
ECE 515
Information Theory

Distortionless Source Coding 2

1

Huffman Coding

• The length of Huffman codewords has to be an
integer number of symbols, while the self-
information of the source symbols is almost always a
non-integer.

• Thus the theoretical minimum message compression
cannot always be achieved.

• For a binary source with p(x1) = 0.1 and p(x2) = 0.9
– H(X) = .469 so the optimal average codeword length is .469 bits
– Symbol x1 should be encoded to l1 = -log2(0.1) = 3.32 bits
– Symbol x2 should be encoded to l2 = -log2(0.9) = .152 bits

2

Improving Huffman Coding

• One way to overcome the redundancy limitation is to
encode blocks of several symbols.
In this way the per-symbol inefficiency is spread over
an entire block.
– N = 1: ζ = 46.9% N = 2: ζ = 72.7% N = 3: ζ = 80.0%

• However, using blocks is difficult to implement as
there is a block for every possible combination of
symbols, so the number of blocks (and thus
codewords) increases exponentially with their
length.
– The probability of each block must be computed.

3

Peter Elias (1923 – 2001)

4

Jorma J. Rissanen (1932 – 2020)

5

Arithmetic Coding

• Arithmetic coding bypasses the idea of
replacing a source symbol (or groups of
symbols) with a specific codeword.

• Instead, a sequence of symbols is encoded to
an interval in [0,1).

• Useful when dealing with sources with small
alphabets, such as binary sources, and
alphabets with highly skewed probabilities.

6

Arithmetic Coding Applications

• JPEG, MPEG-1, MPEG-2
– Huffman and arithmetic coding

• JPEG2000, MPEG-4
– Arithmetic coding only

• ZIP
– prediction by partial matching (PPMd) algorithm

• H.263, H.264

7

Arithmetic Coding

• Lexicographic ordering
• Cumulative probabilities

• The interval Pj to Pj+1 defines uj
8

−

=

=∑
1

1

p()
j

j i
i

P u





  



1 1 1 1 1

2 1 1 2 2

N NK K KK K

u x x x P
u x x x P

u x x x P

Example

• K = 2 N = 3 p(x1) = 0.1 p(x2) = 0.9

9

1 1 1 1

2 1 1 2

3 1 2 1

4 1 2 2

5 2 1 1

6 2 1 2

7 2 2 1

8 2 2 2

0
.001
.010
.019
.100
.109
.190
.271

u x x x
u x x x
u x x x
u x x x
u x x x
u x x x
u x x x
u x x x P9 = 1

Arithmetic Coding
• A sequence of source symbols is represented by an

interval in [0,1).
• The probabilities of the source symbols are used to

successively narrow the interval used to represent the
sequence.

• As the interval becomes smaller, the number of bits
needed to specify it grows.

• A high probability symbol narrows the interval less than a
low probability symbol so that high probability symbols
contribute fewer bits to the codeword.

• For a sequence u of N symbols, the codeword length
should be approximately bits

10

= −  2log p()ul u

Arithmetic Coding

• The output of an arithmetic encoder is a stream of
bits.

• However we can think that there is a prefix 0, and
the stream represents a fractional binary number
between 0 and 1

• In the examples, decimal numbers will be used for
convenience.

01101010 0110 00. 101→

11

Arithmetic Coding

• The initial intervals are based on the cumulative
probabilities

P1 = 0 and PK+1 = 1
• Source symbol k is assigned the interval [Pk,Pk+1)

12

−

=

=∑
1

1

p()
k

k i
i

P x

Example 1

• Encode string bccb from the source X = {a,b,c}
• K=3
• p(a) = p(b) = p(c) = 1/3
• P1 = 0 P2 = .3333 P3 = .6667 P4 = 1
• The encoder maintains two numbers, low and high,

which represent an interval [low,high) in [0,1)
• Initially low = 0 and high = 1

13

Example 1

• The interval between low and high is divided among
the symbols of the source alphabet according to
their probabilities

low

high

0

1

0.3333

0.6667

a

b

cp(c)=1/3

p(b)=1/3

p(a)=1/3

14

Example 1

low

high

0

1

0.3333

0.6667

a

b

c

b

low = 0.3333

high = 0.6667

15

Example 1

low

high

0.3333

0.6667

0.4444

0.5556

a

b

c

c

low = 0.5556

high = 0.6667

p(c)=1/3

p(b)=1/3

p(a)=1/3

16

Example 1

low

high

0.5556

0.6667

0.5926

0.6296

a

b

c

c

low = 0.6296

high = 0.6667

p(c)=1/3

p(b)=1/3

p(a)=1/3

17

Example 1

low

high

0.6296

0.6667

0.6420

0.6543

a

b

c

b

low = 0.6420

high = 0.6543

p(c)=1/3

p(b)=1/3

p(a)=1/3

18

Example 2

• Source X with K = 3 symbols {x1,x2,x3}
• p(x1) = 0.5 p(x2) = 0.3 p(x3) = 0.2

– 0 ≤ x1 < 0.5
– 0.5 ≤ x2 < 0.8
– 0.8 ≤ x3 < 1
– P1 = 0, P2 = .5, P3 = .8, P4 = 1

• The encoder maintains two numbers, low and high,
which represent an interval [low,high) in [0,1)

• Initially low = 0 and high = 1

19

Arithmetic Coding Algorithm

Set low to 0
Set high to 1

While there are still input symbols Do
get next input symbol
range = high – low
high = low + range × symbol_high_interval
low = low + range × symbol_low_interval

End While
output number between high and low

20

Arithmetic Coding Example 2
• p(x1) = 0.5, p(x2) = 0.3, p(x3) = 0.2
• Symbol intervals: 0 ≤ x1 < .5 .5 ≤ x2 < .8 .8 ≤ x3 < 1
• P1 = 0, P2 = .5, P3 = .8, P4 = 1
• low = 0.0 high = 1.0
• Symbol sequence x1x2x3x2

• Iteration 1
x1: range = 1.0 - 0.0 = 1.0
high = 0.0 + 1.0 × 0.5 = 0.5
low = 0.0 + 1.0 × 0.0 = 0.0

• Iteration 2
x2: range = 0.5 - 0.0 = 0.5
high = 0.0 + 0.5 × 0.8 = 0.40
low = 0.0 + 0.5 × 0.5 = 0.25

• Iteration 3
x3: range = 0.4 - 0.25 = 0.15
high = 0.25 + 0.15 × 1.0 = 0.40
low = 0.25 + 0.15 × 0.8 = 0.37

21

Arithmetic Coding Example 2
• Iteration 3

x3: range = 0.4 - 0.25 = 0.15
high = 0.25 + 0.15 × 1.0 = 0.40
low = 0.25 + 0.15 × 0.8 = 0.37

• Iteration 4
x2: range = 0.4 - 0.37 = 0.03
low = 0.37 + 0.03 × 0.5 = 0.385
high = 0.37 + 0.03 × 0.8 = 0.394

• 0.385≤ x1x2x3x2<0.394
0.385 = 0.0110001…
0.394 = 0.0110010...

• The first 5 bits of the codeword are 01100

• If there are no additional symbols to be encoded the codeword is 011001

22

Arithmetic Coding Example 3
Suppose that we want to encode the message

BILL GATES

23

Character Probability Interval

SPACE 1/10
A 1/10
B 1/10
E 1/10
G 1/10
I 1/10
L 2/10
S 1/10
T 1/10

≤ <30.20 0.30x
≤ <20.10 0.20x
≤ <10.00 0.10x

≤ <40.30 0.40x
≤ <50.40 0.50x
≤ <60.50 0.60x
≤ <70.60 0.80x
≤ <80.80 0.90x
≤ <90.90 1.00x

240.0

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

0.9

()

A

B

E

G

I

L

S

T

0.2

0.3

()

A

B

E

G

I

L

S

T

0.25

0.26

()

A

B

E

G

I

L

S

T

0.256

0.258

()

A

B

E

G

I

L

S

T

0.2572

0.2576

()

A

B

E

G

I

L

S

T

0.25720

0.25724

()

A

B

E

G

I

L

S

T

0.257216

0.25722

()

A

B

E

G

I

L

S

T

0.2572164

0.2572168

()

A

B

E

G

I

L

S

T

0.25721676

0.2572168

()

A

B

E

G

I

L

S

T

0.257216772

0.257216776

()

A

B

E

G

I

L

S

T

0.2572167752

0.2572167756

Arithmetic Coding Example 3

25

New Symbol Low High

0.0 1.0

B 0.2 0.3

I 0.25 0.26

L 0.256 0.258

L 0.2572 0.2576

SPACE 0.25720 0.25724

G 0.257216 0.257220

A 0.2572164 0.2572168

T 0.25721676 0.2572168

E 0.257216772 0.257216776

S 0.2572167752 0.2572167756

Binary Codeword

• 0.2572167752 in binary is
0.01000001110110001111010101100101…

• 0.2572167756 in binary is
0.01000001110110001111010101100111…

• The codeword is then
0100000111011000111101010110011

• 31 bits long

26

Decoding Algorithm

get encoded number (codeword)
Do

find symbol whose interval contains the encoded
number

output the symbol
subtract symbol_low_interval from the encoded

number
divide by the probability of the output symbol

Until no more symbols

27

Decoding BILL GATES

28

Encoded
Number

Output
Symbol

Low High Probability

0.2572167752 B 0.2 0.3 0.1

0.572167752 I 0.5 0.6 0.1

0.72167752 L 0.6 0.8 0.2

0.6083876 L 0.6 0.8 0.2

0.041938 SPACE 0.0 0.1 0.1

0.41938 G 0.4 0.5 0.1

0.1938 A 0.2 0.3 0.1

0.938 T 0.9 1.0 0.1

0.38 E 0.3 0.4 0.1

0.8 S 0.8 0.9 0.1

0.0

Finite Precision

Symbol
Probability
(fraction)

Interval
(8-bit precision)

fraction

Interval
(8-bit precision)

binary

Interval
boundaries in

binary

a 1/3 [0,85/256) [0.00000000,
0.01010101)

00000000
01010100

b 1/3 [85/256,171/256) [0.01010101,
0.10101011)

01010101
10101010

c 1/3 [171/256,1) [0.10101011,
1.00000000)

10101011
11111111

29

Renormalization

Symbol
Probability
(fraction)

Interval
boundaries

Digits that can
be output

Boundaries
after

renormalization

a 1/3 00000000
01010100

0 00000000
10101001

b 1/3 01010101
10101010

none 01010101
10101010

c 1/3 10101011
11111111

1 01010110
11111111

30

Terminating Symbol

Symbol
Probability
(fraction)

Interval
(8-bit precision)

fraction

Interval
(8-bit precision)

binary

Interval
boundaries in

binary

a 1/3 [0,85/256) [0.00000000,
0.01010101)

00000000
01010100

b 1/3 [85/256,170/256) [0.01010101,
0.10101011)

01010101
10101001

c 1/3 [170/256,255/256) [0.10101011,
0.11111111)

10101010
11111110

term 1/256 [255/256,1) [0.11111111,
1.00000000)

11111111

31

Huffman vs Arithmetic Codes

• K = 4 X = {a,b,c,d}
• p(a) = .5, p(b) = .25, p(c) =.125, p(d) = .125
• Huffman code

a 0
b 10
c 110
d 111

32

Huffman vs Arithmetic Codes

• X = {a,b,c,d}
• p(a) = .5, p(b) = .25, p(c) =.125, p(d) = .125
• P1 = 0, P2 = .5, P3 = .75, P4 = .875, P5 = 1
• Arithmetic code intervals

a [0, .5)
b [.5, .75)
c [.75, .875)
d [.875, 1)

33

Huffman vs Arithmetic Codes

• encode abcdc
• Huffman codewords

• 010110111110 12 bits

• Arithmetic code
• low = .0101101111102

• high = .0101101111112

• codeword 010110111110 12 bits
• p(u) = (.5)(.25)(.125)3 = 2-12

•
34

= − =  2log p() 12 bitsul u

Huffman vs Arithmetic Codes

• X = {a,b,c,d}
• p(a) = .7, p(b) = .12, p(c) =.10, p(d) = .08
• Huffman code

a 0
b 10
c 110
d 111

35

Huffman vs Arithmetic Codes

• X = {a,b,c,d}
• p(a) = .7, p(b) = .12, p(c) =.10, p(d) = .08
• P1 = 0, P2 = .7, P3 = .82, P4 = .92, P5 = 1
• Arithmetic code intervals

a [0, .7)
b [.7, .82)
c [.82, .92)
d [.92, 1)

36

Huffman vs Arithmetic Codes

• encode aaab
• Huffman codewords

• 00010 5 bits

• Arithmetic code
• low = .00111101…2

• high = .01001000…2

• codeword 01 2 bits
• p(u) = (.7)3(.12) = .04116
•

37

= − = =      2log p() 4.60 5 bitsul u

Huffman vs Arithmetic Codes

• encode abcdaaa
• Huffman codewords

• 010110111000 12 bits

• Arithmetic code
• low = .1001000100001101…2

• high = .1001000100011100…2

• codeword 100100010001 12 bits
• p(u) = (.7)3(.12)(.10)(.08) = .0002305
•

38

= − = =      2log p() 12.08 13 bitsul u

Huffman vs Arithmetic Codes

• Huffman code L(C) = 1.480 bits
• H(X) = 1.351 bits
• Redundancy = L(C) – H(X) = .129 bit
• Arithmetic code will achieve the theoretical

performance H(X)
• For a file of size N = 106 symbols

• Arithmetic code N×H(X) = 1.351×106 bits
• Huffman code N×L(C) = 1.480×106 bits
• Difference 1.29×105 bits

39

Robustness of Huffman Codes
and

Universal Source Coding

40

Robustness of Huffman Coding

41

k k kq p ε= +

p()k kp x=

1

1
K

k
k

p
=

=∑
1

1
K

k
k

q
=

=∑

1

0
K

k
k

ε
=

∴ =∑

(actual)

(estimated)

Robustness of Huffman Coding

42

1

L(C)
K

k k
k

p l
=

=∑
1

ˆˆL(C)
K

k k
k

p l
=

=∑

()
1 1

1

ˆˆL L(C) L(C)

ˆ

K K

k k k k
k k

K

k k k
k

p l p l

p l l

= =

=

∆ = − = −

= −

∑ ∑

∑

Upper and Lower Bounds

• p(X) true pdf code C

• q(X) estimated pdf code

43

≤ < +
H(p(X)) H(p(X))L(C) 1
log logb bJ J

+ +
≤ < +

H(p(X)) D(p(X)||q(X)) H(p(X)) D(p(X)||q(X))ˆL(C) 1
log logb bJ J

1

ˆˆL(C) p()
K

k k
k

x l
=

=∑Ĉ

1

L(C) p()
K

k k
k

x l
=

=∑

Upper and Lower Bounds

44

ˆif H(p,q) L(C) H(p,q) 1b j= ≤ < +

+ +
≤ < +

H(p(X)) D(p(X)||q(X)) H(p(X)) D(p(X)||q(X))ˆL(C) 1
log logb bJ J

H(p,q) H(p,q)ˆL(C) 1
log logb bJ J

≤ < +

Gadsby by Ernest Vincent Wright
If youth, throughout all history, had had a champion to stand up for it;

to show a doubting world that a child can think; and, possibly, do it
practically; you wouldn’t constantly run across folks today who claim
that “a child don’t know anything.” A child’s brain starts functioning at
birth; and has, amongst its many infant convolutions, thousands of
dormant atoms, into which God has put a mystic possibility for noticing
an adult’s act, and figuring out its purport.
Up to about its primary school days a child thinks, naturally, only of play.
But many a form of play contains disciplinary factors. “You can’t do
this,” or “that puts you out,” shows a child that it must think, practically
or fail. Now, if, throughout childhood, a brain has no opposition, it
is plain that it will attain a position of “status quo,” as with our ordinary
animals. Man knows not why a cow, dog or lion was not born with a
brain on a par with ours; why such animals cannot add, subtract, or
obtain from books and schooling, that paramount position which Man
holds today.

45

Lossless Compression Techniques

1 Model and code
The source is modelled as a random variable. The
probabilities (statistics) are given or acquired.

2 Dictionary-based
There is no explicit model and no explicit statistics
gathering. Instead, a codebook (or dictionary) is used
to map sourcewords into codewords.

46

Model and Code

• Huffman code
• Tunstall code
• Fano code
• Shannon code
• Arithmetic code

47

Dictionary-based Techniques
• Lempel-Ziv

– LZ77 – sliding window
– LZ78 – explicit dictionary

• Adaptive Huffman coding
• Due to patents, LZ77 and LZ78 led to many variants

• Zip methods use LZH and LZR among other techniques
• UNIX compress uses LZC (a variant of LZW)

LZHDEFLATELZSSLZRLZ77
Variants

LZFGLZJLZMWLZTLZCLZWLZ78
Variants

48

Lempel-Ziv Coding

49

Lempel-Ziv Coding

• Source symbol sequences are replaced by
codewords that are dynamically determined.

• The code table is encoded into the
compressed data so it can be reconstructed
during decoding.

50

Lempel-Ziv Example

51

52

53

Lempel-Ziv Codeword

54

Compression Comparison

55

File Type UNIX Compact
Adaptive Huffman

UNIX Compress
Lempel-Ziv-Welch

ASCII File 66% 44%

Speech File 65% 64%

Image File 94% 88%

Compression as a percentage of the original file size

Compression Comparison

56

	ECE 515�Information Theory
	Huffman Coding
	Improving Huffman Coding
	Peter Elias (1923 – 2001)
	Jorma J. Rissanen (1932 – 2020)
	Arithmetic Coding
	Arithmetic Coding Applications
	Arithmetic Coding
	Example
	Arithmetic Coding
	Arithmetic Coding
	Arithmetic Coding
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 2
	Arithmetic Coding Algorithm
	Arithmetic Coding Example 2
	Arithmetic Coding Example 2
	Arithmetic Coding Example 3
	Slide Number 24
	Arithmetic Coding Example 3
	Binary Codeword
	Decoding Algorithm
	Decoding BILL GATES
	Finite Precision
	Renormalization
	Terminating Symbol
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Huffman vs Arithmetic Codes
	Robustness of Huffman Codes�and�Universal Source Coding
	Robustness of Huffman Coding
	Robustness of Huffman Coding
	Upper and Lower Bounds
	Upper and Lower Bounds
	Gadsby by Ernest Vincent Wright
	Lossless Compression Techniques
	Model and Code
	Dictionary-based Techniques
	Lempel-Ziv Coding
	Lempel-Ziv Coding
	Lempel-Ziv Example
	Slide Number 52
	Slide Number 53
	Lempel-Ziv Codeword
	Compression Comparison
	Compression Comparison

