeword 111 is unused so they can be assigned as follows
$-x_{1} \quad 111000$
$-x_{2} \quad 111001$
$-x_{1} x_{1} \quad 111010$
- $x_{1} x_{1} x_{1} 111011$
$-x_{1} x_{1} x_{1} x_{1} 111100$

Huffman Code for a Binary Source

- $N=3, K=2, \mathrm{p}\left(x_{1}\right)=0.7, \mathrm{p}\left(x_{2}\right)=0.3$
- Eight sourcewords
- $\mathrm{A}=x_{1} x_{1} x_{1} \quad \mathrm{p}(\mathrm{A})=.34300$
- $\mathrm{B}=x_{1} x_{1} x_{2} \quad \mathrm{p}(\mathrm{B})=.14711$
- $\mathrm{C}=x_{1} x_{2} x_{1} \quad \mathrm{p}(\mathrm{C})=.147010$
- $\mathrm{D}=x_{2} x_{1} x_{1} \quad \mathrm{p}(\mathrm{D})=.147011$
- $\mathrm{E}=x_{2} x_{2} x_{1} \quad \mathrm{p}(\mathrm{E})=.0631000$
- $\mathrm{F}=x_{2} x_{1} x_{2} \quad \mathrm{p}(\mathrm{F})=.0631001$
- $\mathrm{G}=x_{1} x_{2} x_{2} \mathrm{p}(\mathrm{G})=.0631010$
- $\mathrm{H}=x_{2} x_{2} x_{2} \mathrm{p}(\mathrm{H})=.0271011$

Code Comparison

- $\mathrm{H}(\mathrm{X})=.8813$
- Tunstall Code $L=3$ (7 codewords)

$$
A B R=.9762 \quad \zeta=90.3 \%
$$

- Tunstall Code $L=3$ (8 codewords)

$$
A B R=.9138 \quad \zeta=96.4 \%
$$

- Huffman Code $N=1$ (2 codewords)

$$
L(C)=1.0 \quad \zeta=88.1 \%
$$

- Huffman Code $N=3$ (8 codewords)

$$
\mathrm{L}_{3}(\mathrm{C}) / 3=.9087 \quad \zeta=97.0 \%
$$

Error Propagation

- Received Huffman codeword sequence

001100110011 ...

A B A B A B ...

- Sequence with one bit error

$$
\begin{array}{ccc}
011 & 1001 & 1001 \\
\text { D } & \text { F } & \text { F }
\end{array}
$$

Error Propagation

- The corresponding Tunstall codeword sequence

$$
\begin{aligned}
& 000110001000110001 \ldots \\
& x_{1} x_{1} x_{1} x_{1} x_{1} x_{2} x_{1} x_{1} x_{1} x_{1} x_{1} x_{2} \ldots
\end{aligned}
$$

- Sequence with one bit error

$$
\begin{aligned}
& 010110001000110001 \ldots \\
& x_{1} x_{1} x_{1} x_{2} x_{2} x_{1} x_{1} x_{1} x_{1} x_{1} x_{2} \ldots
\end{aligned}
$$

