ECE 515 Information Theory

Distortionless Source Coding 2

Huffman Coding

- The length of Huffman codewords has to be an integer number of symbols, while the selfinformation of the source symbols is almost always a non-integer.
- Thus the theoretical minimum message compression cannot always be achieved.
- For a binary source with $\mathrm{p}\left(x_{1}\right)=0.1$ and $\mathrm{p}\left(x_{2}\right)=0.9$
$-H(X)=.469$ so the optimal average codeword length is .469 bits
- Symbol x_{1} should be encoded to $I_{1}=-\log _{2}(0.1)=3.32$ bits
- Symbol x_{2} should be encoded to $I_{2}=-\log _{2}(0.9)=.152$ bits

Improving Huffman Coding

- One way to overcome the redundancy limitation is to encode blocks of several symbols.
In this way the per-symbol inefficiency is spread over an entire block.

$$
-N=1: \zeta=46.9 \% \quad N=2: \zeta=72.7 \% \quad N=3: \zeta=80.0 \%
$$

- However, using blocks is difficult to implement as there is a block for every possible combination of symbols, so the number of blocks (and thus codewords) increases exponentially with their length.
- The probability of each block must be computed.

Peter Elias (1923-2001)

Jorma J. Rissanen (1932 - 2020)

Arithmetic Coding

- Arithmetic coding bypasses the idea of replacing a source symbol (or groups of symbols) with a specific codeword.
- Instead, a sequence of symbols is encoded to an interval in $[0,1)$.
- Useful when dealing with sources with small alphabets, such as binary sources, and alphabets with highly skewed probabilities.

Arithmetic Coding Applications

- JPEG, MPEG-1, MPEG-2
- Huffman and arithmetic coding
- JPEG2000, MPEG-4
- Arithmetic coding only
- ZIP
- prediction by partial matching (PPMd) algorithm
- H.263, H. 264

Arithmetic Coding

- Lexicographic ordering
- Cumulative probabilities $P_{j}=\sum_{i=1}^{j-1} \mathrm{p}\left(u_{i}\right)$

$$
\begin{array}{ccc}
u_{1} & x_{1} x_{1} \ldots x_{1} & P_{1} \\
u_{2} & x_{1} x_{1} \ldots x_{2} & P_{2} \\
\vdots & \vdots & \vdots \\
u_{\kappa^{N}} & x_{K} x_{K} \ldots x_{K} & P_{K^{N}}
\end{array}
$$

- The interval P_{j} to P_{j+1} defines u_{j}

Example

- $K=2 \quad N=3 \quad \mathrm{p}\left(x_{1}\right)=0.1 \quad \mathrm{p}\left(x_{2}\right)=0.9$

$$
\begin{array}{llll}
u_{1} & x_{1} x_{1} x_{1} & 0 & \\
u_{2} & x_{1} x_{1} x_{2} & .001 & \\
u_{3} & x_{1} x_{2} x_{1} & .010 & \\
u_{4} & x_{1} x_{2} x_{2} & .019 & \\
u_{5} & x_{2} x_{1} x_{1} & .100 & \\
u_{6} & x_{2} x_{1} x_{2} & .109 & \\
u_{7} & x_{2} x_{2} x_{1} & .190 & \\
u_{8} & x_{2} x_{2} x_{2} & .271 & P_{9}=1
\end{array}
$$

Arithmetic Coding

- A sequence of source symbols is represented by an interval in $[0,1)$.
- The probabilities of the source symbols are used to successively narrow the interval used to represent the sequence.
- As the interval becomes smaller, the number of bits needed to specify it grows.
- A high probability symbol narrows the interval less than a low probability symbol so that high probability symbols contribute fewer bits to the codeword.
- For a sequence u of N symbols, the codeword length should be approximately $I_{u}=\left\lceil-\log _{2} \mathrm{p}(u)\right\rceil$ bits

Arithmetic Coding

- The output of an arithmetic encoder is a stream of bits.
- However we can think that there is a prefix 0 , and the stream represents a fractional binary number between 0 and 1

$01101010 \rightarrow 0.01101010$

- In the examples, decimal numbers will be used for convenience.

Arithmetic Coding

- The initial intervals are based on the cumulative probabilities

$$
\begin{aligned}
P_{k} & =\sum_{i=1}^{k-1} \mathrm{p}\left(x_{i}\right) \\
P_{1}=0 \text { and } P_{K+1} & =1
\end{aligned}
$$

- Source symbol k is assigned the interval $\left[P_{k}, P_{k+1}\right.$)

Example 1

- Encode string $b c c b$ from the source $X=\{a, b, c\}$
- $K=3$
- $\mathrm{p}(a)=\mathrm{p}(b)=\mathrm{p}(c)=1 / 3$
- $P_{1}=0 P_{2}=.3333 P_{3}=.6667 P_{4}=1$
- The encoder maintains two numbers, low and high, which represent an interval [/ow,high) in [0,1)
- Initially low = 0 and high = 1

Example 1

- The interval between low and high is divided among the symbols of the source alphabet according to their probabilities

Example 1

Example 1

high	0.6667
$p(c)=1 / 3$	
$p(b)=1 / 3$	

Example 1

high	0.6667
$p(c)=1 / 3$	
$p(b)=1 / 3$	

Example 1

high	0.6667
$p(c)=1 / 3$	
$p(b)=1 / 3$	
$p(a)=1 / 3$	
low	0.6543

Example 2

- Source X with $K=3$ symbols $\left\{x_{1}, x_{2}, x_{3}\right\}$
- $\mathrm{p}\left(x_{1}\right)=0.5 \mathrm{p}\left(x_{2}\right)=0.3 \mathrm{p}\left(x_{3}\right)=0.2$
$-0 \leq x_{1}<0.5$
$-0.5 \leq x_{2}<0.8$
$-0.8 \leq x_{3}<1$
$-P_{1}=0, P_{2}=.5, P_{3}=.8, P_{4}=1$
- The encoder maintains two numbers, low and high, which represent an interval [/ow,high) in $[0,1)$
- Initially low = 0 and high = 1

Arithmetic Coding Algorithm

Set low to 0
Set high to 1
While there are still input symbols Do
get next input symbol
range $=$ high - low
high $=$ low + range \times symbol_high_interval
low $=$ low + range \times symbol_low_interval

End While

output number between high and low

Arithmetic Coding Example 2

- $\mathrm{p}\left(x_{1}\right)=0.5, \mathrm{p}\left(x_{2}\right)=0.3, \mathrm{p}\left(x_{3}\right)=0.2$
- Symbol intervals: $0 \leq x_{1}<.5 .5 \leq x_{2}<.8 \quad .8 \leq x_{3}<1$
- $P_{1}=0, P_{2}=.5, P_{3}=.8, P_{4}=1$
- low $=0.0$ high $=1.0$
- Symbol sequence $x_{1} x_{2} x_{3} x_{2}$
- Iteration 1

$$
\begin{aligned}
& x_{1}: \text { range }=1.0-0.0=1.0 \\
& \text { high }=0.0+1.0 \times 0.5=0.5 \\
& \text { low }=0.0+1.0 \times 0.0=0.0
\end{aligned}
$$

- Iteration 2

$$
\begin{aligned}
& x_{2}: \text { range }=0.5-0.0=0.5 \\
& \text { high }=0.0+0.5 \times 0.8=0.40 \\
& \text { low }=0.0+0.5 \times 0.5=0.25
\end{aligned}
$$

- Iteration 3

$$
\begin{aligned}
& x_{3}: \text { range }=0.4-0.25=0.15 \\
& \text { high }=0.25+0.15 \times 1.0=0.40 \\
& \text { low }=0.25+0.15 \times 0.8=0.37
\end{aligned}
$$

Arithmetic Coding Example 2

- Iteration 3

$$
\begin{aligned}
& x_{3}: \text { range }=0.4-0.25=0.15 \\
& \text { high }=0.25+0.15 \times 1.0=0.40 \\
& \text { low }=0.25+0.15 \times 0.8=0.37
\end{aligned}
$$

- Iteration 4

$$
\begin{aligned}
& x_{2}: \text { range }=0.4-0.37=0.03 \\
& \text { low }=0.37+0.03 \times 0.5=0.385 \\
& \text { high }=0.37+0.03 \times 0.8=0.394
\end{aligned}
$$

- $0.385 \leq x_{1} x_{2} x_{3} x_{2}<0.394$
$0.385=0.0110001 .$.
$0.394=0.0110010 \ldots$
- The first 5 bits of the codeword are 01100
- If there are no additional symbols to be encoded the codeword is 011001

Arithmetic Coding Example 3

Suppose that we want to encode the message BILL GATES

Character
SPACE
A
B
E
G
I
L
S
T

Probability
1/10
1/10
1/10
1/10
1/10
1/10
2/10
1/10
1/10

Interval

$$
\begin{aligned}
& 0.00 \leq x_{1}<0.10 \\
& 0.10 \leq x_{2}<0.20 \\
& 0.20 \leq x_{3}<0.30 \\
& 0.30 \leq x_{4}<0.40 \\
& 0.40 \leq x_{5}<0.50 \\
& 0.50 \leq x_{6}<0.60 \\
& 0.60 \leq x_{7}<0.80 \\
& 0.80 \leq x_{8}<0.90 \\
& 0.90 \leq x_{9}<1.00
\end{aligned}
$$

Arithmetic Coding Example 3

New Symbol	Low	High
	0.0	1.0
B	0.2	0.3
I	0.25	0.26
L	0.256	0.258
L	0.2572	0.2576
SPACE	0.25720	0.25724
G	0.257216	0.257220
A	0.2572164	0.2572168
T	0.25721676	0.2572168
E	0.257216772	0.257216776
S	0.2572167752	0.2572167756

Binary Codeword

- 0.2572167752 in binary is 0.01000001110110001111010101100101...
- 0.2572167756 in binary is 0.01000001110110001111010101100111...
- The codeword is then

0100000111011000111101010110011

- 31 bits long

Decoding Algorithm

get encoded number (codeword)
Do
find symbol whose interval contains the encoded number
output the symbol
subtract symbol_low_interval from the encoded number
divide by the probability of the output symbol
Until no more symbols

Decoding BILL GATES

Encoded Number	Output Symbol	Low	High	Probability
0.2572167752	B	0.2	0.3	0.1
0.572167752	I	0.5	0.6	0.1
0.72167752	L	0.6	0.8	0.2
0.6083876	L	0.6	0.8	0.2
0.041938	SPACE	0.0	0.1	0.1
0.41938	G	0.4	0.5	0.1
0.1938	A	0.2	0.3	0.1
0.938	T	0.9	1.0	0.1
0.38	E	0.3	0.4	0.1
0.8	S	0.8	0.9	0.1
0.0				

Finite Precision

Symbol	Probability (fraction)	Interval (8-bit precision) fraction	Interval (8-bit precision) binary	Interval boundaries in binary
a	$1 / 3$	$[0,85 / 256)$	$[0.00000000$,	00000000
b	$1 / 3$	$[85 / 256,171 / 256)$	$[0.01010101$,	01010101
c	$1 / 3$	$[171 / 256,1)$	$[0.10101011$,	10101011
			$1.00000000)$	11111111

Renormalization

Symbol	Probability (fraction)	Interval boundaries	Digits that can be output	Boundaries after renormalization
a	$1 / 3$	$\mathbf{0 0 0 0 0 0 0 0}$	0	00000000
b	$1 / 3$	01010100	none	010101001
c	$1 / 3$	10101010		10101010
		11111111	1	01010110

Terminating Symbol

Symbol	Probability (fraction)	Interval (8-bit precision) fraction	Interval (8-bit precision) binary	Interval boundaries in binary
a	1/3	[0,85/256)	[0.00000000,	00000000
			$0.01010101)$	01010100
b	1/3	[85/256,170/256)	[0.01010101,	01010101
			$0.10101011)$	10101001
c	1/3	[170/256,255/256)	[0.10101011,	10101010
			$0.11111111)$	11111110
term	1/256	[255/256,1)	[0.11111111, 1.00000000)	11111111

Huffman vs Arithmetic Codes

- $K=4 X=\{a, b, c, d\}$
- $\mathrm{p}(a)=.5, \mathrm{p}(b)=.25, \mathrm{p}(c)=.125, \mathrm{p}(d)=.125$
- Huffman code

a	0
b	10
c	110
d	111

Huffman vs Arithmetic Codes

- $X=\{a, b, c, d\}$
- $\mathrm{p}(a)=.5, \mathrm{p}(b)=.25, \mathrm{p}(c)=.125, \mathrm{p}(d)=.125$
- $P_{1}=0, P_{2}=.5, P_{3}=.75, P_{4}=.875, P_{5}=1$
- Arithmetic code intervals

$$
\begin{array}{ll}
a & {[0, .5)} \\
b & {[.5, .75)} \\
c & {[.75, .875)} \\
d & {[.875,1)}
\end{array}
$$

Huffman vs Arithmetic Codes

- encode $a b c d c$
- Huffman codewords
- 010110111110

12 bits

- Arithmetic code
- low $=.010110111110_{2}$
- high = $.010110111111_{2}$
- codeword 01011011111012 bits
- $\mathrm{p}(u)=(.5)(.25)(.125)^{3}=2^{-12}$
- $I_{u}=\left\lceil-\log _{2} \mathrm{p}(u)\right\rceil=12$ bits

Huffman vs Arithmetic Codes

- $X=\{a, b, c, d\}$
- $\mathrm{p}(a)=.7, \mathrm{p}(b)=.12, \mathrm{p}(c)=.10, \mathrm{p}(d)=.08$
- Huffman code

a	0
b	10
c	110
d	111

Huffman vs Arithmetic Codes

- $X=\{a, b, c, d\}$
- $\mathrm{p}(a)=.7, \mathrm{p}(b)=.12, \mathrm{p}(c)=.10, \mathrm{p}(d)=.08$
- $P_{1}=0, P_{2}=.7, P_{3}=.82, P_{4}=.92, P_{5}=1$
- Arithmetic code intervals

$$
\begin{array}{ll}
a & {[0, .7)} \\
b & {[.7, .82)} \\
c & {[.82, .92)} \\
d & {[.92,1)}
\end{array}
$$

Huffman vs Arithmetic Codes

- encode $a a a b$
- Huffman codewords
- 000105 bits
- Arithmetic code
- low = .00111101...2
- high = .01001000...2
- codeword 012 bits
- $\mathrm{p}(u)=(.7)^{3}(.12)=.04116$
- $I_{u}=\left\lceil-\log _{2} \mathrm{p}(u)\right\rceil=\lceil 4.60\rceil=5$ bits

Huffman vs Arithmetic Codes

- encode abcdaaa
- Huffman codewords
- 010110111000

12 bits

- Arithmetic code
- low = .1001000100001101...2
- high = .1001000100011100...2
- codeword 10010001000112 bits
- $\mathrm{p}(u)=(.7)^{3}(.12)(.10)(.08)=.0002305$
- $I_{u}=\left\lceil-\log _{2} \mathrm{p}(u)\right\rceil=\lceil 12.08\rceil=13$ bits

Huffman vs Arithmetic Codes

- Huffman code $L(C)=1.480$ bits
- $H(X)=1.351$ bits
- Redundancy $=\mathrm{L}(\mathrm{C})-\mathrm{H}(\mathrm{X})=.129$ bit
- Arithmetic code will achieve the theoretical performance $\mathrm{H}(\mathrm{X})$
- For a file of size $N=10^{6}$ symbols
- Arithmetic code $N \times H(X)=1.351 \times 10^{6}$ bits
- Huffman code
- Difference $N \times L(C)=1.480 \times 10^{6}$ bits 1.29×10^{5} bits

Robustness of Huffman Codes and

 Universal Source Coding
Robustness of Huffman Coding

$$
\begin{aligned}
& p_{k}=\mathrm{p}\left(x_{k}\right) \quad \text { (actual) } \\
& q_{k}=p_{k}+\varepsilon_{k} \quad \text { (estimated) } \\
& \sum_{k=1}^{K} p_{k}=1 \quad \sum_{k=1}^{K} q_{k}=1 \\
& \therefore \sum_{k=1}^{K} \varepsilon_{k}=0
\end{aligned}
$$

Robustness of Huffman Coding

$$
\begin{aligned}
& L(C)=\sum_{k=1}^{K} p_{k} l_{k}^{\prime} \quad L(\hat{C})=\sum_{k=1}^{K} p_{k} \hat{i}_{k} \\
& \begin{aligned}
\Delta L & =L(\hat{C})-L(C)=
\end{aligned} \sum_{k=1}^{K} p_{k} \hat{l}_{k}-\sum_{k=1}^{K} p_{k} l_{k} \\
& \\
& \\
& =\sum_{k=1}^{K} p_{k}\left(\hat{l}_{k}-l_{k}\right)
\end{aligned}
$$

Upper and Lower Bounds

- $p(X)$ true $p d f$ $\operatorname{codec} \mathrm{L}(\mathrm{C})=\sum_{k=1}^{k} \mathrm{p}\left(x_{k}\right) I_{k}$
- $q(X)$ estimated pdf code $\hat{C} L(\hat{C})=\sum_{k=1}^{K} p\left(x_{k}\right) \hat{l}_{k}$

$$
\frac{H(p(X))}{\log _{b} J} \leq L(C)<\frac{H(p(X))}{\log _{b} J}+1
$$

$\frac{H(p(X))+D(p(X)| | q(X))}{\log _{b} J} \leq L(\hat{C})<\frac{H(p(X))+D(p(X)| | q(X))}{\log _{b} J}+1$

Upper and Lower Bounds

$\frac{H(p(X))+D(p(X)| | q(X))}{\log _{b} J} \leq L(\hat{C})<\frac{H(p(X))+D(p(X)| | q(X))}{\log _{b} J}+1$

$$
\frac{\mathrm{H}(\mathrm{p}, \mathrm{q})}{\log _{b} J} \leq \mathrm{L}(\hat{\mathrm{C}})<\frac{\mathrm{H}(\mathrm{p}, \mathrm{q})}{\log _{b} J}+1
$$

$$
\text { if } b=j \mathrm{H}(\mathrm{p}, \mathrm{q}) \leq \mathrm{L}(\hat{\mathrm{C}})<\mathrm{H}(\mathrm{p}, \mathrm{q})+1
$$

Gadsby by Ernest Vincent Wright

If youth, throughout all history, had had a champion to stand up for it; to show a doubting world that a child can think; and, possibly, do it practically; you wouldn't constantly run across folks today who claim that "a child don't know anything." A child's brain starts functioning at birth; and has, amongst its many infant convolutions, thousands of dormant atoms, into which God has put a mystic possibility for noticing an adult's act, and figuring out its purport.
Up to about its primary school days a child thinks, naturally, only of play. But many a form of play contains disciplinary factors. "You can't do this," or "that puts you out," shows a child that it must think, practically or fail. Now, if, throughout childhood, a brain has no opposition, it is plain that it will attain a position of "status quo," as with our ordinary animals. Man knows not why a cow, dog or lion was not born with a brain on a par with ours; why such animals cannot add, subtract, or obtain from books and schooling, that paramount position which Man holds today.

Lossless Compression Techniques

1 Model and code
The source is modelled as a random variable. The probabilities (statistics) are given or acquired.
2 Dictionary-based
There is no explicit model and no explicit statistics gathering. Instead, a codebook (or dictionary) is used to map sourcewords into codewords.

Model and Code

- Huffman code
- Tunstall code
- Fano code
- Shannon code
- Arithmetic code

Dictionary-based Techniques

- Lempel-Ziv
- LZ77 - sliding window
- LZ78 - explicit dictionary
- Adaptive Huffman coding
- Due to patents, LZ77 and LZ78 led to many variants

LZ77 Variants	LZR	LZSS	DEFLATE	LZH		
LZ78 Variants	LZW	LZC	LZT	LZMW	LZJ	LZFG

- Zip methods use LZH and LZR among other techniques
- UNIX compress uses LZC (a variant of LZW)

Lempel-Ziv Coding

Applications:

- zip
- gzip
- Stacker
- ...

Applications:

- GIF
- V. 42
- compress
- ...

Lempel-Ziv Coding

- Source symbol sequences are replaced by codewords that are dynamically determined.
- The code table is encoded into the compressed data so it can be reconstructed during decoding.

Lempel-Ziv Example

Let X be a source of information for which we do not know the distribution \mathbf{p}. Suppose that we want to source encode the following sequence S generated by the source X :

$$
S=001000101110000011011010111101 \ldots
$$

$$
\begin{aligned}
& S=\underbrace{00}_{S_{3}=00} 1000101110000011011010111101 \ldots \\
& S=00 \underbrace{10}_{S_{4}=10} 00101110000011011010111101 \ldots \\
& S=0010 \underbrace{001}_{S_{5}=001} 01110000011011010111101 \ldots \\
& S=0010001 \underbrace{01}_{S_{6}=01} 110000011011010111101 \ldots \\
& S=001000101 \underbrace{11}_{S_{7}=11} 0000011011010111101 \ldots \\
& S=00100010111 \underbrace{000}_{S_{8}=000} 0011011010111101 \ldots \\
& S=00100010111000 \underbrace{0011}_{S_{9}=0011} 011010111101 \ldots \\
& S=001000101110000011 \underbrace{011}_{S_{10}=011} 010111101 \ldots \\
& S=001000101110000011011 \underbrace{010}_{S_{11}=010} 111101 \ldots \\
& S=001000101110000011011010 \underbrace{111}_{S_{12}=111} 101 \ldots \\
& S=001000101110000011011010111 \underbrace{101}_{S_{13}=101} \cdots
\end{aligned}
$$

Table 2.4: Example of a Lempel-Ziv code.

position	subsequence S_{n}		numerical representation	binary codeword
1	S_{1}	0		
2	S_{2}	1		
3	S_{3}	00	11	0010
4	S_{4}	10	21	0100
5	S_{5}	001	32	0111
6	S_{6}	01	12	0011
7	S_{7}	11	22	0101
8	S_{8}	000	31	0110
9	S_{9}	0011	52	1011
10	S_{10}	011	62	1101
11	S_{11}	010	61	1100
12	S_{12}	111	72	1111
13	S_{13}	101	42	1001

Lempel-Ziv Codeword

$S_{C}=00100100011100110101011010111101110011111001$

Compression Comparison

Compression as a percentage of the original file size

File Type	UNIX Compact Adaptive Huffman	UNIX Compress Lempel-Ziv-Welch
ASCII File	66%	44%
Speech File	65%	64%
Image File	94%	88%

Compression Comparison

Compressed to (percentage):	Lempel-Ziv (unix gzip)	Huffman (unix pack)
html (25k) Token based ascii file	20\%	65\%
pdf (690k) Binary file	75\%	95\%
ABCD (1.5k) Random ascii file	33\%	28.2\%
ABCD(500k) Random ascii file	29\%	28.1\%
$\mathrm{ABCD}-\left\{\mathrm{p}_{\mathrm{A}}=0.5, \mathrm{p}_{\mathrm{B}}=0.25, \mathrm{p}_{\mathrm{C}}=0.125, \mathrm{p}_{\mathrm{D}}=0.125\right\}$		
Lempel-Ziv is asymptotically optimal		

