
ECE 515
Information Theory

Distortionless Source Coding 2

1



Huffman Coding

• The length of Huffman codewords has to be an 
integer number of symbols, while the self-
information of the source symbols is almost always a 
non-integer.

• Thus the theoretical minimum message compression 
cannot always be achieved.

• For a binary source with p(x1) = 0.1 and p(x2) = 0.9
– H(X) = .469 so the optimal average codeword length is .469 bits
– Symbol x1 should be encoded to l1 = -log2(0.1) = 3.32 bits
– Symbol x2 should be encoded to l2 = -log2(0.9) = .152 bits
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Improving Huffman Coding

• One way to overcome the redundancy limitation is to 
encode blocks of several symbols.
In this way the per-symbol inefficiency is spread over 
an entire block.
– N = 1: ζ = 46.9% N = 2: ζ = 72.7%      N = 3: ζ = 80.0% 

• However, using blocks is difficult to implement as 
there is a block for every possible combination of 
symbols, so the number of blocks (and thus 
codewords) increases exponentially with their 
length.
– The probability of each block must be computed. 

3



Peter Elias (1923 – 2001)

4



Jorma J. Rissanen (1932 – 2020) 
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Arithmetic Coding

• Arithmetic coding bypasses the idea of 
replacing a source symbol (or groups of 
symbols) with a specific codeword.

• Instead, a sequence of symbols is encoded to 
an interval in [0,1).

• Useful when dealing with sources with small 
alphabets, such as binary sources, and 
alphabets with highly skewed probabilities.
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Arithmetic Coding Applications

• JPEG, MPEG-1, MPEG-2
– Huffman and arithmetic coding

• JPEG2000, MPEG-4
– Arithmetic coding only

• ZIP 
– prediction by partial matching (PPMd) algorithm

• H.263, H.264
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Arithmetic Coding

• Lexicographic ordering
• Cumulative probabilities

• The interval Pj to Pj+1 defines uj
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Example

• K = 2   N = 3 p(x1) = 0.1   p(x2) = 0.9
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Arithmetic Coding
• A sequence of source symbols is represented by an 

interval in [0,1).
• The probabilities of the source symbols are used to 

successively narrow the interval used to represent the 
sequence.

• As the interval becomes smaller, the number of bits 
needed to specify it grows.

• A high probability symbol narrows the interval less than a 
low probability symbol so that high probability symbols 
contribute fewer bits to the codeword.

• For a sequence u of N symbols, the codeword length 
should be approximately bits
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Arithmetic Coding

• The output of an arithmetic encoder is a stream of 
bits.

• However we can think that there is a prefix 0, and 
the stream represents a fractional binary number 
between 0 and 1

• In the examples, decimal numbers will be used for 
convenience.

01101010      0110 00. 101→

11



Arithmetic Coding 

• The initial intervals are based on the cumulative 
probabilities

P1 = 0 and PK+1 = 1
• Source symbol k is assigned the interval [Pk,Pk+1)
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Example 1

• Encode string bccb from the source X = {a,b,c}
• K=3
• p(a) = p(b) = p(c) = 1/3
• P1 = 0 P2 = .3333 P3 = .6667 P4 = 1
• The encoder maintains two numbers, low and high, 

which represent an interval [low,high) in [0,1)
• Initially low = 0 and high = 1
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Example 1

• The interval between low and high is divided among 
the symbols of the source alphabet according to 
their probabilities

low

high

0

1

0.3333

0.6667

a

b

cp(c)=1/3

p(b)=1/3

p(a)=1/3
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Example 1

low

high

0

1

0.3333

0.6667

a

b

c

b

low = 0.3333

high = 0.6667
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Example 1

low

high

0.3333

0.6667

0.4444

0.5556

a

b

c

c

low = 0.5556

high = 0.6667

p(c)=1/3

p(b)=1/3

p(a)=1/3
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Example 1

low

high

0.5556

0.6667

0.5926

0.6296

a

b

c

c

low = 0.6296

high = 0.6667

p(c)=1/3

p(b)=1/3

p(a)=1/3
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Example 1

low

high

0.6296

0.6667

0.6420

0.6543

a

b

c

b

low = 0.6420

high = 0.6543

p(c)=1/3

p(b)=1/3

p(a)=1/3

18



Example 2

• Source X with K = 3 symbols  {x1,x2,x3}
• p(x1) = 0.5  p(x2) = 0.3  p(x3) = 0.2

– 0 ≤ x1 < 0.5
– 0.5 ≤ x2 < 0.8 
– 0.8 ≤ x3 < 1
– P1 = 0, P2 = .5, P3 = .8, P4 = 1

• The encoder maintains two numbers, low and high, 
which represent an interval [low,high) in [0,1)

• Initially low = 0 and high = 1
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Arithmetic Coding Algorithm

Set low to 0
Set high to 1

While there are still input symbols Do
get next input symbol
range = high – low
high = low + range × symbol_high_interval
low = low + range × symbol_low_interval

End While
output number between high and low
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Arithmetic Coding Example 2
• p(x1) = 0.5, p(x2) = 0.3, p(x3) = 0.2
• Symbol intervals: 0 ≤ x1 < .5   .5 ≤ x2 < .8   .8 ≤ x3 < 1
• P1 = 0, P2 = .5, P3 = .8, P4 = 1
• low = 0.0   high = 1.0
• Symbol sequence x1x2x3x2

• Iteration 1
x1: range = 1.0 - 0.0 = 1.0
high = 0.0 + 1.0 × 0.5 = 0.5
low = 0.0 + 1.0 × 0.0 = 0.0

• Iteration 2
x2: range = 0.5 - 0.0 = 0.5
high = 0.0 + 0.5 × 0.8 = 0.40
low = 0.0 + 0.5 × 0.5 = 0.25

• Iteration 3
x3: range = 0.4 - 0.25 = 0.15
high = 0.25 + 0.15 × 1.0 = 0.40
low = 0.25 + 0.15 × 0.8 = 0.37

21



Arithmetic Coding Example 2
• Iteration 3

x3: range = 0.4 - 0.25 = 0.15
high = 0.25 + 0.15 × 1.0 = 0.40
low = 0.25 + 0.15 × 0.8 = 0.37

• Iteration 4
x2: range = 0.4 - 0.37 = 0.03
low = 0.37 + 0.03 × 0.5 = 0.385
high = 0.37 + 0.03 × 0.8 = 0.394

• 0.385≤ x1x2x3x2<0.394
0.385 = 0.0110001…
0.394 = 0.0110010...

• The first 5 bits of the codeword are 01100

• If there are no additional symbols to be encoded the codeword is 011001
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Arithmetic Coding Example 3
Suppose that we want to encode the message

BILL GATES
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Character Probability Interval

SPACE 1/10
A 1/10 
B 1/10
E 1/10
G 1/10
I 1/10
L 2/10
S 1/10
T 1/10

≤ <30.20 0.30x
≤ <20.10 0.20x
≤ <10.00 0.10x

≤ <40.30 0.40x
≤ <50.40 0.50x
≤ <60.50 0.60x
≤ <70.60 0.80x
≤ <80.80 0.90x
≤ <90.90 1.00x
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Arithmetic Coding  Example 3
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New Symbol Low High

0.0 1.0

B 0.2 0.3

I 0.25 0.26

L 0.256 0.258

L 0.2572 0.2576

SPACE 0.25720 0.25724

G 0.257216 0.257220

A 0.2572164 0.2572168

T 0.25721676 0.2572168

E 0.257216772 0.257216776

S 0.2572167752 0.2572167756



Binary Codeword

• 0.2572167752 in binary is
0.01000001110110001111010101100101…

• 0.2572167756 in binary is
0.01000001110110001111010101100111…

• The codeword is then
0100000111011000111101010110011

• 31 bits long
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Decoding Algorithm

get encoded number (codeword)
Do

find symbol whose interval contains the encoded 
number

output the symbol
subtract symbol_low_interval from the encoded  

number
divide by the probability of the output symbol

Until no more symbols 
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Decoding BILL GATES
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Encoded 
Number

Output 
Symbol

Low High Probability

0.2572167752 B 0.2 0.3 0.1

0.572167752 I 0.5 0.6 0.1

0.72167752 L 0.6 0.8 0.2

0.6083876 L 0.6 0.8 0.2

0.041938 SPACE 0.0 0.1 0.1

0.41938 G 0.4 0.5 0.1

0.1938 A 0.2 0.3 0.1

0.938 T 0.9 1.0 0.1

0.38 E 0.3 0.4 0.1

0.8 S 0.8 0.9 0.1

0.0



Finite Precision

Symbol
Probability
(fraction)

Interval
(8-bit precision) 

fraction

Interval
(8-bit precision) 

binary

Interval
boundaries in 

binary

a 1/3 [0,85/256) [0.00000000,
0.01010101)

00000000
01010100

b 1/3 [85/256,171/256) [0.01010101, 
0.10101011)

01010101
10101010

c 1/3 [171/256,1) [0.10101011, 
1.00000000)

10101011
11111111
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Renormalization

Symbol
Probability
(fraction)

Interval 
boundaries

Digits that can 
be output

Boundaries 
after

renormalization

a 1/3 00000000
01010100

0 00000000
10101001

b 1/3 01010101
10101010

none 01010101
10101010

c 1/3 10101011
11111111

1 01010110
11111111

30



Terminating Symbol

Symbol
Probability
(fraction)

Interval
(8-bit precision) 

fraction

Interval
(8-bit precision) 

binary

Interval
boundaries in 

binary

a 1/3 [0,85/256) [0.00000000,
0.01010101)

00000000
01010100

b 1/3 [85/256,170/256) [0.01010101, 
0.10101011)

01010101
10101001

c 1/3 [170/256,255/256) [0.10101011, 
0.11111111)

10101010
11111110

term 1/256 [255/256,1) [0.11111111,
1.00000000)

11111111
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Huffman vs Arithmetic Codes

• K = 4  X = {a,b,c,d}
• p(a) = .5, p(b) = .25, p(c) =.125, p(d) = .125
• Huffman code

a 0
b 10
c 110
d 111
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Huffman vs Arithmetic Codes

• X = {a,b,c,d}
• p(a) = .5, p(b) = .25, p(c) =.125, p(d) = .125
• P1 = 0, P2 = .5, P3 = .75, P4 = .875, P5 = 1
• Arithmetic code intervals

a [0, .5)
b [.5, .75)
c [.75, .875)
d [.875, 1)
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Huffman vs Arithmetic Codes

• encode abcdc
• Huffman codewords

• 010110111110 12 bits

• Arithmetic code
• low  = .0101101111102

• high = .0101101111112

• codeword 010110111110 12 bits
• p(u) = (.5)(.25)(.125)3 = 2-12

•
34
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Huffman vs Arithmetic Codes

• X = {a,b,c,d}
• p(a) = .7, p(b) = .12, p(c) =.10, p(d) = .08
• Huffman code

a 0
b 10
c 110
d 111
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Huffman vs Arithmetic Codes

• X = {a,b,c,d}
• p(a) = .7, p(b) = .12, p(c) =.10, p(d) = .08
• P1 = 0, P2 = .7, P3 = .82, P4 = .92, P5 = 1
• Arithmetic code intervals

a [0, .7)
b [.7, .82)
c [.82, .92)
d [.92, 1)
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Huffman vs Arithmetic Codes

• encode aaab
• Huffman codewords

• 00010 5 bits

• Arithmetic code
• low  = .00111101…2

• high = .01001000…2

• codeword 01 2 bits
• p(u) = (.7)3(.12) = .04116
•
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Huffman vs Arithmetic Codes

• encode abcdaaa
• Huffman codewords

• 010110111000 12 bits

• Arithmetic code
• low  = .1001000100001101…2

• high = .1001000100011100…2

• codeword 100100010001 12 bits
• p(u) = (.7)3(.12)(.10)(.08) = .0002305
•
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Huffman vs Arithmetic Codes

• Huffman code L(C) = 1.480 bits
• H(X) = 1.351 bits
• Redundancy = L(C) – H(X) = .129 bit
• Arithmetic code will achieve the theoretical 

performance H(X)
• For a file of size  N = 106 symbols 

• Arithmetic code N×H(X) = 1.351×106 bits
• Huffman code N×L(C) = 1.480×106 bits
• Difference 1.29×105 bits

39



Robustness of Huffman Codes
and

Universal Source Coding
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Robustness of Huffman Coding
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Robustness of Huffman Coding
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Upper and Lower Bounds

• p(X) true pdf code C

• q(X) estimated pdf code
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1

L(C) p( )
K

k k
k

x l
=

=∑



Upper and Lower Bounds
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Gadsby by Ernest Vincent Wright
If youth, throughout all history, had had a champion to stand up for it; 

to show a doubting world that a child can think; and, possibly, do it 
practically; you wouldn’t constantly run across folks today who claim 
that “a child don’t know anything.” A child’s brain starts functioning at 
birth; and has, amongst its many infant convolutions, thousands of 
dormant atoms, into which God has put a mystic possibility for noticing 
an adult’s act, and figuring out its purport.
Up to about its primary school days a child thinks, naturally, only of play. 
But many a form of play contains disciplinary factors. “You can’t do 
this,” or “that puts you out,” shows a child that it must think, practically 
or fail. Now, if, throughout childhood, a brain has no opposition, it 
is plain that it will attain a position of “status quo,” as with our ordinary 
animals. Man knows not why a cow, dog or lion was not born with a 
brain on a par with ours; why such animals cannot add, subtract, or 
obtain from books and schooling, that paramount position which Man 
holds today.
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Lossless Compression Techniques

1 Model and code
The source is modelled as a random variable.  The 
probabilities (statistics) are given or acquired.

2 Dictionary-based
There is no explicit model and no explicit statistics 
gathering. Instead, a codebook (or dictionary) is used 
to map sourcewords into codewords.
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Model and Code

• Huffman code
• Tunstall code
• Fano code
• Shannon code
• Arithmetic code
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Dictionary-based Techniques
• Lempel-Ziv

– LZ77 – sliding window
– LZ78 – explicit dictionary

• Adaptive Huffman coding
• Due to patents, LZ77 and LZ78 led to many variants

• Zip methods use LZH and LZR among other techniques
• UNIX compress uses LZC (a variant of LZW)

LZHDEFLATELZSSLZRLZ77 
Variants

LZFGLZJLZMWLZTLZCLZWLZ78 
Variants
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Lempel-Ziv Coding
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Lempel-Ziv Coding

• Source symbol sequences are replaced by 
codewords that are dynamically determined.

• The code table is encoded into the 
compressed data so it can be reconstructed 
during decoding.
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Lempel-Ziv Example
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Lempel-Ziv Codeword
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Compression Comparison
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File Type UNIX Compact
Adaptive Huffman

UNIX Compress
Lempel-Ziv-Welch

ASCII File 66% 44%

Speech File 65% 64%

Image File 94% 88%

Compression as a percentage of the original file size



Compression Comparison
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