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License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed
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License II

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this
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License III

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor
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License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice,
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License V

terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted
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License VI

under Section 4(b).
e. Except as otherwise agreed in writing by the Licensor or as may be

otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
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License VII

License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice
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License VIII

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.
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Part 0

Preface
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About These Lecture Slides

� This document constitutes a detailed set of lecture slides on signals and
systems, covering both the continuous-time and discrete-time cases.

� These slides are organized in such a way as to facilitate the teaching of a
course that covers: only the continuous-time case, or only the
discrete-time case, or both the continuous-time and discrete-time cases.

� To teach a course on only the continuous-time case, these slides can be
used in conjunction with the following textbook:

2 M. D. Adams, Continuous-Time Signals and Systems, Edition 2.0,
University of Victoria, Victoria, BC, Canada, Feb. 2020. xxx + 366 pages.
ISBN 978-1-55058-657-2 (print), ISBN 978-1-55058-658-9 (PDF). Available
online from http://www.ece.uvic.ca/~mdadams/sigsysbook.

� The author is currently in the process of developing a new textbook that
covers both the continuous-time and discrete-time cases. These lecture
slides are also intended for use with this new textbook, when it becomes
available.
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Typesetting Conventions

� In a definition, the term being defined is often typeset in a font like this.

� To emphasize particular words, the words are typeset in a font like this.
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Part 1

Introduction
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Signals

� A signal is a function of one or more variables that conveys information
about some (usually physical) phenomenon.

� For a function f , in the expression f (t1, t2, . . . , tn), each of the {tk} is
called an independent variable, while the function value itself is referred
to as a dependent variable.

� Some examples of signals include:
2 a voltage or current in an electronic circuit
2 the position, velocity, or acceleration of an object
2 a force or torque in a mechanical system
2 a flow rate of a liquid or gas in a chemical process
2 a digital image, digital video, or digital audio
2 a stock market index
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Classification of Signals
� Number of independent variables (i.e., dimensionality):

2 A signal with one independent variable is said to be one dimensional (e.g.,
audio).

2 A signal with more than one independent variable is said to be
multi-dimensional (e.g., image).

� Continuous or discrete independent variables:
2 A signal with continuous independent variables is said to be continuous

time (CT) (e.g., voltage waveform).
2 A signal with discrete independent variables is said to be discrete time

(DT) (e.g., stock market index).
� Continuous or discrete dependent variable:

2 A signal with a continuous dependent variable is said to be continuous
valued (e.g., voltage waveform).

2 A signal with a discrete dependent variable is said to be discrete valued
(e.g., digital image).

� A continuous-valued CT signal is said to be analog (e.g., voltage
waveform).

� A discrete-valued DT signal is said to be digital (e.g., digital audio).
Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 3



Graphical Representation of Signals

0−10−20−30 10 20 30

x(t)

1

2

3

t

Continuous-Time (CT) Signal

0 321−3 −2 −1
n

x(n)

1

2

3

Discrete-Time (DT) Signal
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Systems

� A system is an entity that processes one or more input signals in order to
produce one or more output signals.

x1
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...
...

System

︸︷︷︸ ︸︷︷︸
Input Signals Output Signals
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Classification of Systems

� Number of inputs:
2 A system with one input is said to be single input (SI).
2 A system with more than one input is said to be multiple input (MI).

� Number of outputs:
2 A system with one output is said to be single output (SO).
2 A system with more than one output is said to be multiple output (MO).

� Types of signals processed:
2 A system can be classified in terms of the types of signals that it processes.
2 Consequently, terms such as the following (which describe signals) can

also be used to describe systems:
2 one-dimensional and multi-dimensional,
2 continuous-time (CT) and discrete-time (DT), and
2 analog and digital.

2 For example, a continuous-time (CT) system processes CT signals and a
discrete-time (DT) system processes DT signals.
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Signal Processing Systems

Discrete-Time
(C/D) Converter

Continuous-to-

(D/C) Converter
Continuous-Time

Discrete-to-

System
Discrete-Time

Processing Processing

Discrete-Time
Signal
Before

Discrete-Time
Signal
After

Signal
Continuous-Time

Input

Signal
Continuous-Time

Output

Processing a Continuous-Time Signal With a Discrete-Time System

Discrete-to-
Continuous-Time
(D/C) Converter

System
Continuous-Time

Processing Continuous-to-
Discrete-Time

(C/D) Converter

Processing

Continuous-Time
Signal
Before

Continuous-Time
Signal
After

Signal
Discrete-Time

Input

Signal
Discrete-Time

Output

Processing a Discrete-Time Signal With a Continuous-Time System

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 7



Communication Systems
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Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback
Signal

General Structure of a Feedback Control System

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 9



Why Study Signals and Systems?

� Engineers build systems that process/manipulate signals.

� We need a formal mathematical framework for the study of such systems.

� Such a framework is necessary in order to ensure that a system will meet
the required specifications (e.g., performance and safety).

� If a system fails to meet the required specifications or fails to work
altogether, negative consequences usually ensue.

� When a system fails to operate as expected, the consequences can
sometimes be catastrophic.
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System Failure Example: Tacoma Narrows Bridge

� The (original) Tacoma Narrows Bridge was a suspension bridge linking
Tacoma and Gig Harbor (WA, USA).

� This mile-long bridge, with a 2,800-foot main span, was the third largest
suspension bridge at the time of opening.

� Construction began in Nov. 1938 and took about 19 months to build at a
cost of $6,400,000.

� On July 1, 1940, the bridge opened to traffic.

� On Nov. 7, 1940 at approximately 11:00, the bridge collapsed during a
moderate (42 miles/hour) wind storm.

� The bridge was supposed to withstand winds of up to 120 miles/hour.

� The collapse was due to wind-induced vibrations and an unstable
mechanical system.

� Repair of the bridge was not possible.

� Fortunately, a dog trapped in an abandoned car was the only fatality.
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System Failure Example: Tacoma Narrows Bridge (Continued)

IMAGE OMITTED FOR COPYRIGHT REASONS.
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Part 2

Preliminaries
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Section 2.1

Signals
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Signals

� Earlier, we were introduced to CT and DT signals.

� A CT signal is called a function.

� A DT signal is called a sequence.

� Although, strictly speaking, a sequence is a special case of a function
(where the domain of the function is the integers), we will use the term
function exclusively to mean a function that is not a sequence.

� The nth element of a sequence x is denoted as either x(n) or xn.
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Remarks on Notation for Functions and Sequences

� For a real-valued function f of a real variable and an arbitrary real
number t, the expression f denotes the function f itself and the
expression f (t) denotes the value of the function f evaluated at the
point t.

� That is, f is a function and f (t) is a number.
� Unfortunately, the practice of using f (t) to denote the function f is quite

common, although strictly speaking this is an abuse of notation.
� In contexts where imprecise notation may lead to problems, one should be

careful to clearly distinguish between a function and its value.
� For the real-valued functions f and g of a real variable and an arbitrary

real number t:
2 The expression f +g denotes a function, namely, the function formed by

adding the functions f and g.
2 The expression f (t)+g(t) denotes a number, namely, the sum of: 1) the

value of the function f evaluated at t; and 2) the value of the function g
evaluated at t.

� Similar comments as the ones made above for functions also hold in the
case of sequences.
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Remarks on Notation for Functions and Sequences (Continued)

� To express that two functions f and g are equal, we can write either:
1 f = g; or
2 f (t) = g(t) for all t.

� Of the preceding two expressions, the first (i.e., f = g) is usually
preferable, as it is less verbose.

� For the functions f and g and an operation ◦ that is defined pointwise for
functions (such as addition, subtraction, multiplication, and division), the
following relationship holds:

( f ◦g)(t) = f (t)◦g(t).

� Some operations ◦ involving functions (such as convolution, to be
discussed later) cannot be defined in a pointwise manner, in which case
( f ◦g)(t) is a valid mathematical expression, while f (t)◦g(t) is not.

� Again, similar comments as the ones made above for functions also hold
in the case of sequences.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 17



Section 2.2

Properties of Signals
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Even Symmetry

� A function x is said to be even if it satisfies

x(t) = x(−t) for all t (where t is a real number).

� A sequence x is said to be even if it satisfies

x(n) = x(−n) for all n (where n is an integer).

� Geometrically, the graph of an even signal is symmetric about the origin.

� Some examples of even signals are shown below.

−1−2−3 1 2 3

1

2

−1

−2

t

x(t)

−2−3 2 3

1

2

n

−2

−1

x(n)

−1 1
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Odd Symmetry

� A function x is said to be odd if it satisfies

x(t) =−x(−t) for all t (where t is a real number).

� A sequence x is said to be odd if it satisfies

x(n) =−x(−n) for all n (where n is an integer).

� Geometrically, the graph of an odd signal is antisymmetric about the
origin.

� An odd signal x must be such that x(0) = 0.
� Some examples of odd signals are shown below.

−1−2−3 1 2 3

1

2

−1

−2

t

x(t)

2 3

1

2

n

−2

−1

x(n)

1−3 −2 −1
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Conjugate Symmetry

� A function x is said to be conjugate symmetric if it satisfies

x(t) = x∗(−t) for all t (where t is a real number).

� A sequence x is said to be conjugate symmetric if it satisfies

x(n) = x∗(−n) for all n (where n is an integer).

� The real part of a conjugate symmetric function or sequence is even.

� The imaginary part of a conjugate symmetric function or sequence is odd.

� An example of a conjugate symmetric function is a complex sinusoid
x(t) = cosωt + j sinωt, where ω is a real constant.
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Periodic Signals

� A function x is said to be periodic with period T (or T -periodic) if, for
some strictly-positive real constant T , the following condition holds:

x(t) = x(t +T ) for all t (where t is a real number).

� A T -periodic function x is said to have frequency 1
T and angular

frequency 2π

T .

� A sequence x is said to be periodic with period N (or N-periodic) if, for
some strictly-positive integer constant N, the following condition holds:

x(n) = x(n+N) for all n (where n is an integer).

� An N-periodic sequence x is said to have frequency 1
N and angular

frequency 2π

N .

� A function/sequence that is not periodic is said to be aperiodic.
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Periodic Signals (Continued 1)

� Some examples of periodic signals are shown below.

−T T

x(t)

t
2T

. . .

−2T

. . .

0 1 2 3 4 5 6 7−1−2−3−4

· · · · · ·

x(n)

n

1

2

3

4
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Periodic Signals (Continued 2)

� The period of a periodic signal is not unique. That is, a signal that is
periodic with period T is also periodic with period kT , for every (strictly)
positive integer k.

−T T

x(t)

t
2T

. . .

−2T

. . .

2T2T

T T

� The smallest period with which a signal is periodic is called the
fundamental period and its corresponding frequency is called the
fundamental frequency.
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Part 3

Continuous-Time (CT) Signals and Systems
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Section 3.1

Independent- and Dependent-Variable Transformations
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Time Shifting (Translation)

� Time shifting (also called translation) maps the input function x to the
output function y as given by

y(t) = x(t−b),

where b is a real number.

� Such a transformation shifts the function (to the left or right) along the time
axis.

� If b > 0, y is shifted to the right by |b|, relative to x (i.e., delayed in time).

� If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).
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Time Shifting (Translation): Example

x(t)

0−1−2−3 1 2 3

1

2

3

t

x(t−1)

0−1−2−3 1 2 3

1

2

3

t

x(t +1)

0−1−2−3 1 2 3

1

2

3

t
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Time Reversal (Reflection)

� Time reversal (also known as reflection) maps the input function x to the
output function y as given by

y(t) = x(−t).

� Geometrically, the output function y is a reflection of the input function x
about the (vertical) line t = 0.

x(t)

0−1−2−3 1 2 3

1

2

3

t
0−1−2−3 1 2 3

1

2

3

t

x(−t)
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Time Compression/Expansion (Dilation)

� Time compression/expansion (also called dilation) maps the input
function x to the output function y as given by

y(t) = x(at),

where a is a strictly positive real number.

� Such a transformation is associated with a compression/expansion along
the time axis.

� If a > 1, y is compressed along the horizontal axis by a factor of a, relative
to x.

� If a < 1, y is expanded (i.e., stretched) along the horizontal axis by a factor
of 1

a , relative to x.
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Time Compression/Expansion (Dilation): Example

x(t)

0

1

−1−2 21
t

x(2t)

0−1−2 21
t

1

x(t/2)

0

1

−1−2 21
t
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Time Scaling (Dilation/Reflection)

� Time scaling maps the input function x to the output function y as given by

y(t) = x(at),

where a is a nonzero real number.

� Such a transformation is associated with a dilation (i.e.,
compression/expansion along the time axis) and/or time reversal.

� If |a|> 1, the function is compressed along the time axis by a factor of |a|.
� If |a|< 1, the function is expanded (i.e., stretched) along the time axis by

a factor of
∣∣1

a

∣∣.
� If |a|= 1, the function is neither expanded nor compressed.

� If a < 0, the function is also time reversed.

� Dilation (i.e., expansion/compression) and time reversal commute.

� Time reversal is a special case of time scaling with a =−1; and time
compression/expansion is a special case of time scaling with a > 0.
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Time Scaling (Dilation/Reflection): Example

x(t)

0

1

−1−2 21
t

x(2t)

0−1−2 21
t

1

x(t/2)

0

1

−1−2 21
t

0

1

−1−2 21
t

x(−t)
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Combined Time Scaling and Time Shifting
� Consider a transformation that maps the input function x to the output

function y as given by

y(t) = x(at−b),

where a and b are real numbers and a 6= 0.

� The above transformation can be shown to be the combination of a
time-scaling operation and time-shifting operation.

� Since time scaling and time shifting do not commute, we must be
particularly careful about the order in which these transformations are
applied.

� The above transformation has two distinct but equivalent interpretations:
1 first, time shifting x by b, and then time scaling the result by a;
2 first, time scaling x by a, and then time shifting the result by b/a.

� Note that the time shift is not by the same amount in both cases.

� In particular, note that when time scaling is applied first followed by time
shifting, the time shift is by b/a, not b.
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Combined Time Scaling and Time Shifting: Example

Given x as shown
below, find

y(t) = x(2t−1).

−1−2 1 2

1

−1

t

x(t)

time shift by 1 and then time scale by 2

−1 1 2 3

1

−1

t

p(t) = x(t−1)

−1−2 1 2

1

−1

− 1
2

3
2

t

y(t) = p(2t)

1
2

time scale by 2 and then time shift by 1
2

−2 1 2
t

q(t) = x(2t)

−1

1

−1

−1−2 1 2

− 1
2

3
2

t
1
2

−1

1

y(t) = q(t−1/2)
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Two Perspectives on Independent-Variable Transformations

� A transformation of the independent variable can be viewed in terms of
1 the effect that the transformation has on the function; or
2 the effect that the transformation has on the horizontal axis.

� This distinction is important because such a transformation has opposite
effects on the function and horizontal axis.

� For example, the (time-shifting) transformation that replaces t by t−b
(where b is a real number) in x(t) can be viewed as a transformation that

1 shifts the function x right by b units; or
2 shifts the horizontal axis left by b units.

� In our treatment of independent-variable transformations, we are only
interested in the effect that a transformation has on the function.

� If one is not careful to consider that we are interested in the function
perspective (as opposed to the axis perspective), many aspects of
independent-variable transformations will not make sense.
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Amplitude Scaling

� Amplitude scaling maps the input function x to the output function y as
given by

y(t) = ax(t),

where a is a real number.
� Geometrically, the output function y is expanded/compressed in amplitude

and/or reflected about the horizontal axis.

−1−2−3 1 2 3

1

2

−1

−2

x(t)

t −1−2−3 1 2 3

1

2

−1

−2

2x(t)

t

−1−2−3 1 2 3

1

2

−1

−2

1
2 x(t)

t
−1−2−3 1 2 3

1

2

−1

−2

t

−2x(t)
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Amplitude Shifting

� Amplitude shifting maps the input function x to the output function y as
given by

y(t) = x(t)+b,

where b is a real number.

� Geometrically, amplitude shifting adds a vertical displacement to x.

−1−2−3 1 2 3

1

2

−1

−2

x(t)

t
−1−2−3 1 2 3

1

2

−1

−2

t

x(t)−2
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Combined Amplitude Scaling and Amplitude Shifting

� We can also combine amplitude scaling and amplitude shifting
transformations.

� Consider a transformation that maps the input function x to the output
function y, as given by

y(t) = ax(t)+b,

where a and b are real numbers.

� Equivalently, the above transformation can be expressed as

y(t) = a
[
x(t)+ b

a

]
.

� The above transformation is equivalent to:
1 first amplitude scaling x by a, and then amplitude shifting the resulting

function by b; or
2 first amplitude shifting x by b/a, and then amplitude scaling the resulting

function by a.
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Section 3.2

Properties of Functions
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Symmetry and Addition/Multiplication

� Sums involving even and odd functions have the following properties:
2 The sum of two even functions is even.
2 The sum of two odd functions is odd.
2 The sum of an even function and odd function is neither even nor odd,

provided that neither of the functions is identically zero.

� That is, the sum of functions with the same type of symmetry also has the
same type of symmetry.

� Products involving even and odd functions have the following properties:
2 The product of two even functions is even.
2 The product of two odd functions is even.
2 The product of an even function and an odd function is odd.

� That is, the product of functions with the same type of symmetry is even,
while the product of functions with opposite types of symmetry is odd.
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Decomposition of a Function into Even and Odd Parts

� Every function x has a unique representation of the form

x(t) = xe(t)+ xo(t),

where the functions xe and xo are even and odd, respectively.

� In particular, the functions xe and xo are given by

xe(t) = 1
2 [x(t)+ x(−t)] and xo(t) = 1

2 [x(t)− x(−t)] .

� The functions xe and xo are called the even part and odd part of x,
respectively.

� For convenience, the even and odd parts of x are often denoted as
Even{x} and Odd{x}, respectively.
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Sum of Periodic Functions

� Sum of periodic functions. For two periodic functions x1 and x2 with
fundamental periods T1 and T2, respectively, and the sum y = x1 + x2:

1 The sum y is periodic if and only if the ratio T1/T2 is a rational number (i.e.,
the quotient of two integers).

2 If y is periodic, its fundamental period is rT1 (or equivalently, qT2, since
rT1 = qT2), where T1/T2 = q/r and q and r are integers and coprime (i.e.,
have no common factors). (Note that rT1 is simply the least common
multiple of T1 and T2.)

� Although the above theorem only directly addresses the case of the sum
of two functions, the case of N functions (where N > 2) can be handled by
applying the theorem repeatedly N−1 times.
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Right-Sided Functions
� A function x is said to be right sided if, for some (finite) real constant t0,

the following condition holds:

x(t) = 0 for all t < t0

(i.e., x is only potentially nonzero to the right of t0).
� An example of a right-sided function is shown below.

t

· · ·

x(t)

t0

� A function x is said to be causal if

x(t) = 0 for all t < 0.

� A causal function is a special case of a right-sided function.
� A causal function is not to be confused with a causal system. In these two

contexts, the word “causal” has very different meanings.
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Left-Sided Functions
� A function x is said to be left sided if, for some (finite) real constant t0, the

following condition holds:

x(t) = 0 for all t > t0

(i.e., x is only potentially nonzero to the left of t0).
� An example of a left-sided function is shown below.

· · ·

t0
t

x(t)

� Similarly, a function x is said to be anticausal if

x(t) = 0 for all t > 0.

� An anticausal function is a special case of a left-sided function.
� An anticausal function is not to be confused with an anticausal system. In

these two contexts, the word “anticausal” has very different meanings.
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Finite-Duration and Two-Sided Functions

� A function that is both left sided and right sided is said to be finite
duration (or time limited).

� An example of a finite duration function is shown below.

t0 t1
t

x(t)

� A function that is neither left sided nor right sided is said to be two sided.
� An example of a two-sided function is shown below.

t

· · ·
· · ·

x(t)
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Bounded Functions

� A function x is said to be bounded if there exists some (finite) positive
real constant A such that

|x(t)| ≤ A for all t

(i.e., x(t) is finite for all t).
� For example, the sine and cosine functions are bounded, since

|sin t| ≤ 1 for all t and |cos t| ≤ 1 for all t.

� In contrast, the tangent function and any nonconstant polynomial
function p (e.g., p(t) = t2) are unbounded, since

lim
t→π/2

|tan t|= ∞ and lim
|t|→∞

|p(t)|= ∞.
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Energy and Power of a Function

� The energy E contained in the function x is given by

E =
∫

∞

−∞

|x(t)|2 dt.

� A signal with finite energy is said to be an energy signal.
� The average power P contained in the function x is given by

P = lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2 dt.

� A signal with (nonzero) finite average power is said to be a power signal.
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Section 3.3

Elementary Functions
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Real Sinusoidal Functions

� A real sinusoidal function is a function of the form

x(t) = Acos(ωt +θ),

where A, ω, and θ are real constants.
� Such a function is periodic with fundamental period T = 2π

|ω| and
fundamental frequency |ω|.

� A real sinusoid has a plot resembling that shown below.

t

Acos(ωt +θ)

Acosθ
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Complex Exponential Functions

� A complex exponential function is a function of the form

x(t) = Aeλt ,

where A and λ are complex constants.

� A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of its parameters A and λ.

� For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.
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Real Exponential Functions

� A real exponential function is a special case of a complex exponential
x(t) = Aeλt , where A and λ are restricted to be real numbers.

� A real exponential can exhibit one of three distinct modes of behavior,
depending on the value of λ, as illustrated below.

� If λ > 0, x(t) increases exponentially as t increases (i.e., a growing exponential).

� If λ < 0, x(t) decreases exponentially as t increases (i.e., a decaying exponential).

� If λ = 0, x(t) simply equals the constant A.

t

Aeλt

A

λ > 0

A

Aeλt

t

λ = 0

A

Aeλt

t

λ < 0
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Complex Sinusoidal Functions

� A complex sinusoidal function is a special case of a complex exponential
x(t) = Aeλt , where A is complex and λ is purely imaginary (i.e.,
Re{λ}= 0).

� That is, a complex sinusoidal function is a function of the form

x(t) = Ae jωt ,

where A is complex and ω is real.
� By expressing A in polar form as A = |A|e jθ (where θ is real) and using

Euler’s relation, we can rewrite x(t) as

x(t) = |A|cos(ωt +θ)︸ ︷︷ ︸
Re{x(t)}

+ j |A|sin(ωt +θ)︸ ︷︷ ︸
Im{x(t)}

.

� Thus, Re{x} and Im{x} are the same except for a time shift.

� Also, x is periodic with fundamental period T = 2π

|ω| and fundamental
frequency |ω|.
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Complex Sinusoidal Functions (Continued)

� The graphs of Re{x} and Im{x} have the forms shown below.

|A|cos(ωt +θ)

t

|A|cosθ

|A|

−|A|

t

|A|sin(ωt +θ)

|A|

|A|sinθ

−|A|
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General Complex Exponential Functions

� In the most general case of a complex exponential function x(t) = Aeλt , A
and λ are both complex.

� Letting A = |A|e jθ and λ = σ+ jω (where θ, σ, and ω are real), and
using Euler’s relation, we can rewrite x(t) as

x(t) = |A|eσt cos(ωt +θ)︸ ︷︷ ︸
Re{x(t)}

+ j |A|eσt sin(ωt +θ)︸ ︷︷ ︸
Im{x(t)}

.

� Thus, Re{x} and Im{x} are each the product of a real exponential and
real sinusoid.

� One of three distinct modes of behavior is exhibited by x(t), depending on
the value of σ.

� If σ = 0, Re{x} and Im{x} are real sinusoids.
� If σ > 0, Re{x} and Im{x} are each the product of a real sinusoid and a

growing real exponential.
� If σ < 0, Re{x} and Im{x} are each the product of a real sinusoid and a

decaying real exponential.
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General Complex Exponential Functions (Continued)

� The three modes of behavior for Re{x} and Im{x} are illustrated below.

t

|A|eσt

σ > 0

t

|A|eσt

σ = 0

t

|A|eσt

σ < 0
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Relationship Between Complex Exponentials and Real
Sinusoids

� From Euler’s relation, a complex sinusoid can be expressed as the sum of
two real sinusoids as

Ae jωt = Acosωt + jAsinωt.

� Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities

Acos(ωt +θ) =
A
2

[
e j(ωt+θ)+ e− j(ωt+θ)

]
and

Asin(ωt +θ) =
A
2 j

[
e j(ωt+θ)− e− j(ωt+θ)

]
.

� Note that, above, we are simply restating results from the (appendix)
material on complex analysis.
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Unit-Step Function

� The unit-step function (also known as the Heaviside function), denoted
u, is defined as

u(t) =

{
1 t ≥ 0
0 otherwise.

� Due to the manner in which u is used in practice, the actual value of u(0)
is unimportant. Sometimes values of 0 and 1

2 are also used for u(0).
� A plot of this function is shown below.

u(t)

0−1 1

1

t

· · ·

· · ·
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Signum Function

� The signum function, denoted sgn, is defined as

sgn t =


1 t > 0
0 t = 0
−1 t < 0.

� From its definition, one can see that the signum function simply computes
the sign of a number.

� A plot of this function is shown below.

1−2−3 2 3
t

· · ·

· · ·1

−1

−1

sgn t
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Rectangular Function

� The rectangular function (also called the unit-rectangular pulse
function), denoted rect, is given by

rect t =

{
1 −1

2 ≤ t < 1
2

0 otherwise.

� Due to the manner in which the rect function is used in practice, the actual
value of rect t at t =±1

2 is unimportant. Sometimes different values are
used from those specified above.

� A plot of this function is shown below.

0− 1
2

1
2

rect t

1

t
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Triangular Function

� The triangular function (also called the unit-triangular pulse function),
denoted tri, is defined as

tri t =

{
1−2 |t| |t| ≤ 1

2

0 otherwise.

� A plot of this function is shown below.

0− 1
2

1
2

1

t

tri t
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Cardinal Sine Function

� The cardinal sine function, denoted sinc, is given by

sinc t =
sin t

t
.

� By l’Hopital’s rule, sinc0 = 1.

� A plot of this function for part of the real line is shown below.
[Note that the oscillations in sinc t do not die out for finite t.]
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Unit-Impulse Function

� The unit-impulse function (also known as the Dirac delta function or
delta function), denoted δ, is defined by the following two properties:

δ(t) = 0 for t 6= 0 and∫
∞

−∞

δ(t)dt = 1.

� Technically, δ is not a function in the ordinary sense. Rather, it is what is
known as a generalized function. Consequently, the δ function
sometimes behaves in unusual ways.

� Graphically, the delta function is represented as shown below.

t
0

1

δ(t)

t

K

t0

Kδ(t− t0)

0
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Unit-Impulse Function as a Limit

� Define

gε(t) =

{
1/ε |t|< ε/2
0 otherwise.

� The function gε has a plot of the form shown below.

0− ε
2

ε
2

gε(t)

t

1
ε

� Clearly, for any choice of ε,
∫

∞

−∞
gε(t)dt = 1.

� The function δ can be obtained as the following limit:

δ(t) = lim
ε→0

gε(t).

� That is, δ can be viewed as a limiting case of a rectangular pulse where
the pulse width becomes infinitesimally small and the pulse height
becomes infinitely large in such a way that the integral of the resulting
function remains unity.
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Properties of the Unit-Impulse Function

� Equivalence property. For any continuous function x and any real
constant t0,

x(t)δ(t− t0) = x(t0)δ(t− t0).

� Sifting property. For any continuous function x and any real constant t0,∫
∞

−∞

x(t)δ(t− t0)dt = x(t0).

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 65



Graphical Interpretation of Equivalence Property

t0

x(t0)

t

x(t)

Function x

t0
t

δ(t− t0)

1

Time-Shifted Unit-Impulse
Function

t0
t

x(t)δ(t− t0)

x(t0)

Product
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Representing a Rectangular Pulse (Using Unit-Step Functions)

� For real constants a and b where a≤ b, consider a function x of the form

x(t) =

{
1 a≤ t < b
0 otherwise

(i.e., x is a rectangular pulse of height one, with a rising edge at a and
falling edge at b).

� The function x can be equivalently written as

x(t) = u(t−a)−u(t−b)

(i.e., the difference of two time-shifted unit-step functions).

� Unlike the original expression for x, this latter expression for x does not
involve multiple cases.

� In effect, by using unit-step functions, we have collapsed a formula
involving multiple cases into a single expression.
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Representing Functions Using Unit-Step Functions

� The idea from the previous slide can be extended to handle any function
that is defined in a piecewise manner (i.e., via an expression involving
multiple cases).

� That is, by using unit-step functions, we can always collapse a formula
involving multiple cases into a single expression.

� Often, simplifying a formula in this way can be quite beneficial.
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Section 3.4

Continuous-Time (CT) Systems
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CT Systems

� A system with input x and output y can be described by the equation

y =Hx,

where H denotes an operator (i.e., transformation).

� Note that the operator H maps a function to a function (not a number to
a number).

� Alternatively, we can express the above relationship using the notation

x H−→ y.

� If clear from the context, the operator H is often omitted, yielding the
abbreviated notation

x→ y.

� Note that the symbols “→” and “=” have very different meanings.

� The symbol “→” should be read as “produces” (not as “equals”).
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Remarks on Operator Notation for Systems

� For a system operator H and a function x, Hx is the function produced as
the output of the system H when the input is the function x.

� Brackets around the operand of an operator are usually omitted when not
required for grouping.

� For example, for an operator H, a function x, and a real number t, we
would normally prefer to write:

1 Hx instead of the equivalent expression H(x); and
2 Hx(t) instead of the equivalent expression H(x)(t).

� Also, note that Hx is a function and Hx(t) is a number (namely, the
value of the function Hx evaluated at the point t).

� In the expression H(x1 + x2), the brackets are needed for grouping, since
H(x1 + x2) 6≡Hx1 + x2 (where “6≡” means “not equivalent”).

� When multiple operators are applied, they group from right to left.
� For example, for the operators H1 and H2, and the function x, the

expression H2H1x means H2[H1(x)].
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Block Diagram Representations

� Often, a system defined by the operator H and having the input x and
output y is represented in the form of a block diagram as shown below.

System
H

x
Input Output

y
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Interconnection of Systems

� Two basic ways in which systems can be interconnected are shown below.

H1 H2
yx

Series

H1

H2

+
yx

Parallel
� A series (or cascade) connection ties the output of one system to the input

of the other.
� The overall series-connected system is described by the equation

y =H2H1x.

� A parallel connection ties the inputs of both systems together and sums
their outputs.

� The overall parallel-connected system is described by the equation

y =H1x+H2x.
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Section 3.5

Properties of (CT) Systems
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Memory

� A system H is said to be memoryless if, for every real constant t0, Hx(t0)
does not depend on x(t) for some t 6= t0.

� In other words, a memoryless system is such that the value of its output at
any given point in time can depend on the value of its input at only the
same point in time.

� A system that is not memoryless is said to have memory.

� Although simple, a memoryless system is not very flexible, since its
current output value cannot rely on past or future values of the input.
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Causality

� A system H is said to be causal if, for every real constant t0, Hx(t0) does
not depend on x(t) for some t > t0.

� In other words, a causal system is such that the value of its output at any
given point in time can depend on the value of its input at only the same or
earlier points in time (i.e., not later points in time).

� If the independent variable t represents time, a system must be causal in
order to be physically realizable.

� Noncausal systems can sometimes be useful in practice, however, since
the independent variable need not always represent time (e.g., the
independent variable might represent position).

� A memoryless system is always causal, although the converse is not
necessarily true.
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Invertibility
� The inverse of a system H (if it exists) is another system H−1 such that,

for every function x,

H−1Hx = x

(i.e., the system formed by the cascade interconnection of H followed by
H−1 is a system whose input and output are equal).

� A system is said to be invertible if it has a corresponding inverse system
(i.e., its inverse exists).

� Equivalently, a system is invertible if its input can always be uniquely
determined from its output.

� An invertible system will always produce distinct outputs from any two
distinct inputs.

� To show that a system is invertible, we simply find the inverse system.
� To show that a system is not invertible, we find two distinct inputs that

result in identical outputs.
� In practical terms, invertible systems are “nice” in the sense that their

effects can be undone.
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Invertibility (Continued)

� A system H−1 being the inverse of H means that the following two
systems are equivalent (i.e., H−1H is an identity):

x y
H−1H

System 1: y =H−1Hx

x y

System 2: y = x

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 78



Bounded-Input Bounded-Output (BIBO) Stability

� A system H is BIBO stable if, for every bounded function x, Hx is
bounded (i.e., |x(t)|< ∞ for all t implies that |Hx(t)|< ∞ for all t).

� In other words, a BIBO stable system is such that it guarantees to always
produce a bounded output as long as its input is bounded.

� To show that a system is BIBO stable, we must show that every bounded
input leads to a bounded output.

� To show that a system is not BIBO stable, we only need to find a single
bounded input that leads to an unbounded output.

� In practical terms, a BIBO stable system is well behaved in the sense that,
as long as the system input remains finite for all time, the output will also
remain finite for all time.

� Usually, a system that is not BIBO stable will have serious safety issues.

� For example, a portable music player with a battery input of 3.7 volts and
headset output of ∞ volts would result in one vaporized human (and likely
a big lawsuit as well).
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Time Invariance (TI)

� A system H is said to be time invariant (TI) if, for every function x and
every real constant t0, the following condition holds:

Hx(t− t0) =Hx′(t) for all t, where x′(t) = x(t− t0)

(i.e., H commutes with time shifts).

� In other words, a system is time invariant if a time shift (i.e., advance or
delay) in the input always results only in an identical time shift in the
output.

� A system that is not time invariant is said to be time varying.

� In simple terms, a time invariant system is a system whose behavior does
not change with respect to time.

� Practically speaking, compared to time-varying systems, time-invariant
systems are much easier to design and analyze, since their behavior
does not change with respect to time.
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Time Invariance (Continued)

� Let St0 denote an operator that applies a time shift of t0 to a function (i.e.,
St0x(t) = x(t− t0)).

� A system H is time invariant if and only if the following two systems are
equivalent (i.e., H commutes with St0 ):

HSt0

x y

System 1: y =HSt0 x[
y(t) =Hx′(t)

x′(t) = St0 x(t) = x(t− t0)

]
x y

St0H

System 2: y = St0Hx[
y(t) =Hx(t− t0)

]

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 81



Additivity, Homogeneity, and Linearity
� A system H is said to be additive if, for all functions x1 and x2, the

following condition holds:

H(x1 + x2) =Hx1 +Hx2

(i.e., H commutes with addition).
� A system H is said to be homogeneous if, for every function x and every

complex constant a, the following condition holds:

H(ax) = aHx

(i.e., H commutes with scalar multiplication).
� A system that is both additive and homogeneous is said to be linear.
� In other words, a system H is linear, if for all functions x1 and x2 and all

complex constants a1 and a2, the following condition holds:

H(a1x1 +a2x2) = a1Hx1 +a2Hx2

(i.e., H commutes with linear combinations).
� The linearity property is also referred to as the superposition property.
� Practically speaking, linear systems are much easier to design and

analyze than nonlinear systems.
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Additivity, Homogeneity, and Linearity (Continued 1)

� The system H is additive if and only if the following two systems are
equivalent (i.e., H commutes with addition):

+ H

x2

x1 y

System 1: y =H(x1 + x2)

+H

H

yx1

x2

System 2: y =Hx1 +Hx2

� The system H is homogeneous if and only if the following two systems
are equivalent (i.e., H commutes with scalar multiplication):

Ha
x y

System 1: y =H(ax)

aH
x y

System 2: y = aHx
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Additivity, Homogeneity, and Linearity (Continued 2)

� The system H is linear if and only if the following two systems are
equivalent (i.e., H commutes with linear combinations):

+ H
y

a1

a2

x1

x2

System 1: y =H(a1x1 +a2x2)

+a1

a2

x1

x2

y
H

H

System 2: y = a1Hx1 +a2Hx2
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Eigenfunctions of Systems

� A function x is said to be an eigenfunction of the system H with the
eigenvalue λ if

Hx = λx,

where λ is a complex constant.

� In other words, the system H acts as an ideal amplifier for each of its
eigenfunctions x, where the amplifier gain is given by the corresponding
eigenvalue λ.

� Different systems have different eigenfunctions.

� Many of the mathematical tools developed for the study of CT systems
have eigenfunctions as their basis.
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Part 4

Continuous-Time Linear Time-Invariant (LTI) Systems
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Why Linear Time-Invariant (LTI) Systems?

� In engineering, linear time-invariant (LTI) systems play a very important
role.

� Very powerful mathematical tools have been developed for analyzing LTI
systems.

� LTI systems are much easier to analyze than systems that are not LTI.

� In practice, systems that are not LTI can be well approximated using LTI
models.

� So, even when dealing with systems that are not LTI, LTI systems still play
an important role.
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Section 4.1

Convolution
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CT Convolution

� The (CT) convolution of the functions x and h, denoted x∗h, is defined
as the function

x∗h(t) =
∫

∞

−∞

x(τ)h(t− τ)dτ.

� The convolution result x∗h evaluated at the point t is simply a weighted
average of the function x, where the weighting is given by h time reversed
and shifted by t.

� Herein, the asterisk symbol (i.e., “∗”) will always be used to denote
convolution, not multiplication.

� As we shall see, convolution is used extensively in systems theory.

� In particular, convolution has a special significance in the context of LTI
systems.
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Practical Convolution Computation

� To compute the convolution

x∗h(t) =
∫

∞

−∞

x(τ)h(t− τ)dτ,

we proceed as follows:
1 Plot x(τ) and h(t− τ) as a function of τ.
2 Initially, consider an arbitrarily large negative value for t. This will result in

h(t− τ) being shifted very far to the left on the time axis.
3 Write the mathematical expression for x∗h(t).
4 Increase t gradually until the expression for x∗h(t) changes form. Record

the interval over which the expression for x∗h(t) was valid.
5 Repeat steps 3 and 4 until t is an arbitrarily large positive value. This

corresponds to h(t− τ) being shifted very far to the right on the time axis.
6 The results for the various intervals can be combined in order to obtain an

expression for x∗h(t) for all t.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 90



Properties of Convolution

� The convolution operation is commutative. That is, for any two functions x
and h,

x∗h = h∗ x.

� The convolution operation is associative. That is, for any functions x, h1,
and h2,

(x∗h1)∗h2 = x∗ (h1 ∗h2).

� The convolution operation is distributive with respect to addition. That is,
for any functions x, h1, and h2,

x∗ (h1 +h2) = x∗h1 + x∗h2.
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Representation of Functions Using Impulses

� For any function x,

x∗δ(t) =
∫

∞

−∞

x(τ)δ(t− τ)dτ = x(t).

� Thus, any function x can be written in terms of an expression involving δ.

� Moreover, δ is the convolutional identity. That is, for any function x,

x∗δ = x.
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Periodic Convolution

� The convolution of two periodic functions is usually not well defined.

� This motivates an alternative notion of convolution for periodic functions
known as periodic convolution.

� The periodic convolution of the T -periodic functions x and h, denoted
x~h, is defined as

x~h(t) =
∫

T
x(τ)h(t− τ)dτ,

where
∫

T denotes integration over an interval of length T .

� The periodic convolution and (linear) convolution of the T -periodic
functions x and h are related as follows:

x~h(t) = x0 ∗h(t) where x(t) =
∞

∑
k=−∞

x0(t− kT )

(i.e., x0(t) equals x(t) over a single period of x and is zero elsewhere).
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Section 4.2

Convolution and LTI Systems
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Impulse Response

� The response h of a system H to the input δ is called the impulse
response of the system (i.e., h =Hδ).

� For any LTI system with input x, output y, and impulse response h, the
following relationship holds:

y = x∗h.

� In other words, a LTI system simply computes a convolution.

� Furthermore, a LTI system is completely characterized by its impulse
response.

� That is, if the impulse response of a LTI system is known, we can
determine the response of the system to any input.

� Since the impulse response of a LTI system is an extremely useful
quantity, we often want to determine this quantity in a practical setting.

� Unfortunately, in practice, the impulse response of a system cannot be
determined directly from the definition of the impulse response.
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Step Response

� The response s of a system H to the input u is called the step response of
the system (i.e., s =Hu).

� The impulse response h and step response s of a system are related as

h(t) =
ds(t)

dt
.

� Therefore, the impulse response of a system can be determined from its
step response by differentiation.

� The step response provides a practical means for determining the impulse
response of a system.
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Block Diagram Representation of LTI Systems

� Often, it is convenient to represent a (CT) LTI system in block diagram
form.

� Since such systems are completely characterized by their impulse
response, we often label a system with its impulse response.

� That is, we represent a system with input x, output y, and impulse
response h, as shown below.

h
x y

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 97



Interconnection of LTI Systems

� The series interconnection of the LTI systems with impulse responses h1
and h2 is the LTI system with impulse response h = h1 ∗h2. That is, we
have the equivalences shown below.

h1 h2 ≡
x y

h1 ∗h2
yx

≡h1 h2 h2 h1
yx yx

� The parallel interconnection of the LTI systems with impulse responses
h1 and h2 is a LTI system with the impulse response h = h1 +h2. That is,
we have the equivalence shown below.

h1 +h2
yx

h1

h2

≡

+
x y
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Section 4.3

Properties of LTI Systems
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Memory

� A LTI system with impulse response h is memoryless if and only if

h(t) = 0 for all t 6= 0.

� That is, a LTI system is memoryless if and only if its impulse response h is
of the form

h(t) = Kδ(t),

where K is a complex constant.

� Consequently, every memoryless LTI system with input x and output y is
characterized by an equation of the form

y = x∗ (Kδ) = Kx

(i.e., the system is an ideal amplifier).

� For a LTI system, the memoryless constraint is extremely restrictive (as
every memoryless LTI system is an ideal amplifier).
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Causality

� A LTI system with impulse response h is causal if and only if

h(t) = 0 for all t < 0

(i.e., h is a causal function).

� It is due to the above relationship that we call a function x, satisfying

x(t) = 0 for all t < 0,

a causal function.
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Invertibility

� The inverse of a LTI system, if such a system exists, is a LTI system.

� Let h and hinv denote the impulse responses of a LTI system and its (LTI)
inverse, respectively. Then,

h∗hinv = δ.

� Consequently, a LTI system with impulse response h is invertible if and
only if there exists a function hinv such that

h∗hinv = δ.

� Except in simple cases, the above condition is often quite difficult to test.
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BIBO Stability

� A LTI system with impulse response h is BIBO stable if and only if∫
∞

−∞

|h(t)|dt < ∞

(i.e., h is absolutely integrable).
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Eigenfunctions of LTI Systems

� As it turns out, every complex exponential is an eigenfunction of all LTI
systems.

� For a LTI system H with impulse response h,

H{est}(t) = H(s)est ,

where s is a complex constant and

H(s) =
∫

∞

−∞

h(t)e−stdt.

� That is, est is an eigenfunction of a LTI system and H(s) is the
corresponding eigenvalue.

� We refer to H as the system function (or transfer function) of the
system H.

� From above, we can see that the response of a LTI system to a complex
exponential is the same complex exponential multiplied by the complex
factor H(s).
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Representations of Functions Using Eigenfunctions

� Consider a LTI system with input x, output y, and system function H.

� Suppose that the input x can be expressed as the linear combination of
complex exponentials

x(t) = ∑
k

akeskt ,

where the ak and sk are complex constants.

� Using the fact that complex exponentials are eigenfunctions of LTI
systems, we can conclude

y(t) = ∑
k

akH(sk)eskt .

� Thus, if an input to a LTI system can be expressed as a linear combination
of complex exponentials, the output can also be expressed as a linear
combination of the same complex exponentials.

� The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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Part 5

Continuous-Time Fourier Series (CTFS)
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Introduction

� The (CT) Fourier series is a representation for periodic functions.

� With a Fourier series, a function is represented as a linear combination
of complex sinusoids.

� The use of complex sinusoids is desirable due to their numerous attractive
properties.

� For example, complex sinusoids are continuous and differentiable. They
are also easy to integrate and differentiate.

� Perhaps, most importantly, complex sinusoids are eigenfunctions of LTI
systems.
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Section 5.1

Fourier Series
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Harmonically-Related Complex Sinusoids

� A set of complex sinusoids is said to be harmonically related if there
exists some constant ω0 such that the fundamental frequency of each
complex sinusoid is an integer multiple of ω0.

� Consider the set of harmonically-related complex sinusoids given by

φk(t) = e jkω0t for all integer k.

� The fundamental frequency of the kth complex sinusoid φk is kω0, an
integer multiple of ω0.

� Since the fundamental frequency of each of the harmonically-related
complex sinusoids is an integer multiple of ω0, a linear combination of
these complex sinusoids must be periodic.

� More specifically, a linear combination of these complex sinusoids is
periodic with period T = 2π

ω0
.
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CT Fourier Series

� A periodic complex function x with fundamental period T and fundamental
frequency ω0 =

2π

T can be represented as a linear combination of
harmonically-related complex sinusoids as

x(t) =
∞

∑
k=−∞

cke jkω0t .

� Such a representation is known as (the complex exponential form of) a
(CT) Fourier series, and the ck are called Fourier series coefficients.

� The above formula for x is often referred to as the Fourier series
synthesis equation.

� The terms in the summation for k = K and k =−K are called the Kth
harmonic components, and have the fundamental frequency Kω0.

� To denote that a function x has the Fourier series coefficient sequence ck,
we write

x(t) CTFS←→ ck.
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CT Fourier Series (Continued)

� The periodic function x with fundamental period T and fundamental
frequency ω0 =

2π

T has the Fourier series coefficients ck given by

ck =
1
T

∫
T

x(t)e− jkω0tdt,

where
∫

T denotes integration over an arbitrary interval of length T (i.e.,
one period of x).

� The above equation for ck is often referred to as the Fourier series
analysis equation.
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Trigonometric Forms of a Fourier Series

� Consider the periodic function x with the Fourier series coefficients ck.

� If x is real, then its Fourier series can be rewritten in two other forms,
known as the combined trigonometric and trigonometric forms.

� The combined trigonometric form of a Fourier series has the
appearance

x(t) = c0 +2
∞

∑
k=1
|ck|cos(kω0t +θk),

where θk = argck.

� The trigonometric form of a Fourier series has the appearance

x(t) = c0 +
∞

∑
k=1

[αk coskω0t +βk sinkω0t] ,

where αk = 2Reck and βk =−2Imck.

� Note that the trigonometric forms contain only real quantities.
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Section 5.2

Convergence Properties of Fourier Series
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Convergence of Fourier Series

� Since a Fourier series can have an infinite number of terms, and an
infinite sum may or may not converge, we need to consider the issue of
convergence.

� That is, when we claim that a periodic function x is equal to the Fourier
series ∑

∞
k=−∞ cke jkω0t , is this claim actually correct?

� Consider a periodic function x that we wish to represent with the Fourier
series

∞

∑
k=−∞

cke jkω0t .

� Let xN denote the Fourier series truncated after the Nth harmonic
components as given by

xN(t) =
N

∑
k=−N

cke jkω0t .

� Here, we are interested in whether limN→∞ xN is equal (in some sense)
to x.
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Convergence of Fourier Series (Continued)

� The error in approximating x(t) by xN(t) is given by

eN(t) = x(t)− xN(t),

and the corresponding mean-squared error (MSE) (i.e., energy of the
error) is given by

EN =
1
T

∫
T
|eN(t)|2 dt.

� If limN→∞ eN(t) = 0 for all t (i.e., the error goes to zero at every point), the
Fourier series is said to converge pointwise to x(t).

� If convergence is pointwise and the rate of convergence is the same
everywhere, the convergence is said to be uniform.

� If limN→∞ EN = 0 (i.e., the energy of the error goes to zero), the Fourier
series is said to converge to x in the MSE sense.

� Pointwise convergence implies MSE convergence, but the converse is not
true. Thus, pointwise convergence is a much stronger condition than MSE
convergence.
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Convergence of Fourier Series: Continuous Case

� If a periodic function x is continuous and its Fourier series coefficients ck
are absolutely summable (i.e., ∑

∞
k=−∞

|ck|< ∞), then the Fourier series
representation of x converges uniformly (i.e., pointwise at the same rate
everywhere).

� Since, in practice, we often encounter functions with discontinuities (e.g.,
a square wave), the above result is of somewhat limited value.
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Convergence of Fourier Series: Finite-Energy Case

� If a periodic function x has finite energy in a single period (i.e.,∫
T |x(t)|

2 dt < ∞), the Fourier series converges in the MSE sense.

� Since, in situations of practice interest, the finite-energy condition in the
above theorem is typically satisfied, the theorem is usually applicable.

� It is important to note, however, that MSE convergence (i.e., E = 0) does
not necessarily imply pointwise convergence (i.e., x̃(t) = x(t) for all t).

� Thus, the above convergence theorem does not provide much useful
information regarding the value of x̃(t) at specific values of t.

� Consequently, the above theorem is typically most useful for simply
determining if the Fourier series converges.
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Convergence of Fourier Series: Dirichlet Case

� The Dirichlet conditions for the periodic function x are as follows:
1 Over a single period, x is absolutely integrable (i.e.,

∫
T |x(t)|dt < ∞).

2 Over a single period, x has a finite number of maxima and minima (i.e., x is
of bounded variation).

3 Over any finite interval, x has a finite number of discontinuities, each of
which is finite.

� If a periodic function x satisfies the Dirichlet conditions, then:
1 The Fourier series converges pointwise everywhere to x, except at the

points of discontinuity of x.
2 At each point ta of discontinuity of x, the Fourier series x̃ converges to

x̃(ta) = 1
2

[
x(t−a )+ x(t+a )

]
,

where x(t−a ) and x(t+a ) denote the values of the function x on the left- and
right-hand sides of the discontinuity, respectively.

� Since most functions tend to satisfy the Dirichlet conditions and the above
convergence result specifies the value of the Fourier series at every point,
this result is often very useful in practice.
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Examples of Functions Violating the Dirichlet Conditions
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Gibbs Phenomenon

� In practice, we frequently encounter functions with discontinuities.

� When a function x has discontinuities, the Fourier series representation of
x does not converge uniformly (i.e., at the same rate everywhere).

� The rate of convergence is much slower at points in the vicinity of a
discontinuity.

� Furthermore, in the vicinity of a discontinuity, the truncated Fourier series
xN exhibits ripples, where the peak amplitude of the ripples does not seem
to decrease with increasing N.

� As it turns out, as N increases, the ripples get compressed towards
discontinuity, but, for any finite N, the peak amplitude of the ripples
remains approximately constant.

� This behavior is known as Gibbs phenomenon.

� The above behavior is one of the weaknesses of Fourier series (i.e.,
Fourier series converge very slowly near discontinuities).
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Gibbs Phenomenon: Periodic Square Wave Example
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Section 5.3

Properties of Fourier Series
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Properties of (CT) Fourier Series

x(t) CTFS←→ ak and y(t) CTFS←→ bk

Property Time Domain Fourier Domain

Linearity αx(t)+βy(t) αak +βbk

Translation x(t− t0) e− jk(2π/T )t0ak

Modulation e jM(2π/T )tx(t) ak−M

Reflection x(−t) a−k

Conjugation x∗(t) a∗−k
Periodic Convolution x~ y(t) Takbk

Multiplication x(t)y(t) ∑
∞
n=−∞ anbk−n

Property

Parseval’s Relation 1
T

∫
T |x(t)|

2 dt = ∑
∞
k=−∞

|ak|2

Even Symmetry x is even⇔ a is even
Odd Symmetry x is odd⇔ a is odd
Real / Conjugate Symmetry x is real⇔ a is conjugate symmetric
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Linearity

� Let x and y be two periodic functions with the same period. If x(t) CTFS←→ ak
and y(t) CTFS←→ bk, then

αx(t)+βy(t) CTFS←→ αak +βbk,

where α and β are complex constants.

� That is, a linear combination of functions produces the same linear
combination of their Fourier series coefficients.
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Time Shifting (Translation)

� Let x denote a periodic function with period T and the corresponding
frequency ω0 = 2π/T . If x(t) CTFS←→ ck, then

x(t− t0)
CTFS←→ e− jkω0t0ck = e− jk(2π/T )t0ck,

where t0 is a real constant.

� In other words, time shifting a periodic function changes the argument (but
not magnitude) of its Fourier series coefficients.
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Frequency Shifting (Modulation)

� Let x denote a periodic function with period T and the corresponding
frequency ω0 = 2π/T . If x(t) CTFS←→ ck, then

e jM(2π/T )tx(t) = e jMω0tx(t) CTFS←→ ck−M,

where M is an integer constant.

� In other words, multiplying a periodic function by e jMω0t shifts the
Fourier-series coefficient sequence.
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Time Reversal (Reflection)

� Let x denote a periodic function with period T and the corresponding
frequency ω0 = 2π/T . If x(t) CTFS←→ ck, then

x(−t) CTFS←→ c−k.

� That is, time reversal of a function results in a time reversal of its Fourier
series coefficients.
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Conjugation

� For a T -periodic function x with Fourier series coefficient sequence c, the
following property holds:

x∗(t) CTFS←→ c∗−k

� In other words, conjugating a function has the effect of time reversing and
conjugating the Fourier series coefficient sequence.
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Periodic Convolution

� Let x and y be two periodic functions with the same period T . If
x(t) CTFS←→ ak and y(t) CTFS←→ bk, then

x~ y(t) CTFS←→ Takbk.

� In other words, periodic convolution of two functions corresponds to the
multiplication (up to a scale factor) of their Fourier-series coefficient
sequences.
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Multiplication

� Let x and y be two periodic functions with the same period. If x(t) CTFS←→ ak
and y(t) CTFS←→ bk, then

x(t)y(t) CTFS←→
∞

∑
n=−∞

anbk−n

� As we shall see later, the above summation is the DT convolution of a
and b.

� In other words, the multiplication of two periodic functions corresponds to
the DT convolution of their corresponding Fourier-series coefficient
sequences.
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Even and Odd Symmetry

� For a T -periodic function x with Fourier series coefficient sequence c, the
following properties hold:

x is even⇔ c is even; and

x is odd⇔ c is odd.

� In other words, the even/odd symmetry properties of x and c always
match.
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Real Functions

� A function x is real if and only if its Fourier series coefficient sequence c
satisfies

ck = c∗−k for all k

(i.e., c is conjugate symmetric).

� Thus, for a real-valued function, the negative-indexed Fourier series
coefficients are redundant, as they are completely determined by the
nonnegative-indexed coefficients.

� From properties of complex numbers, one can show that ck = c∗−k is
equivalent to

|ck|= |c−k| and argck =−argc−k

(i.e., |ck| is even and argck is odd).

� Note that x being real does not necessarily imply that c is real.
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Parseval’s Relation

� A function x and its Fourier series coefficient sequence a satisfy the
following relationship:

1
T

∫
T
|x(t)|2 dt =

∞

∑
k=−∞

|ak|2 .

� The above relationship is simply stating that the amount of energy in x
(i.e., 1

T

∫
T |x(t)|

2 dt) and the amount of energy in the Fourier series
coefficient sequence a (i.e., ∑

∞
k=−∞

|ak|2) are equal.

� In other words, the transformation between a function and its Fourier
series coefficient sequence preserves energy.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 133



Other Properties of Fourier Series

� For a T -periodic function x with Fourier-series coefficient sequence c, the
following properties hold:

1 c0 is the average value of x over a single period;
2 x is real and even⇔ c is real and even; and
3 x is real and odd⇔ c is purely imaginary and odd.
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Section 5.4

Fourier Series and Frequency Spectra
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A New Perspective on Functions: The Frequency Domain

� The Fourier series provides us with an entirely new way to view functions.

� Instead of viewing a function as having information distributed with respect
to time (i.e., a function whose domain is time), we view a function as
having information distributed with respect to frequency (i.e., a function
whose domain is frequency).

� This so called frequency-domain perspective is of fundamental
importance in engineering.

� Many engineering problems can be solved much more easily using the
frequency domain than the time domain.

� The Fourier series coefficients of a function x provide a means to quantify
how much information x has at different frequencies.

� The distribution of information in a function over different frequencies is
referred to as the frequency spectrum of the function.
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Fourier Series and Frequency Spectra

� To gain further insight into the role played by the Fourier series coefficients
ck in the context of the frequency spectrum of the function x, it is helpful to
write the Fourier series with the ck expressed in polar form as follows:

x(t) =
∞

∑
k=−∞

cke jkω0t =
∞

∑
k=−∞

|ck|e j(kω0t+argck).

� Clearly, the kth term in the summation corresponds to a complex sinusoid
with fundamental frequency kω0 that has been amplitude scaled by a
factor of |ck| and time-shifted by an amount that depends on argck.

� For a given k, the larger |ck| is, the larger is the amplitude of its
corresponding complex sinusoid e jkω0t , and therefore the larger the
contribution the kth term (which is associated with frequency kω0) will
make to the overall summation.

� In this way, we can use |ck| as a measure of how much information a
function x has at the frequency kω0.
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Fourier Series and Frequency Spectra (Continued)

� The Fourier series coefficients ck are referred to as the frequency
spectrum of x.

� The magnitudes |ck| of the Fourier series coefficients are referred to as
the magnitude spectrum of x.

� The arguments argck of the Fourier series coefficients are referred to as
the phase spectrum of x.

� Normally, the spectrum of a function is plotted against frequency kω0
instead of k.

� Since the Fourier series only has frequency components at integer
multiples of the fundamental frequency, the frequency spectrum is
discrete in the independent variable (i.e., frequency).

� Due to the general appearance of frequency-spectrum plot (i.e., a number
of vertical lines at various frequencies), we refer to such spectra as line
spectra.
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Frequency Spectra of Real Functions

� Recall that, for a real function x, the Fourier series coefficient sequence c
satisfies

ck = c∗−k

(i.e., c is conjugate symmetric), which is equivalent to

|ck|= |c−k| and argck =−argc−k.

� Since |ck|= |c−k|, the magnitude spectrum of a real function is always
even.

� Similarly, since argck =−argc−k, the phase spectrum of a real function is
always odd.

� Due to the symmetry in the frequency spectra of real functions, we
typically ignore negative frequencies when dealing with such functions.

� In the case of functions that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.
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Section 5.5

Fourier Series and LTI Systems
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Frequency Response

� Recall that a LTI system H with impulse response h is such that
H{est}(t) = H(s)est , where H(s) =

∫
∞

−∞
h(t)e−stdt. (That is, complex

exponentials are eigenfunctions of LTI systems.)

� Since a complex sinusoid is a special case of a complex exponential, we
can reuse the above result for the special case of complex sinusoids.

� For a LTI system H with impulse response h,

H{e jωt}(t) = H( jω)e jωt ,

where ω is a real constant and

H( jω) =
∫

∞

−∞

h(t)e− jωtdt.

� That is, e jωt is an eigenfunction of a LTI system and H( jω) is the
corresponding eigenvalue.

� We refer to H( jω) as the frequency response of the system H.
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Fourier Series and LTI Systems

� Consider a LTI system with input x, output y, and frequency response
H( jω).

� Suppose that the T -periodic input x is expressed as the Fourier series

x(t) =
∞

∑
k=−∞

cke jkω0t , where ω0 =
2π

T .

� Using our knowledge about the eigenfunctions of LTI systems, we can
conclude

y(t) =
∞

∑
k=−∞

ckH( jkω0)e jkω0t .

� Thus, if the input x to a LTI system is a Fourier series, the output y is also a
Fourier series. More specifically, if x(t) CTFS←→ ck then y(t) CTFS←→ H( jkω0)ck.

� The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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Filtering

� In many applications, we want to modify the spectrum of a function by
either amplifying or attenuating certain frequency components.

� This process of modifying the frequency spectrum of a function is called
filtering.

� A system that performs a filtering operation is called a filter.

� Many types of filters exist.

� Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

� Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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Ideal Lowpass Filter

� An ideal lowpass filter eliminates all frequency components with a
frequency whose magnitude is greater than some cutoff frequency, while
leaving the remaining frequency components unaffected.

� Such a filter has a frequency response of the form

H( jω) =

{
1 |ω| ≤ ωc

0 otherwise,

where ωc is the cutoff frequency.
� A plot of this frequency response is given below.

−ωc ωc
ω

1

H( jω)

PassbandStopband Stopband
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Ideal Highpass Filter

� An ideal highpass filter eliminates all frequency components with a
frequency whose magnitude is less than some cutoff frequency, while
leaving the remaining frequency components unaffected.

� Such a filter has a frequency response of the form

H( jω) =

{
1 |ω| ≥ ωc

0 otherwise,

where ωc is the cutoff frequency.
� A plot of this frequency response is given below.

−ωc ωc
ω

1

H( jω)

· · · · · ·

StopbandPassband Passband
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Ideal Bandpass Filter

� An ideal bandpass filter eliminates all frequency components with a
frequency whose magnitude does not lie in a particular range, while
leaving the remaining frequency components unaffected.

� Such a filter has a frequency response of the form

H( jω) =

{
1 ωc1 ≤ |ω| ≤ ωc2

0 otherwise,

where the limits of the passband are ωc1 and ωc2.
� A plot of this frequency response is given below.

ω

1

H( jω)

−ωc2 −ωc1 ωc1 ωc2

StopbandStopband StopbandPassband Passband
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Part 6

Continuous-Time Fourier Transform (CTFT)
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Motivation for the Fourier Transform

� The (CT) Fourier series provide an extremely useful representation for
periodic functions.

� Often, however, we need to deal with functions that are not periodic.

� A more general tool than the Fourier series is needed in this case.

� The (CT) Fourier transform can be used to represent both periodic and
aperiodic functions.

� Since the Fourier transform is essentially derived from Fourier series
through a limiting process, the Fourier transform has many similarities with
Fourier series.
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Section 6.1

Fourier Transform
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Development of the Fourier Transform [Aperiodic Case]

� The Fourier series is an extremely useful function representation.

� Unfortunately, this function representation can only be used for periodic
functions, since a Fourier series is inherently periodic.

� Many functions are not periodic, however.

� Rather than abandoning Fourier series, one might wonder if we can
somehow use Fourier series to develop a representation that can be
applied to aperiodic functions.

� By viewing an aperiodic function as the limiting case of a periodic function
with period T where T → ∞, we can use the Fourier series to develop a
function representation that can be used for aperiodic functions, known as
the Fourier transform.
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Development of the Fourier Transform [Aperiodic Case] (Continued)

� Recall that the Fourier series representation of a T -periodic function x is
given by

x(t) =
∞

∑
k=−∞

(
1
T

∫ T/2

−T/2
x(t)e− jk(2π/T )tdt

)
︸ ︷︷ ︸

ck

e jk(2π/T )t .

� In the above representation, if we take the limit as T → ∞, we obtain

x(t) = 1
2π

∫
∞

−∞

(∫
∞

−∞

x(t)e− jωtdt
)

︸ ︷︷ ︸
X(ω)

e jωtdω

(i.e., as T → ∞, the outer summation becomes an integral, 1
T = ω0

2π

becomes 1
2π

dω, and k(2π/T ) = kω0 becomes ω).

� This more general function representation is known as the Fourier
transform representation.
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Generalized Fourier Transform

� The classical Fourier transform for aperiodic functions does not exist for
some functions of great practical interest, such as:

2 a nonzero constant function;
2 a periodic function (e.g., a real or complex sinusoid);
2 the unit-step function (i.e., u); and
2 the signum function (i.e., sgn).

� Fortunately, the Fourier transform can be extended to handle such
functions, resulting in what is known as the generalized Fourier
transform.

� For our purposes, we can think of the classical and generalized Fourier
transforms as being defined by the same formulas.

� Therefore, in what follows, we will not typically make a distinction between
the classical and generalized Fourier transforms.
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CT Fourier Transform (CTFT)

� The (CT) Fourier transform of the function x, denoted Fx or X , is given
by

Fx(ω) = X(ω) =
∫

∞

−∞

x(t)e− jωtdt.

� The preceding equation is sometimes referred to as Fourier transform
analysis equation (or forward Fourier transform equation).

� The inverse Fourier transform of X , denoted F−1X or x, is given by

F−1X(t) = x(t) = 1
2π

∫
∞

−∞

X(ω)e jωtdω.

� The preceding equation is sometimes referred to as the Fourier
transform synthesis equation (or inverse Fourier transform equation).

� As a matter of notation, to denote that a function x has the Fourier
transform X , we write x(t) CTFT←→ X(ω).

� A function x and its Fourier transform X constitute what is called a
Fourier transform pair.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 153



Remarks on Operator Notation

� For a function x, the Fourier transform of x is denoted using operator
notation as Fx.

� The Fourier transform of x evaluated at ω is denoted Fx(ω).
� Note that Fx is a function, whereas Fx(ω) is a number.

� Similarly, for a function X , the inverse Fourier transform of X is denoted
using operator notation as F−1X .

� The inverse Fourier transform of X evaluated at t is denoted F−1X(t).
� Note that F−1X is a function, whereas F−1X(t) is a number.

� With the above said, engineers often abuse notation, and use expressions
like those above to mean things different from their proper meanings.

� Since such notational abuse can lead to problems, it is strongly
recommended that one refrain from doing this.
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Remarks on Dot Notation

� Often, we would like to write an expression for the Fourier transform of a
function without explicitly naming the function.

� For example, consider writing an expression for the Fourier transform of
the function v(t) = x(5t−3) but without using the name “v”.

� It would be incorrect to write “Fx(5t−3)” as this is the function Fx
evaluated at 5t−3, which is not the meaning that we wish to convey.

� Also, strictly speaking, it would be incorrect to write “F{x(5t−3)}” as the
operand of the Fourier transform operator must be a function, and
x(5t−3) is a number (i.e., the function x evaluated at 5t−3).

� Using dot notation, we can write the following strictly-correct expression
for the desired Fourier transform: Fx(5 ·−3).

� In many cases, however, it is probably advisable to avoid employing
anonymous (i.e., unnamed) functions, as their use tends to be more error
prone in some contexts.
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Remarks on Notational Conventions

� Since dot notation is less frequently used by engineers, the author has
elected to minimize its use herein.

� To avoid ambiguous notation, the following conventions are followed:
1 in the expression for the operand of a Fourier transform operator, the

independent variable is assumed to be the variable named “t” unless
otherwise indicated (i.e., in terms of dot notation, each “t” is treated as if it
were a “·”)

2 in the expression for the operand of the inverse Fourier transform operator,
the independent variable is assumed to be the variable named “ω” unless
otherwise indicated (i.e., in terms of dot notation, each “ω” is treated as if it
were a “·”).

� For example, with these conventions:
2 “F{cos(t− τ)}” denotes the function that is the Fourier transform of the

function v(t) = cos(t− τ) (not the Fourier transform of the function
v(τ) = cos(t− τ)).

2 “F−1{δ(3ω−λ)}” denotes the function that is the inverse Fourier transform
of the function V (ω) = δ(3ω−λ) (not the inverse Fourier transform of the
function V (λ) = δ(3ω−λ)).
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Section 6.2

Convergence Properties of the Fourier Transform
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Convergence of the Fourier Transform

� Consider an arbitrary function x.

� The function x has the Fourier transform representation x̃ given by

x̃(t) = 1
2π

∫
∞

−∞

X(ω)e jωtdω, where X(ω) =
∫

∞

−∞

x(t)e− jωtdt.

� Now, we need to concern ourselves with the convergence properties of
this representation.

� In other words, we want to know when x̃ is a valid representation of x.

� Since the Fourier transform is essentially derived from Fourier series, the
convergence properties of the Fourier transform are closely related to the
convergence properties of Fourier series.
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Convergence of the Fourier Transform: Continuous Case

� If a function x is continuous and absolutely integrable (i.e.,∫
∞

−∞
|x(t)|dt < ∞) and the Fourier transform X of x is absolutely integrable

(i.e.,
∫

∞

−∞
|X(ω)|dω < ∞), then the Fourier transform representation of x

converges pointwise (i.e., x(t) = 1
2π

∫
∞

−∞

[∫
∞

−∞
x(t)e− jωtdt

]
e jωtdω for all t).

� Since, in practice, we often encounter functions with discontinuities (e.g.,
a rectangular pulse), the above result is sometimes of limited value.
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Convergence of the Fourier Transform: Finite-Energy Case

� If a function x is of finite energy (i.e.,
∫

∞

−∞
|x(t)|2 dt < ∞), then its Fourier

transform representation converges in the MSE sense.

� In other words, if x is of finite energy, then the energy E in the difference
function x̃− x is zero; that is,

E =
∫

∞

−∞

|x̃(t)− x(t)|2 dt = 0.

� Since, in situations of practice interest, the finite-energy condition in the
above theorem is often satisfied, the theorem is frequently applicable.

� It is important to note, however, that the condition E = 0 does not
necessarily imply x̃(t) = x(t) for all t.

� Thus, the above convergence result does not provide much useful
information regarding the value of x̃(t) at specific values of t.

� Consequently, the above theorem is typically most useful for simply
determining if the Fourier transform representation converges.
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Convergence of the Fourier Transform: Dirichlet Case

� The Dirichlet conditions for the function x are as follows:
1 The function x is absolutely integrable (i.e.,

∫
∞

−∞
|x(t)|dt < ∞).

2 On any finite interval, x has a finite number of maxima and minima (i.e., x is
of bounded variation).

3 On any finite interval, x has a finite number of discontinuities and each
discontinuity is itself finite.

� If a function x satisfies the Dirichlet conditions, then:
1 The Fourier transform representation x̃ converges pointwise everywhere to

x, except at the points of discontinuity of x.
2 At each point t = ta of discontinuity, the Fourier transform representation x̃

converges to

x̃(ta) = 1
2

[
x(t+a )+ x(t−a )

]
,

where x(t−a ) and x(t+a ) denote the values of the function x on the left- and
right-hand sides of the discontinuity, respectively.

� Since most functions tend to satisfy the Dirichlet conditions and the above
convergence result specifies the value of the Fourier transform
representation at every point, this result is often very useful in practice.
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Section 6.3

Properties of the Fourier Transform
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Properties of the (CT) Fourier Transform

Property Time Domain Frequency Domain

Linearity a1x1(t)+a2x2(t) a1X1(ω)+a2X2(ω)

Time-Domain Shifting x(t− t0) e− jωt0X(ω)

Frequency-Domain Shifting e jω0tx(t) X(ω−ω0)

Time/Frequency-Domain Scaling x(at) 1
|a|X

(
ω

a

)
Conjugation x∗(t) X∗(−ω)

Duality X(t) 2πx(−ω)

Time-Domain Convolution x1 ∗ x2(t) X1(ω)X2(ω)

Time-Domain Multiplication x1(t)x2(t) 1
2π

X1 ∗X2(ω)

Time-Domain Differentiation d
dt x(t) jωX(ω)

Frequency-Domain Differentiation tx(t) j d
dω

X(ω)

Time-Domain Integration
∫ t
−∞

x(τ)dτ
1
jω X(ω)+πX(0)δ(ω)
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Properties of the (CT) Fourier Transform (Continued)

Property

Parseval’s Relation
∫

∞

−∞
|x(t)|2 dt = 1

2π

∫
∞

−∞
|X(ω)|2 dω

Even Symmetry x is even⇔ X is even

Odd Symmetry x is odd⇔ X is odd

Real / Conjugate Symmetry x is real⇔ X is conjugate symmetric
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(CT) Fourier Transform Pairs

Pair x(t) X(ω)

1 δ(t) 1

2 u(t) πδ(ω)+ 1
jω

3 1 2πδ(ω)

4 sgn(t) 2
jω

5 e jω0t 2πδ(ω−ω0)

6 cosω0t π[δ(ω−ω0)+δ(ω+ω0)]

7 sinω0t π

j [δ(ω−ω0)−δ(ω+ω0)]

8 rect(t/T ) |T |sinc(T ω/2)

9 |B|
π

sincBt rect ω

2B

10 e−atu(t), Re{a}> 0 1
a+ jω

11 tn−1e−atu(t), Re{a}> 0 (n−1)!
(a+ jω)n

12 tri(t/T ) |T |
2 sinc2(T ω/4)
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Linearity

� If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

a1x1(t)+a2x2(t)
CTFT←→ a1X1(ω)+a2X2(ω),

where a1 and a2 are arbitrary complex constants.

� This is known as the linearity property of the Fourier transform.
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Time-Domain Shifting (Translation)

� If x(t) CTFT←→ X(ω), then

x(t− t0)
CTFT←→ e− jωt0X(ω),

where t0 is an arbitrary real constant.

� This is known as the translation (or time-domain shifting) property of
the Fourier transform.
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Frequency-Domain Shifting (Modulation)

� If x(t) CTFT←→ X(ω), then

e jω0tx(t) CTFT←→ X(ω−ω0),

where ω0 is an arbitrary real constant.

� This is known as the modulation (or frequency-domain shifting)
property of the Fourier transform.
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Time- and Frequency-Domain Scaling (Dilation)

� If x(t) CTFT←→ X(ω), then

x(at) CTFT←→ 1
|a|

X
(

ω

a

)
,

where a is an arbitrary nonzero real constant.

� This is known as the dilation (or time/frequency-scaling) property of
the Fourier transform.
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Conjugation

� If x(t) CTFT←→ X(ω), then
x∗(t) CTFT←→ X∗(−ω).

� This is known as the conjugation property of the Fourier transform.
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Duality

� If x(t) CTFT←→ X(ω), then
X(t) CTFT←→ 2πx(−ω)

� This is known as the duality property of the Fourier transform.

� This property follows from the high degree of symmetry in the forward and
inverse Fourier transform equations, which are respectively given by

X(λ) =
∫

∞

−∞

x(θ)e− jθλdθ and x(λ) = 1
2π

∫
∞

−∞

X(θ)e jθλdθ.

� That is, the forward and inverse Fourier transform equations are identical
except for a factor of 2π and different sign in the parameter for the
exponential function.

� Although the relationship x(t) CTFT←→ X(ω) only directly provides us with the
Fourier transform of x(t), the duality property allows us to indirectly infer
the Fourier transform of X(t). Consequently, the duality property can be
used to effectively double the number of Fourier transform pairs that we
know.
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Time-Domain Convolution

� If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

x1 ∗ x2(t)
CTFT←→ X1(ω)X2(ω).

� This is known as the convolution (or time-domain convolution)
property of the Fourier transform.

� In other words, a convolution in the time domain becomes a multiplication
in the frequency domain.

� This suggests that the Fourier transform can be used to avoid having to
deal with convolution operations.
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Time-Domain Multiplication

� If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

x1(t)x2(t)
CTFT←→ 1

2π
X1 ∗X2(ω) =

1
2π

∫
∞

−∞

X1(θ)X2(ω−θ)dθ.

� This is known as the (time-domain) multiplication (or
frequency-domain convolution) property of the Fourier transform.

� In other words, multiplication in the time domain becomes convolution in
the frequency domain (up to a scale factor of 2π).

� Do not forget the factor of 1
2π

in the above formula!

� This property of the Fourier transform is often tedious to apply (in the
forward direction) as it turns a multiplication into a convolution.
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Time-Domain Differentiation

� If x(t) CTFT←→ X(ω), then

dx(t)
dt

CTFT←→ jωX(ω).

� This is known as the (time-domain) differentiation property of the
Fourier transform.

� Differentiation in the time domain becomes multiplication by jω in the
frequency domain.

� Of course, by repeated application of the above property, we have that( d
dt

)n
x(t) CTFT←→ ( jω)nX(ω).

� The above suggests that the Fourier transform might be a useful tool
when working with differential (or integro-differential) equations.
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Frequency-Domain Differentiation

� If x(t) CTFT←→ X(ω), then

tx(t) CTFT←→ j
d

dω
X(ω).

� This is known as the frequency-domain differentiation property of the
Fourier transform.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 175



Time-Domain Integration

� If x(t) CTFT←→ X(ω), then∫ t

−∞

x(τ)dτ
CTFT←→ 1

jω
X(ω)+πX(0)δ(ω).

� This is known as the (time-domain) integration property of the Fourier
transform.

� Whereas differentiation in the time domain corresponds to multiplication
by jω in the frequency domain, integration in the time domain is
associated with division by jω in the frequency domain.

� Since integration in the time domain becomes division by jω in the
frequency domain, integration can be easier to handle in the frequency
domain.

� The above property suggests that the Fourier transform might be a useful
tool when working with integral (or integro-differential) equations.
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Parseval’s Relation

� Recall that the energy of a function x is given by
∫

∞

−∞
|x(t)|2 dt.

� If x(t) CTFT←→ X(ω), then∫
∞

−∞

|x(t)|2 dt =
1

2π

∫
∞

−∞

|X(ω)|2 dω

(i.e., the energy of x and energy of X are equal up to a factor of 2π).

� This relationship is known as Parseval’s relation.

� Since energy is often a quantity of great significance in engineering
applications, it is extremely helpful to know that the Fourier transform
preserves energy (up to a scale factor).
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Even/Odd Symmetry

� For a function x with Fourier transform X , the following assertions hold:

x is even⇔ X is even; and

x is odd⇔ X is odd.

� In other words, the forward and inverse Fourier transforms preserve
even/odd symmetry.
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Real Functions

� A function x is real if and only if its Fourier transform X satisfies

X(ω) = X∗(−ω) for all ω

(i.e., X is conjugate symmetric).

� Thus, for a real-valued function, the portion of the graph of a Fourier
transform for negative values of frequency ω is redundant, as it is
completely determined by symmetry.

� From properties of complex numbers, one can show that X(ω) = X∗(−ω)
is equivalent to

|X(ω)|= |X(−ω)| and argX(ω) =−argX(−ω)

(i.e., |X(ω)| is even and argX(ω) is odd).

� Note that x being real does not necessarily imply that X is real.
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Fourier Transform of Periodic Functions

� The Fourier transform can be generalized to also handle periodic
functions.

� Consider a periodic function x with period T and frequency ω0 =
2π

T .
� Define the function xT as

xT (t) =

{
x(t) −T

2 ≤ t < T
2

0 otherwise.

(i.e., xT (t) is equal to x(t) over a single period and zero elsewhere).
� Let a denote the Fourier series coefficient sequence of x.
� Let X and XT denote the Fourier transforms of x and xT , respectively.
� The following relationships can be shown to hold:

X(ω) =
∞

∑
k=−∞

ω0XT (kω0)δ(ω− kω0),

ak =
1
T XT (kω0), and X(ω) =

∞

∑
k=−∞

2πakδ(ω− kω0).
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Fourier Transform of Periodic Functions (Continued)

� The Fourier series coefficient sequence ak is produced by sampling XT at
integer multiples of the fundamental frequency ω0 and scaling the
resulting sequence by 1

T .

� The Fourier transform of a periodic function can only be nonzero at integer
multiples of the fundamental frequency.
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Section 6.4

Fourier Transform and Frequency Spectra of Functions
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Frequency Spectra of Functions

� Like Fourier series, the Fourier transform also provides us with a
frequency-domain perspective on functions.

� That is, instead of viewing a function as having information distributed with
respect to time (i.e., a function whose domain is time), we view a function
as having information distributed with respect to frequency (i.e., a function
whose domain is frequency).

� The Fourier transform of a function x provides a means to quantify how
much information x has at different frequencies.

� The distribution of information in a function over different frequencies is
referred to as the frequency spectrum of the function.
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Fourier Transform and Frequency Spectra

� To gain further insight into the role played by the Fourier transform X in
the context of the frequency spectrum of x, it is helpful to write the Fourier
transform representation of x with X(ω) expressed in polar form as
follows:

x(t) = 1
2π

∫
∞

−∞

X(ω)e jωtdω = 1
2π

∫
∞

−∞

|X(ω)|e j[ωt+argX(ω)]dω.

� In effect, the quantity |X(ω)| is a weight that determines how much the
complex sinusoid at frequency ω contributes to the integration result x.

� Perhaps, this can be more easily seen if we express the above integral as
the limit of a sum, derived from an approximation of the integral using the
area of rectangles, as shown on the next slide. [Recall that∫

∞

−∞
f (x)dx = lim∆x→0 ∑

∞
k=−∞ ∆x f (k∆x).]
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Fourier Transform and Frequency Spectra (Continued 1)

� Expressing the integral (from the previous slide) as the limit of a sum, we
obtain

x(t) = lim
∆ω→0

1
2π

∞

∑
k=−∞

∆ω
∣∣X(ω′)

∣∣e j[ω′t+argX(ω′)],

where ω′ = k∆ω.

� In the above equation, the kth term in the summation corresponds to a
complex sinusoid with fundamental frequency ω′ = k∆ω that has had its
amplitude scaled by a factor of |X(ω′)| and has been time shifted by an
amount that depends on argX(ω′).

� For a given ω′ = k∆ω (which is associated with the kth term in the
summation), the larger |X(ω′)| is, the larger the amplitude of its
corresponding complex sinusoid e jω′t will be, and therefore the larger the
contribution the kth term will make to the overall summation.

� In this way, we can use |X(ω′)| as a measure of how much information a
function x has at the frequency ω′.
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Fourier Transform and Frequency Spectra (Continued 2)

� The Fourier transform X of the function x is referred to as the frequency
spectrum of x.

� The magnitude |X(ω)| of the Fourier transform X is referred to as the
magnitude spectrum of x.

� The argument argX(ω) of the Fourier transform X is referred to as the
phase spectrum of x.

� Since the Fourier transform is a function of a real variable, a function can
potentially have information at any real frequency.

� Earlier, we saw that for periodic functions, the Fourier transform can only
be nonzero at integer multiples of the fundamental frequency.

� So, the Fourier transform and Fourier series give a consistent picture in
terms of frequency spectra.

� Since the frequency spectrum is complex (in the general case), it is
usually represented using two plots, one showing the magnitude
spectrum and one showing the phase spectrum.
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Frequency Spectra of Real Functions

� Recall that, for a real function x, the Fourier transform X of x satisfies

X(ω) = X∗(−ω)

(i.e., X is conjugate symmetric), which is equivalent to

|X(ω)|= |X(−ω)| and argX(ω) =−argX(−ω).

� Since |X(ω)|= |X(−ω)|, the magnitude spectrum of a real function is
always even.

� Similarly, since argX(ω) =−argX(−ω), the phase spectrum of a real
function is always odd.

� Due to the symmetry in the frequency spectra of real functions, we
typically ignore negative frequencies when dealing with such functions.

� In the case of functions that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.
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Bandwidth

� A function x with Fourier transform X is said to be bandlimited if, for
some nonnegative real constant B, the following condition holds:

X(ω) = 0 for all ω satisfying |ω|> B.

� In the context of real functions, we usually refer to B as the bandwidth of
the function x.

� The (real) function with the Fourier transform X shown below has
bandwidth B.

−B B

X(ω)

ω

� One can show that a function cannot be both time limited and
bandlimited. (This follows from the time/frequency scaling property of the
Fourier transform.)
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Energy Spectral Density

� By Parseval’s relation, the energy E in a function x with Fourier transform
X is given by

E =
∫

∞

−∞

Ex(ω)dω,

where

Ex(ω) =
1

2π
|X(ω)|2 .

� We refer to Ex as the energy spectral density of the function x.

� The function Ex indicates how the energy in x is distributed with respect to
frequency.

� For example, the energy contributed by frequencies ω in the range
ω1 ≤ ω≤ ω2 is given by ∫

ω2

ω1

Ex(ω)dω.
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Power Spectral Density
� For a given function x with Fourier transform X , define the function xT with

Fourier transform XT as

xT (t) =
(
rect t

T

)
x(t).

� By Parseval’s relation, the power P in the function x is given by

P =
∫

∞

−∞

Sx(ω)dω,

where

Sx(ω) = lim
T→∞

1
2πT
|XT (ω)|2 .

� We refer to Sx as the power spectral density of the function x.
� The function Sx indicates how the power in x is distributed with respect to

frequency.
� For example, the power contributed by frequencies ω in the range

ω1 ≤ ω≤ ω2 is given by ∫
ω2

ω1

Sx(ω)dω.
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Section 6.5

Fourier Transform and LTI Systems
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Frequency Response of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

� Since y(t) = x∗h(t), we have that

Y (ω) = X(ω)H(ω).

� The function H is called the frequency response of the system.

� A LTI system is completely characterized by its frequency response H.

� The above equation provides an alternative way of viewing the behavior of
a LTI system. That is, we can view the system as operating in the
frequency domain on the Fourier transforms of the input and output
functions.

� The frequency spectrum of the output is the product of the frequency
spectrum of the input and the frequency response of the system.
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Frequency Response of LTI Systems (Continued 1)

� In the general case, the frequency response H is a complex-valued
function.

� Often, we represent H(ω) in terms of its magnitude |H(ω)| and argument
argH(ω).

� The quantity |H(ω)| is called the magnitude response of the system.

� The quantity argH(ω) is called the phase response of the system.

� Since Y (ω) = X(ω)H(ω), we trivially have that

|Y (ω)|= |X(ω)| |H(ω)| and argY (ω) = argX(ω)+ argH(ω).

� The magnitude spectrum of the output equals the magnitude spectrum of
the input times the magnitude response of the system.

� The phase spectrum of the output equals the phase spectrum of the input
plus the phase response of the system.
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Frequency Response of LTI Systems (Continued 2)

� Since the frequency response H is simply the frequency spectrum of the
impulse response h, if h is real, then

|H(ω)|= |H(−ω)| and argH(ω) =−argH(−ω)

(i.e., the magnitude response |H(ω)| is even and the phase response
argH(ω) is odd).
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Block Diagram Representations of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

� Often, it is convenient to represent such a system in block diagram form in
the frequency domain as shown below.

H
X Y

� Since a LTI system is completely characterized by its frequency response,
we typically label the system with this quantity.
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Interconnection of LTI Systems

� The series interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with frequency response H1H2. That is, we
have the equivalences shown below.

H1 H2 ≡
X Y

H1H2
YX

≡H1 H2 H2 H1
YX YX

� The parallel interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with the frequency response H1 +H2. That
is, we have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y
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LTI Systems and Differential Equations

� Many LTI systems of practical interest can be represented using an
Nth-order linear differential equation with constant coefficients.

� Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bk
dk

dtk y(t) =
M

∑
k=0

ak
dk

dtk x(t) where M ≤ N.

� Let h denote the impulse response of the system, and let X , Y , and H
denote the Fourier transforms of x, y, and h, respectively.

� One can show that H is given by

H(ω) =
Y (ω)
X(ω)

=
∑

M
k=0 ak jkωk

∑
N
k=0 bk jkωk

.

� Observe that, for a system of the form considered above, the frequency
response is a rational function.
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Section 6.6

Application: Filtering
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Filtering

� In many applications, we want to modify the spectrum of a function by
either amplifying or attenuating certain frequency components.

� This process of modifying the frequency spectrum of a function is called
filtering.

� A system that performs a filtering operation is called a filter.

� Many types of filters exist.

� Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

� Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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Ideal Lowpass Filter

� An ideal lowpass filter eliminates all frequency components with a
frequency whose magnitude is greater than some cutoff frequency, while
leaving the remaining frequency components unaffected.

� Such a filter has a frequency response H of the form

H(ω) =

{
1 |ω| ≤ ωc

0 otherwise,

where ωc is the cutoff frequency.
� A plot of this frequency response is given below.

−ωc ωc
ω

1

H(ω)

PassbandStopband Stopband
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Ideal Highpass Filter

� An ideal highpass filter eliminates all frequency components with a
frequency whose magnitude is less than some cutoff frequency, while
leaving the remaining frequency components unaffected.

� Such a filter has a frequency response H of the form

H(ω) =

{
1 |ω| ≥ ωc

0 otherwise,

where ωc is the cutoff frequency.
� A plot of this frequency response is given below.

−ωc ωc
ω

1

H(ω)

· · · · · ·

StopbandPassband Passband
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Ideal Bandpass Filter
� An ideal bandpass filter eliminates all frequency components with a

frequency whose magnitude does not lie in a particular range, while
leaving the remaining frequency components unaffected.

� Such a filter has a frequency response H of the form

H(ω) =

{
1 ωc1 ≤ |ω| ≤ ωc2

0 otherwise,

where the limits of the passband are ωc1 and ωc2.
� A plot of this frequency response is given below.

ω

1

H(ω)

−ωc2 −ωc1 ωc1 ωc2

StopbandStopband StopbandPassband Passband
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Section 6.7

Application: Equalization
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Equalization

� Often, we find ourselves faced with a situation where we have a system
with a particular frequency response that is undesirable for the application
at hand.

� As a result, we would like to change the frequency response of the system
to be something more desirable.

� This process of modifying the frequency response in this way is referred to
as equalization. [Essentially, equalization is just a filtering operation.]

� Equalization is used in many applications.

� In real-world communication systems, equalization is used to eliminate or
minimize the distortion introduced when a signal is sent over a (nonideal)
communication channel.

� In audio applications, equalization can be employed to emphasize or
de-emphasize certain ranges of frequencies. For example, equalization
can be used to boost the bass (i.e., emphasize the low frequencies) in the
audio output of a stereo.
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Equalization (Continued)
OutputInput

horig

Original System

horig
y

heq
x

New System with Equalization

� Let Horig denote the frequency response of original system (i.e., without
equalization).

� Let Hd denote the desired frequency response.
� Let Heq denote the frequency response of the equalizer.
� The new system with equalization has frequency response

Hnew(ω) = Heq(ω)Horig(ω).

� By choosing Heq(ω) = Hd(ω)/Horig(ω), the new system with equalization
will have the frequency response

Hnew(ω) = [Hd(ω)/Horig(ω)]Horig(ω) = Hd(ω).

� In effect, by using an equalizer, we can obtain a new system with the
frequency response that we desire.
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Section 6.8

Application: Circuit Analysis
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Resistors

� A resistor is a circuit element that opposes the flow of electric current.

� A resistor with resistance R is governed by the relationship

v(t) = Ri(t)
(
or equivalently, i(t) = 1

R v(t)
)
,

where v and i respectively denote the voltage across and current through
the resistor as a function of time.

� In the frequency domain, the above relationship becomes

V (ω) = RI(ω)
(
or equivalently, I(ω) = 1

RV (ω)
)
,

where V and I denote the Fourier transforms of v and i, respectively.

� In circuit diagrams, a resistor is denoted by the symbol shown below.

v

R
i + −
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Inductors

� An inductor is a circuit element that converts an electric current into a
magnetic field and vice versa.

� An inductor with inductance L is governed by the relationship

v(t) = L d
dt i(t)

(
or equivalently, i(t) = 1

L

∫ t

−∞

v(τ)dτ

)
,

where v and i respectively denote the voltage across and current through
the inductor as a function of time.

� In the frequency domain, the above relationship becomes

V (ω) = jωLI(ω)
(

or equivalently, I(ω) = 1
jωLV (ω)

)
,

where V and I denote the Fourier transforms of v and i, respectively.
� In circuit diagrams, an inductor is denoted by the symbol shown below.

Li

v

+ −
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Capacitors

� A capacitor is a circuit element that stores electric charge.
� A capacitor with capacitance C is governed by the relationship

v(t) = 1
C

∫ t

−∞

i(τ)dτ
(
or equivalently, i(t) =C d

dt v(t)
)
,

where v and i respectively denote the voltage across and current through
the capacitor as a function of time.

� In the frequency domain, the above relationship becomes

V (ω) = 1
jωC I(ω) (or equivalently, I(ω) = jωCV (ω)) ,

where V and I denote the Fourier transforms of v and i, respectively.
� In circuit diagrams, a capacitor is denoted by the symbol shown below.

v

+ −i
C
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Circuit Analysis

� The Fourier transform is a very useful tool for circuit analysis.

� The utility of the Fourier transform is partly due to the fact that the
differential/integral equations that describe inductors and capacitors are
much simpler to express in the Fourier domain than in the time domain.
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Section 6.9

Application: Amplitude Modulation (AM)
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Motivation for Amplitude Modulation (AM)

� In communication systems, we often need to transmit a signal using a
frequency range that is different from that of the original signal.

� For example, voice/audio signals typically have information in the range of
0 to 22 kHz.

� Often, it is not practical to transmit such a signal using its original
frequency range.

� Two potential problems with such an approach are:
1 interference; and
2 constraints on antenna length.

� Since many signals are broadcast over the airwaves, we need to ensure
that no two transmitters use the same frequency bands in order to avoid
interference.

� Also, in the case of transmission via electromagnetic waves (e.g., radio
waves), the length of antenna required becomes impractically large for the
transmission of relatively low frequency signals.

� For the preceding reasons, we often need to change the frequency range
associated with a signal before transmission.
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Trivial Amplitude Modulation (AM) System

×

c1(t) = e jωct

yx

Transmitter

×

c2(t) = e− jωct

x̂y

Receiver

� The transmitter is characterized by

y(t) = e jωctx(t) ⇐⇒ Y (ω) = X(ω−ωc).

� The receiver is characterized by

x̂(t) = e− jωcty(t) ⇐⇒ X̂(ω) = Y (ω+ωc).

� Clearly, x̂(t) = e jωcte− jωctx(t) = x(t).
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Trivial Amplitude Modulation (AM) System: Example

ωb−ωb
ω

1

X(ω)

Transmitter Input
ωc

C1(ω)

2π

ω

C2(ω)

ω−ωc

2π

Y (ω)

ωc +ωbωc−ωbωb ωc

1

ω

Transmitter Output

ωb−ωb
ω

1

X̂(ω)

Receiver Output
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Double-Sideband Suppressed-Carrier (DSB-SC) AM

×

c(t) = cosωct

yx

Transmitter

×

c(t) = cosωct

H(ω)
x̂(t)v(t)y(t)

H(ω) = 2rect
(

ω

2ωc0

)

Receiver

� Suppose that X(ω) = 0 for all ω 6∈ [−ωb,ωb].

� The transmitter is characterized by

Y (ω) = 1
2 [X(ω+ωc)+X(ω−ωc)] .

� The receiver is characterized by

X̂(ω) = [Y (ω+ωc)+Y (ω−ωc)] rect
(

ω

2ωc0

)
.

� If ωb < ωc0 < 2ωc−ωb, we have X̂(ω) = X(ω) (implying x̂(t) = x(t)).
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DSB-SC AM: Example

ωb

X(ω)
1

−ωb
ω

Transmitter Input
ωc−ωc ω

C(ω)

ππ

ωc0−ωc0
ω

2

H(ω)

−ωc −ωb−ωc−ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc
ω−2ωc 2ωc

1
2

Transmitter Output
V (ω)

−ωb ωb
ω−2ωc−2ωc −ωb −2ωc +ωb 2ωc2ωc −ωb 2ωc +ωb

1
2

1
4

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)

Receiver Output
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Single-Sideband Suppressed-Carrier (SSB-SC) AM

× g
q

g(t) = δ(t)− ωc
π

sincωctc(t) = cosωct

yx

Transmitter

×

c(t) = cosωct

h
x̂vy

h(t) = 4ωc0
π

sincωc0t

Receiver

� The basic analysis of the SSB-SC AM system is similar to the DSB-SC
AM system.

� SSB-SC AM requires half as much bandwidth for the transmitted signal as
DSB-SC AM.
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SSB-SC AM: Example

ωb

X(ω)
1

−ωb
ω ωc−ωc ω

C(ω)

ππ

ωc−ωc ω

G(ω)

· · · 1 · · ·

ωc0−ωc0
ω

4

H(ω)

−ωc −ωb−ωc−ωc +ωb

Q(ω)

−ωb ωc +ωbωc −ωbωb ωc ω−2ωc 2ωc

1
2

−ωc −ωb−ωc−ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc ω−2ωc 2ωc

1
2

V (ω)

−ωb ωb
ω−2ωc−2ωc −ωb−2ωc +ωb 2ωc2ωc −ωb 2ωc +ωb

1
2
1
4

−ωc −ωb ωb ωc ω

1

−2ωc 2ωc

X̂(ω)
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Section 6.10

Application: Sampling and Interpolation
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Sampling and Interpolation
� Often, we want to be able to convert between continuous-time and

discrete-time representations of a signal.
� This is accomplished through processes known as sampling and

interpolation.
� The sampling process, which is performed by an ideal continuous-time

to discrete-time (C/D) converter shown below, transforms a
continuous-time signal x to a discrete-time signal y.

C/D
(with sampling

period T )

x y

� The interpolation process, which is performed by an ideal discrete-time
to continuous-time (D/C) converter shown below, transforms a
discrete-time signal y to a continuous-time signal x̂.

D/C
(with sampling

period T )

y x̂

� Note that, unless very special conditions are met, the sampling process
loses information (i.e., is not invertible).
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Periodic Sampling
� Although sampling can be performed in many different ways, the most

commonly used scheme is periodic sampling.
� With this scheme, a sequence y of samples is obtained from a

continuous-time signal x according to the relation

y(n) = x(T n) for all integer n,

where T is a positive real constant.
� As a matter of terminology, we refer to T as the sampling period, and

ωs = 2π/T as the (angular) sampling frequency.
� An example of periodic sampling is shown below, where the original

continuous-time signal x has been sampled with sampling period T = 10,
yielding the sequence y.

100 20 30 50 60 70
t

x(t)

40

1

2

3

4

Original Signal
10 2 3 4 5 6 7

n

y(n)

2

3

4

1

Sampled Signal
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Periodic Sampling (Continued)

� The sampling process is not generally invertible.

� In the absence of any constraints, a continuous-time signal cannot usually
be uniquely determined from a sequence of its equally-spaced samples.

� Consider, for example, the continuous-time signals x1 and x2 given by

x1(t) = 0 and x2(t) = sin(2πt).

� If we sample each of these signals with the sampling period T = 1, we
obtain the respective sequences

y1(n) = x1(T n) = x1(n) = 0 and

y2(n) = x2(T n) = sin(2πn) = 0.

� Thus, y1(n) = y2(n) for all n, although x1(t) 6= x2(t) for all noninteger t.
� Fortunately, under certain circumstances, a continuous-time signal can be

recovered exactly from its samples.
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Model of Sampling
� An impulse train is a function of the form v(t) = ∑

∞
k=−∞ akδ(t− kT ),

where ak and T are real constants (i.e., v(t) consists of weighted
impulses spaced apart by T ).

� For the purposes of analysis, sampling with sampling period T and
frequency ωs =

2π

T can be modelled as shown below.

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT )

� The sampling of a continuous-time signal x to produce a sequence y
consists of the following two steps (in order):

1 Multiply the signal x to be sampled by a periodic impulse train p, yielding
the impulse train s.

2 Convert the impulse train s to a sequence y, by forming a sequence from
the weights of successive impulses in s.
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Model of Sampling: Various Signals

0 T 2T 3T
t

x(t)

2

3

4

1

Input Signal (Continuous-Time)

0 T 2T 3T
t

1 1 1 1

p(t)

Periodic Impulse Train

0 T 2T 3T
t

s(t)

2

3

4

1

x(T )

x(0)

x(2T )
x(3T )

Impulse-Sampled Signal
(Continuous-Time)

0 1 2 3
n

y(n)

2

3

4

1

x(T )

x(3T )x(2T )

x(0)

Output Sequence (Discrete-Time)

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 224



Model of Sampling: Characterization

×
x ys

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT )

� In the time domain, the impulse-sampled signal s is given by

s(t) = x(t)p(t) where p(t) =
∞

∑
k=−∞

δ(t− kT ).

� In the Fourier domain, the preceding equation becomes

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω− kωs).

� Thus, the spectrum of the impulse-sampled signal s is a scaled sum of an
infinite number of shifted copies of the spectrum of the original signal x.
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Model of Sampling: Aliasing

� Consider frequency spectrum S of the impulse-sampled signal s given by

S(ω) = ωs
2π

∞

∑
k=−∞

X(ω− kωs).

� The function S is a scaled sum of an infinite number of shifted copies of X .

� Two distinct behaviors can result in this summation, depending on ωs and
the bandwidth of x.

� In particular, the nonzero portions of the different shifted copies of X can
either:

1 overlap; or
2 not overlap.

� In the case where overlap occurs, the various shifted copies of X add
together in such a way that the original shape of X is lost. This
phenomenon is known as aliasing.

� When aliasing occurs, the original signal x cannot be recovered from its
samples in y.
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Model of Sampling: Aliasing (Continued)

0−ωm ωm
ω

X(ω)

1
Spectrum of Input
Signal
(Bandwidth ωm)

ωm

S(ω)

−ωm−ωs ωsωs−ωm ωs +ωm−ωs +ωm−ωs−ωm 0

1
T

ω

· · · · · ·

Spectrum of Impulse-
Sampled Signal:
No Aliasing Case
(ωs > 2ωm)

ωm

S(ω)

ωs−ωm ωs

0

1
T

· · · · · ·

ω

Spectrum of Impulse-
Sampled Signal:
Aliasing Case
(ωs ≤ 2ωm)

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 227



Model of Interpolation

� For the purposes of analysis, interpolation can be modelled as shown
below.

impulse train
sequence to
convert fromy x̂s

h

ideal D/C converter

h(t) = sinc π

T t

� The inverse Fourier transform h of H is h(t) = sinc(πt/T ).
� The reconstruction of a continuous-time signal x from its sequence y of

samples (i.e., bandlimited interpolation) consists of the following two steps
(in order):

1 Convert the sequence y to the impulse train s, by using the elements in the
sequence as the weights of successive impulses in the impulse train.

2 Apply a lowpass filter to s to produce x̂.

� The lowpass filter is used to eliminate the extra copies of the original
signal’s spectrum present in the spectrum of the impulse-sampled signal s.
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Model of Interpolation: Characterization

� In more detail, the reconstruction process proceeds as follows.

� First, we convert the sequence y to the impulse train s to obtain

s(t) =
∞

∑
n=−∞

y(n)δ(t−T n).

� Then, we filter the resulting signal s with the lowpass filter having impulse
response h, yielding

x̂(t) =
∞

∑
n=−∞

y(n)sinc
[

π

T (t−T n)
]
.
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Sampling Theorem
� Sampling Theorem. Let x be a function with Fourier transform X , and

suppose that |X(ω)|= 0 for all ω satisfying |ω|> ωM (i.e., x is
bandlimited to frequencies [−ωM,ωM]). Then, x is uniquely determined by
its samples y(n) = x(T n) for all integer n, if

ωs > 2ωM,

where ωs = 2π/T . The preceding inequality is known as the Nyquist
condition. If this condition is satisfied, we have that

x(t) =
∞

∑
n=−∞

y(n)sinc( π

T (t−T n)),

or equivalently (i.e., rewritten in terms of ωs instead of T ),

x(t) =
∞

∑
n=−∞

y(n)sinc(ωs
2 t−πn).

� We call ωs/2 the Nyquist frequency and 2ωM the Nyquist rate.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 230



Part 7

Laplace Transform (LT)
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Motivation Behind the Laplace Transform

� Another important mathematical tool in the study of signals and systems
is known as the Laplace transform.

� The Laplace transform can be viewed as a generalization of the Fourier
transform.

� Due to its more general nature, the Laplace transform has a number of
advantages over the Fourier transform.

� First, the Laplace transform representation exists for some functions that
do not have a Fourier transform representation. So, we can handle
some functions with the Laplace transform that cannot be handled with
the Fourier transform.

� Second, since the Laplace transform is a more general tool, it can provide
additional insights beyond those facilitated by the Fourier transform.
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Motivation Behind the Laplace Transform (Continued)

� Earlier, we saw that complex exponentials are eigenfunctions of LTI
systems.

� In particular, for a LTI system H with impulse response h, we have that

H{est}(t) = H(s)est where H(s) =
∫

∞

−∞

h(t)e−stdt.

� Previously, we referred to H as the system function.

� As it turns out, H is the Laplace transform of h.

� Since the Laplace transform has already appeared earlier in the context of
LTI systems, it is clearly a useful tool.

� Furthermore, as we will see, the Laplace transform has many additional
uses.
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Section 7.1

Laplace Transform
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(Bilateral) Laplace Transform

� The (bilateral) Laplace transform of the function x, denoted Lx or X , is
defined as

Lx(s) = X(s) =
∫

∞

−∞

x(t)e−stdt.

� The inverse Laplace transform of X , denoted L−1X or x, is then given
by

L−1X(t) = x(t) =
1

2π j

∫
σ+ j∞

σ− j∞
X(s)estds,

where Re(s) = σ is in the ROC of X . (Note that this is a contour
integration, since s is complex.)

� We refer to x and X as a Laplace transform pair and denote this
relationship as

x(t) LT←→ X(s).

� In practice, we do not usually compute the inverse Laplace transform by
directly using the formula from above. Instead, we resort to other means
(to be discussed later).
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Bilateral and Unilateral Laplace Transforms

� Two different versions of the Laplace transform are commonly used:
1 the bilateral (or two-sided) Laplace transform; and
2 the unilateral (or one-sided) Laplace transform.

� The unilateral Laplace transform is most frequently used to solve systems
of linear differential equations with nonzero initial conditions.

� As it turns out, the only difference between the definitions of the bilateral
and unilateral Laplace transforms is in the lower limit of integration.

� In the bilateral case, the lower limit is −∞, whereas in the unilateral case,
the lower limit is 0.

� For the most part, we will focus our attention primarily on the bilateral
Laplace transform.

� We will, however, briefly introduce the unilateral Laplace transform as a
tool for solving differential equations.

� Unless otherwise noted, all subsequent references to the Laplace
transform should be understood to mean bilateral Laplace transform.
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Remarks on Operator Notation

� For a function x, the Laplace transform of x is denoted using operator
notation as Lx.

� The Laplace transform of x evaluated at s is denoted Lx(s).
� Note that Lx is a function, whereas Lx(s) is a number.

� Similarly, for a function X , the inverse Laplace transform of X is denoted
using operator notation as L−1X .

� The inverse Laplace transform of X evaluated at t is denoted L−1X(t).
� Note that L−1X is a function, whereas L−1X(t) is a number.

� With the above said, engineers often abuse notation, and use expressions
like those above to mean things different from their proper meanings.

� Since such notational abuse can lead to problems, it is strongly
recommended that one refrain from doing this.
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Remarks on Dot Notation

� Often, we would like to write an expression for the Laplace transform of a
function without explicitly naming the function.

� For example, consider writing an expression for the Laplace transform of
the function v(t) = x(5t−3) but without using the name “v”.

� It would be incorrect to write “Lx(5t−3)” as this is the function Lx
evaluated at 5t−3, which is not the meaning that we wish to convey.

� Also, strictly speaking, it would be incorrect to write “L{x(5t−3)}” as the
operand of the Laplace transform operator must be a function, and
x(5t−3) is a number (i.e., the function x evaluated at 5t−3).

� Using dot notation, we can write the following strictly-correct expression
for the desired Laplace transform: L{x(5 ·−3)}.

� In many cases, however, it is probably advisable to avoid employing
anonymous (i.e., unnamed) functions, as their use tends to be more error
prone in some contexts.
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Remarks on Notational Conventions

� Since dot notation is less frequently used by engineers, the author has
elected to minimize its use herein.

� To avoid ambiguous notation, the following conventions are followed:
1 in the expression for the operand of a Laplace transform operator, the

independent variable is assumed to be the variable named “t” unless
otherwise indicated (i.e., in terms of dot notation, each “t” is treated as if it
were a “·”)

2 in the expression for the operand of the inverse Laplace transform operator,
the independent variable is assumed to be the variable named “s” unless
otherwise indicated (i.e., in terms of dot notation, each “s” is treated as if it
were a “·”).

� For example, with these conventions:
2 “L{(t− τ)u(t− τ)}” denotes the function that is the Laplace transform of

the function v(t) = (t− τ)u(t− τ) (not the Laplace transform of the function
v(τ) = (t− τ)u(t− τ)).

2 “L−1{ 1
s2−λ
}” denotes the function that is the inverse Laplace transform of

the function V (s) = { 1
s2−λ
} (not the inverse Laplace transform of the

function V (λ) = { 1
s2−λ
}).
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Relationship Between Laplace and Fourier Transforms

� Let X and XF denote the Laplace and (CT) Fourier transforms of x,
respectively.

� The function X evaluated at jω (where ω is real) yields XF(ω). That is,

X( jω) = XF(ω).

� Due to the preceding relationship, the Fourier transform of x is sometimes
written as X( jω).

� The function X evaluated at an arbitrary complex value s = σ+ jω (where
σ = Re(s) and ω = Im(s)) can also be expressed in terms of a Fourier
transform involving x. In particular, we have

X(σ+ jω) = X ′F(ω),

where X ′F is the (CT) Fourier transform of x′(t) = e−σtx(t).
� So, in general, the Laplace transform of x is the Fourier transform of an

exponentially-weighted version of x.
� Due to this weighting, the Laplace transform of a function may exist when

the Fourier transform of the same function does not.
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Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 7.2

Region of Convergence (ROC)
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Left-Half Plane (LHP)

� The set R of all complex numbers s satisfying

Re(s)< a

for some real constant a is said to be a left-half plane (LHP).
� Some examples of LHPs are shown below.

Im{s}

Re{s}

a < 0

a

Im{s}

Re{s}

a > 0

a
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Right-Half Plane (RHP)

� The set R of all complex numbers s satisfying

Re(s)> a

for some real constant a is said to be a right-half plane (RHP).
� Some examples of RHPs are shown below.

Re{s}

Im{s}

a

a < 0 Im{s}

a
Re{s}

a > 0
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Intersection of Sets

� For two sets A and B, the intersection of A and B, denoted A∩B, is the
set of all points that are in both A and B.

� An illustrative example of set intersection is shown below.

1 2

1

2

−1

−2

Im

−2−3 3 Re−1

R1

1 2

1

2

−1

−2

Im

−2−3 3 Re−1

R2

1 2

1

2

−1

−2

Im

−2−3 3 Re−1

R1∩R2
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Adding a Scalar to a Set

� For a set S and a scalar constant a, S+a denotes the set given by

S+a = {z+a : z ∈ S}

(i.e., S+a is the set formed by adding a to each element of S).

� An illustrative example is given below.

2

1

2

−1

−2

Im

−2−3 3
Re

−1 1

R

1

1

2

−1

−2

Im

−2−3 3
Re

−1 2

R+1
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Multiplying a Set by a Scalar

� For a set S and a scalar constant a, aS denotes the set given by

aS = {az : z ∈ S}

(i..e, aS is the set formed by multiplying each element of S by a).

� An illustrative example is given below.

1

1

2

−1

−2

Im

−2−3 3−1−4 42−5 5
Re

R

1

1

2

−1

−2

Im

−2−3 3−1−4 42−5 5
Re

2R

1

1

2

−1

−2

Im

−2−3 3−1−4 42−5 5
Re

−2R
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Region of Convergence (ROC)

� As we saw earlier, for a function x, the complete specification of its
Laplace transform X requires not only an algebraic expression for X , but
also the ROC associated with X .

� Two very different functions can have the same algebraic expressions for
X .

� Now, we examine some of the constraints on the ROC (of the Laplace
transform) for various classes of functions.
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Properties of the ROC

1 The ROC of the Laplace transform X consists of strips parallel to the
imaginary axis in the complex plane.

2 If the Laplace transform X is a rational function, the ROC does not
contain any poles, and the ROC is bounded by poles or extends to
infinity.

3 If the function x is finite duration and its Laplace transform X(s)
converges for some value of s, then X(s) converges for all values of s
(i.e., the ROC is the entire complex plane).

4 If the function x is right sided and the (vertical) line Re(s) = σ0 is in the
ROC of the Laplace transform X = Lx, then all values of s for which
Re(s)> σ0 must also be in the ROC (i.e., the ROC is a RHP including
Re(s) = σ0).

5 If the function x is left sided and the (vertical) line Re(s) = σ0 is in the
ROC of the Laplace transform X = Lx, then all values of s for which
Re(s)< σ0 must also be in the ROC (i.e., the ROC is a LHP including
Re(s) = σ0).
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Properties of the ROC (Continued)

6 If the function x is two sided and the (vertical) line Re(s) = σ0 is in the
ROC of the Laplace transform X = Lx, then the ROC will consist of a
strip in the complex plane that includes the line Re(s) = σ0.

7 If the Laplace transform X of the function x is rational (with at least one
pole), then:

1 If x is right sided, the ROC of X is to the right of the rightmost pole of X
(i.e., the RHP to the right of the rightmost pole).

2 If x is left sided, the ROC of X is to the left of the leftmost pole of X (i.e., the
LHP to the left of the leftmost pole).

� Some of the preceding properties are redundant (e.g., properties 1, 2, 4,
and 5 imply property 7).

� Since every function can be classified as one of finite duration, left sided
but not right sided, right sided but not left sided, or two sided, we can infer
from properties 3, 4, 5, and 6 that the ROC can only be of the form of a
LHP, RHP, vertical strip, the entire complex plane, or the empty set. Thus,
the ROC must be a connected region.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 250



Section 7.3

Properties of the Laplace Transform
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Properties of the Laplace Transform

Property Time Domain Laplace Domain ROC

Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s) At least R1∩R2

Time-Domain Shifting x(t− t0) e−st0X(s) R

Laplace-Domain Shifting es0tx(t) X(s− s0) R+Re(s0)

Time/Laplace-Domain Scaling x(at) 1
|a|X

( s
a

)
aR

Conjugation x∗(t) X∗(s∗) R

Time-Domain Convolution x1 ∗ x2(t) X1(s)X2(s) At least R1∩R2

Time-Domain Differentiation d
dt x(t) sX(s) At least R

Laplace-Domain Differentiation −tx(t) d
ds X(s) R

Time-Domain Integration
∫ t
−∞

x(τ)dτ
1
s X(s) At least R∩{Re(s)> 0}

Property

Initial Value Theorem x(0+) = lim
s→∞

sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)
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Laplace Transform Pairs

Pair x(t) X(s) ROC

1 δ(t) 1 All s

2 u(t) 1
s Re(s)> 0

3 −u(−t) 1
s Re(s)< 0

4 tnu(t) n!
sn+1 Re(s)> 0

5 −tnu(−t) n!
sn+1 Re(s)< 0

6 e−atu(t) 1
s+a Re(s)>−a

7 −e−atu(−t) 1
s+a Re(s)<−a

8 tne−atu(t) n!
(s+a)n+1 Re(s)>−a

9 −tne−atu(−t) n!
(s+a)n+1 Re(s)<−a

10 [cosω0t]u(t) s
s2+ω2

0
Re(s)> 0

11 [sinω0t]u(t) ω0
s2+ω2

0
Re(s)> 0

12 [e−at cosω0t]u(t) s+a
(s+a)2+ω2

0
Re(s)>−a

13 [e−at sinω0t]u(t) ω0
(s+a)2+ω2

0
Re(s)>−a
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Linearity

� If x1(t)
LT←→ X1(s) with ROC R1 and x2(t)

LT←→ X2(s) with ROC R2, then

a1x1(t)+a2x2(t)
LT←→ a1X1(s)+a2X2(s) with ROC R containing R1∩R2,

where a1 and a2 are arbitrary complex constants.

� This is known as the linearity property of the Laplace transform.

� The ROC always contains the intersection but could be larger (in the case
that pole-zero cancellation occurs).
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Time-Domain Shifting

� If x(t) LT←→ X(s) with ROC R, then

x(t− t0)
LT←→ e−st0X(s) with ROC R,

where t0 is an arbitrary real constant.

� This is known as the time-domain shifting property of the Laplace
transform.
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Laplace-Domain Shifting

� If x(t) LT←→ X(s) with ROC R, then

es0tx(t) LT←→ X(s− s0) with ROC R+Re(s0),

where s0 is an arbitrary complex constant.

� This is known as the Laplace-domain shifting property of the Laplace
transform.

� As illustrated below, the ROC R is shifted right by Re(s0).
Im

σmin σmax
Re

R

Re

Im

σmin +Re(s0) σmax +Re(s0)

R+Re(s0)
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Time-Domain/Laplace-Domain Scaling

� If x(t) LT←→ X(s) with ROC R, then

x(at) LT←→ 1
|a|

X
( s

a

)
with ROC R1 = aR,

where a is a nonzero real constant.

� This is known as the (time-domain/Laplace-domain) scaling property
of the Laplace transform.

� As illustrated below, the ROC R is scaled and possibly flipped left to right.
Im

σmin σmax
Re

R

Im

Reaσmaxaσmin

aR, a > 0

Im

Reaσmax aσmin

aR, a < 0
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Conjugation

� If x(t) LT←→ X(s) with ROC R, then

x∗(t) LT←→ X∗(s∗) with ROC R.

� This is known as the conjugation property of the Laplace transform.
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Time-Domain Convolution

� If x1(t)
LT←→ X1(s) with ROC R1 and x2(t)

LT←→ X2(s) with ROC R2, then

x1 ∗ x2(t)
LT←→ X1(s)X2(s) with ROC containing R1∩R2.

� This is known as the time-domain convolution property of the Laplace
transform.

� The ROC always contains the intersection but can be larger than the
intersection (if pole-zero cancellation occurs).

� Convolution in the time domain becomes multiplication in the Laplace
domain.

� Consequently, it is often much easier to work with LTI systems in the
Laplace domain, rather than the time domain.
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Time-Domain Differentiation

� If x(t) LT←→ X(s) with ROC R, then

dx(t)
dt

LT←→ sX(s) with ROC containing R.

� This is known as the time-domain differentiation property of the
Laplace transform.

� The ROC always contains R but can be larger than R (if pole-zero
cancellation occurs).

� Differentiation in the time domain becomes multiplication by s in the
Laplace domain.

� Consequently, it can often be much easier to work with differential
equations in the Laplace domain, rather than the time domain.
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Laplace-Domain Differentiation

� If x(t) LT←→ X(s) with ROC R, then

−tx(t) LT←→ dX(s)
ds

with ROC R.

� This is known as the Laplace-domain differentiation property of the
Laplace transform.
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Time-Domain Integration

� If x(t) LT←→ X(s) with ROC R, then∫ t

−∞

x(τ)dτ
LT←→ 1

s
X(s) with ROC containing R∩{Re(s)> 0}.

� This is known as the time-domain integration property of the Laplace
transform.

� The ROC always contains at least R∩{Re(s)> 0} but can be larger (if
pole-zero cancellation occurs).

� Integration in the time domain becomes division by s in the Laplace
domain.

� Consequently, it is often much easier to work with integral equations in the
Laplace domain, rather than the time domain.
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Initial Value Theorem

� For a function x with Laplace transform X , if x is causal and contains no
impulses or higher order singularities at the origin, then

x(0+) = lim
s→∞

sX(s),

where x(0+) denotes the limit of x(t) as t approaches zero from positive
values of t.

� This result is known as the initial value theorem.
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Final Value Theorem

� For a function x with Laplace transform X , if x is causal and x(t) has a
finite limit as t→ ∞, then

lim
t→∞

x(t) = lim
s→0

sX(s).

� This result is known as the final value theorem.

� Sometimes the initial and final value theorems are useful for checking for
errors in Laplace transform calculations. For example, if we had made a
mistake in computing X(s), the values obtained from the initial and final
value theorems would most likely disagree with the values obtained
directly from the original expression for x(t).
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More Laplace Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 265



Section 7.4

Determination of Inverse Laplace Transform
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Finding Inverse Laplace Transform

� Recall that the inverse Laplace transform x of X is given by

x(t) =
1

2π j

∫
σ+ j∞

σ− j∞
X(s)estds,

where Re(s) = σ is in the ROC of X .

� Unfortunately, the above contour integration can often be quite tedious to
compute.

� Consequently, we do not usually compute the inverse Laplace transform
directly using the above equation.

� For rational functions, the inverse Laplace transform can be more easily
computed using partial fraction expansions.

� Using a partial fraction expansion, we can express a rational function as a
sum of lower-order rational functions whose inverse Laplace transforms
can typically be found in tables.
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Section 7.5

Laplace Transform and LTI Systems
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System Function of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h. Let
X , Y , and H denote the Laplace transforms of x, y, and h, respectively.

� Since y(t) = x∗h(t), the system is characterized in the Laplace domain by

Y (s) = X(s)H(s).

� As a matter of terminology, we refer to H as the system function (or
transfer function) of the system (i.e., the system function is the Laplace
transform of the impulse response).

� When viewed in the Laplace domain, a LTI system forms its output by
multiplying its input with its system function.

� A LTI system is completely characterized by its system function H.

� If the ROC of H includes the imaginary axis, then H( jω) is the frequency
response of the LTI system.
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Block Diagram Representations of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Laplace transforms of x, y, and h, respectively.

� Often, it is convenient to represent such a system in block diagram form in
the Laplace domain as shown below.

H
X Y

� Since a LTI system is completely characterized by its system function, we
typically label the system with this quantity.
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Interconnection of LTI Systems

� The series interconnection of the LTI systems with system functions H1
and H2 is the LTI system with system function H1H2. That is, we have the
equivalences shown below.

H1 H2 ≡
X Y

H1H2
YX

≡H1 H2 H2 H1
YX YX

� The parallel interconnection of the LTI systems with system functions H1
and H2 is the LTI system with the system function H1 +H2. That is, we
have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y
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Causality

� If a LTI system is causal, its impulse response is causal, and therefore
right sided. From this, we have the result below.

� Theorem. The ROC associated with the system function of a causal LTI
system is a right-half plane or the entire complex plane.

� In general, the converse of the above theorem is not necessarily true.
That is, if the ROC of the system function is a RHP or the entire complex
plane, it is not necessarily true that the system is causal.

� If the system function is rational, however, we have that the converse
does hold, as indicated by the theorem below.

� Theorem. For a LTI system with a rational system function H, causality
of the system is equivalent to the ROC of H being the right-half plane to
the right of the rightmost pole or, if H has no poles, the entire complex
plane.
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BIBO Stability

� Whether or not a system is BIBO stable depends on the ROC of its
system function.

� Theorem. A LTI system is BIBO stable if and only if the ROC of its
system function H contains the imaginary axis (i.e., Re(s) = 0).

� Theorem. A causal LTI system with a (proper) rational system function H
is BIBO stable if and only if all of the poles of H lie in the left half of the
plane (i.e., all of the poles have negative real parts).

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 273



Invertibility

� A LTI system H with system function H is invertible if and only if there
exists another LTI system with system function Hinv such that

H(s)Hinv(s) = 1,

in which case Hinv is the system function of H−1 and

Hinv(s) =
1

H(s)
.

� Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is not necessarily unique.

� In practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only
interested in one specific choice of inverse system (due to these
additional constraints of stability and/or causality).
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LTI Systems and Differential Equations

� Many LTI systems of practical interest can be represented using an
Nth-order linear differential equation with constant coefficients.

� Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bk
dk

dtk y(t) =
M

∑
k=0

ak
dk

dtk x(t) where M ≤ N.

� Let h denote the impulse response of the system, and let X , Y , and H
denote the Laplace transforms of x, y, and h, respectively.

� One can show that H is given by

H(s) =
Y (s)
X(s)

=
∑

M
k=0 aksk

∑
N
k=0 bksk

.

� Observe that, for a system of the form considered above, the system
function is always rational.
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Section 7.6

Application: Circuit Analysis
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Resistors

� A resistor is a circuit element that opposes the flow of electric current.

� A resistor with resistance R is governed by the relationship

v(t) = Ri(t)
(
or equivalently, i(t) = 1

R v(t)
)
,

where v and i respectively denote the voltage across and current through
the resistor as a function of time.

� In the Laplace domain, the above relationship becomes

V (s) = RI(s)
(
or equivalently, I(s) = 1

RV (s)
)
,

where V and I denote the Laplace transforms of v and i, respectively.

� In circuit diagrams, a resistor is denoted by the symbol shown below.

v

R
i + −
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Inductors

� An inductor is a circuit element that converts an electric current into a
magnetic field and vice versa.

� An inductor with inductance L is governed by the relationship

v(t) = L d
dt i(t)

(
or equivalently, i(t) = 1

L

∫ t

−∞

v(τ)dτ

)
,

where v and i respectively denote the voltage across and current through
the inductor as a function of time.

� In the Laplace domain, the above relationship becomes

V (s) = sLI(s)
(
or equivalently, I(s) = 1

sLV (s)
)
,

where V and I denote the Laplace transforms of v and i, respectively.
� In circuit diagrams, an inductor is denoted by the symbol shown below.

Li

v

+ −
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Capacitors

� A capacitor is a circuit element that stores electric charge.
� A capacitor with capacitance C is governed by the relationship

v(t) = 1
C

∫ t

−∞

i(τ)dτ
(
or equivalently, i(t) =C d

dt v(t)
)
,

where v and i respectively denote the voltage across and current through
the capacitor as a function of time.

� In the Laplace domain, the above relationship becomes

V (s) = 1
sC I(s) (or equivalently, I(s) = sCV (s)) ,

where V and I denote the Laplace transforms of v and i, respectively.
� In circuit diagrams, a capacitor is denoted by the symbol shown below.

v

+ −i
C
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Circuit Analysis

� The Laplace transform is a very useful tool for circuit analysis.

� The utility of the Laplace transform is partly due to the fact that the
differential/integral equations that describe inductors and capacitors are
much simpler to express in the Laplace domain than in the time domain.
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Section 7.7

Application: Analysis of Control Systems
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Feedback Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback
Signal

� input: desired value of the quantity to be controlled

� output: actual value of the quantity to be controlled

� error: difference between the desired and actual values

� plant: system to be controlled

� sensor: device used to measure the actual output

� controller: device that monitors the error and changes the input of the
plant with the goal of forcing the error to zero
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Stability Analysis of Feedback Control Systems

� Often, we want to ensure that a system is BIBO stable.

� The BIBO stability property is more easily characterized in the Laplace
domain than in the time domain.

� Therefore, the Laplace domain is extremely useful for the stability analysis
of systems.
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Section 7.8

Unilateral Laplace Transform
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Unilateral Laplace Transform

� The unilateral Laplace transform of the function x, denoted Lu{x} or
X , is defined as

X(s) =
∫

∞

0−
x(t)e−stdt.

� The unilateral Laplace transform is related to the bilateral Laplace
transform as follows:

Lu{x}(s) =
∫

∞

0−
x(t)e−stdt =

∫
∞

−∞

x(t)u(t)e−stdt = L{xu}(s).

� In other words, the unilateral Laplace transform of the function x is simply
the bilateral Laplace transform of the function xu.

� Since Lu{x}= L{xu} and xu is always a right-sided function, the ROC
associated with Lu{x} is always a right-half plane.

� For this reason, we often do not explicitly indicate the ROC when
working with the unilateral Laplace transform.
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Unilateral Laplace Transform (Continued 1)

� With the unilateral Laplace transform, the same inverse transform
equation is used as in the bilateral case.

� The unilateral Laplace transform is only invertible for causal functions.
In particular, we have

L−1
u {Lu{x}}(t) = L−1

u {L{xu}}(t)
= L−1{L{xu}}(t)
= x(t)u(t)

=

{
x(t) t > 0
0 t < 0.

� For a noncausal function x, we can only recover x(t) for t ≥ 0.
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Unilateral Laplace Transform (Continued 2)

� Due to the close relationship between the unilateral and bilateral Laplace
transforms, these two transforms have some similarities in their properties.

� Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.
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Properties of the Unilateral Laplace Transform

Property Time Domain Laplace Domain

Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s)

Laplace-Domain Shifting es0tx(t) X(s− s0)

Time/Laplace-Domain Scaling x(at), a > 0 1
a X
( s

a

)
Conjugation x∗(t) X∗(s∗)

Time-Domain Convolution x1 ∗ x2(t), x1 and x2 are causal X1(s)X2(s)

Time-Domain Differentiation d
dt x(t) sX(s)− x(0−)

Laplace-Domain Differentiation −tx(t) d
ds X(s)

Time-Domain Integration
∫ t

0− x(τ)dτ
1
s X(s)

Property

Initial Value Theorem x(0+) = lim
s→∞

sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)
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Unilateral Laplace Transform Pairs

Pair x(t), t ≥ 0 X(s)

1 δ(t) 1

2 1 1
s

3 tn n!
sn+1

4 e−at 1
s+a

5 tne−at n!
(s+a)n+1

6 cosω0t s
s2+ω2

0

7 sinω0t ω0
s2+ω2

0

8 e−at cosω0t s+a
(s+a)2+ω2

0

9 e−at sinω0t ω0
(s+a)2+ω2

0
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Solving Differential Equations Using the Unilateral Laplace
Transform

� Many systems of interest in engineering applications can be characterized
by constant-coefficient linear differential equations.

� One common use of the unilateral Laplace transform is in solving
constant-coefficient linear differential equations with nonzero initial
conditions.
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Part 8

Discrete-Time (DT) Signals and Systems

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 291



Section 8.1

Independent- and Dependent-Variable Transformations
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Time Shifting (Translation)

� Time shifting (also called translation) maps the input sequence x to the
output sequence y as given by

y(n) = x(n−b),

where b is an integer.

� Such a transformation shifts the sequence (to the left or right) along the
time axis.

� If b > 0, y is shifted to the right by |b|, relative to x (i.e., delayed in time).

� If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).
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Time Shifting (Translation): Example

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(n−1)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(n+1)

3
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Time Reversal (Reflection)

� Time reversal (also known as reflection) maps the input sequence x to
the output sequence y as given by

y(n) = x(−n).

� Geometrically, the output sequence y is a reflection of the input sequence
x about the (vertical) line n = 0.

−2−3 2 3

1

−1 10

2

x(n)

3

n
−2−3 2 3

1

−1 10

2

x(−n)

3

n
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Downsampling

� Downsampling maps the input sequence x to the output sequence y as
given by

y(n) = (↓ a)x(n) = x(an),

where a is a strictly positive integer.

� The output sequence y is produced from the input sequence x by keeping
only every ath sample of x.

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

−2−3 2 3

1

−1 10

2

n
4−4

(↓ 2)x(n)

3
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Upsampling

� Upsampling maps the input sequence x to the output sequence y as
given by

y(n) = (↑ a)x(n) =

{
x(n/a) n/a is an integer

0 otherwise,

where a is a strictly positive integer.

� The output sequence y is produced from the input sequence x by inserting
a−1 zeros between all of the samples of x.

−2−3 2 3

1

−1 10

2

4−4
n

−5 5

x(n)

3

−2−3 2 3

1

−1 10

2

4−4
n

−5 5

(↑ 2)x(n)

3
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Combined Independent-Variable Transformations

� Consider a transformation that maps the input sequence x to the output
sequence y as given by

y(n) = x(an−b),

where a and b are integers and a 6= 0.
� Such a transformation is a combination of time shifting, downsampling,

and time reversal operations.
� Time reversal commutes with downsampling.
� Time shifting does not commute with time reversal or downsampling.
� The above transformation is equivalent to:

1 first, time shifting x by b;
2 then, downsampling the result by |a| and, if a < 0, time reversing as well.

� If b
a is an integer, the above transformation is also equivalent to:
1 first, downsampling x by |a| and, if a < 0, time reversing;
2 then, time shifting the result by b

a .

� Note that the time shift is not by the same amount in both cases.
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Section 8.2

Properties of Sequences
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Symmetry and Addition/Multiplication

� Sums involving even and odd sequences have the following properties:
2 The sum of two even sequences is even.
2 The sum of two odd sequences is odd.
2 The sum of an even sequence and odd sequence is neither even nor odd,

provided that neither of the sequences is identically zero.

� That is, the sum of sequences with the same type of symmetry also has
the same type of symmetry.

� Products involving even and odd sequences have the following
properties:

2 The product of two even sequences is even.
2 The product of two odd sequences is even.
2 The product of an even sequence and an odd sequence is odd.

� That is, the product of sequences with the same type of symmetry is even,
while the product of sequences with opposite types of symmetry is odd.
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Decomposition of a Sequence into Even and Odd Parts

� Every sequence x has a unique representation of the form

x(n) = xe(n)+ xo(n),

where the sequences xe and xo are even and odd, respectively.

� In particular, the sequences xe and xo are given by

xe(n) = 1
2 [x(n)+ x(−n)] and xo(n) = 1

2 [x(n)− x(−n)] .

� The sequences xe and xo are called the even part and odd part of x,
respectively.

� For convenience, the even and odd parts of x are often denoted as
Even{x} and Odd{x}, respectively.
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Sum of Periodic Sequences

� The least common multiple of two (strictly positive) integers a and b,
denoted lcm(a,b), is the smallest positive integer that is divisible by both
a and b.

� The quantity lcm(a,b) can be easily determined from a prime factorization
of the integers a and b by taking the product of the highest power for each
prime factor appearing in these factorizations. Example:

lcm(20,6) = lcm(22 ·51,21 ·31) = 22 ·31 ·51 = 60;

lcm(54,24) = lcm(21 ·33,23 ·31) = 23 ·33 = 216; and

lcm(24,90) = lcm(23 ·31,21 ·32 ·51) = 23 ·32 ·51 = 360.

� Sum of periodic sequences. For any two periodic sequences x1 and x2
with fundamental periods N1 and N2, respectively, the sum x1 + x2 is
periodic with period lcm(N1,N2).
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Right-Sided Sequences

� A sequence x is said to be right sided if, for some (finite) integer constant
n0, the following condition holds:

x(n) = 0 for all n < n0

(i.e., x is only potentially nonzero to the right of n0).
� An example of a right-sided sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · ·

� A sequence x is said to be causal if

x(n) = 0 for all n < 0.

� A causal sequence is a special case of a right-sided sequence.
� A causal sequence is not to be confused with a causal system. In these

two contexts, the word “causal” has very different meanings.
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Left-Sided Sequences

� A sequence x is said to be left sided if, for some (finite) integer constant
n0, the following condition holds:

x(n) = 0 for all n > n0

(i.e., x is only potentially nonzero to the left of n0).
� An example of a left-sided sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · ·

� A sequence x is said to be anticausal if

x(n) = 0 for all n > 0.

� An anticausal sequence is a special case of a left-sided sequence.
� An anticausal sequence is not to be confused with an anticausal system.

In these two contexts, the word “anticausal” has very different meanings.
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Finite-Duration and Two-Sided Sequences

� A sequence that is both left sided and right sided is said to be finite
duration (or time limited).

� An example of a finite-duration sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

� A sequence that is neither left sided nor right sided is said to be two
sided.

� An example of a two-sided sequence is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · · · · ·
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Bounded Sequences

� A sequence x is said to be bounded if there exists some (finite) positive
real constant A such that

|x(n)| ≤ A for all n

(i.e., x(n) is finite for all n).

� Examples of bounded sequences include any constant sequence.

� Examples of unbounded sequences include any nonconstant polynomial
sequence.
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Energy of a Sequence

� The energy E contained in the sequence x is given by

E =
∞

∑
k=−∞

|x(k)|2 .

� A signal with finite energy is said to be an energy signal.
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Section 8.3

Elementary Sequences
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Real Sinusoidal Sequences

� A real sinusoidal sequence is a sequence of the form

x(n) = Acos(Ωn+θ),

where A, Ω, and θ are real constants.
� A real sinusoid is periodic if and only if Ω

2π
is a rational number, in which

case the fundamental period is the smallest integer of the form 2πk
|Ω| where

k is a positive integer.
� For all integer k, xk(n) = Acos([Ω+2πk]n+θ) is the same sequence.
� An example of a periodic real sinusoid with fundamental period 12 is

shown plotted below.
x(n) = cos

(
π

6 n
)

1

−1

12−12

· · ·· · ·
n
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Complex Exponential Sequences

� A complex exponential sequence is a sequence of the form

x(n) = can,

where c and a are complex constants.

� Such a sequence can also be equivalently expressed in the form

x(n) = cebn,

where b is a complex constant chosen as b = lna. (This this form is more
similar to that presented for CT complex exponentials).

� A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of the parameters c and a.

� For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.
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Real Exponential Sequences

� A real exponential sequence is a special case of a complex exponential

x(n) = can,

where c and a are restricted to be real numbers.

� A real exponential can exhibit one of several distinct modes of behavior,
depending on the magnitude and sign of a.

� If |a|> 1, the magnitude of x(n) increases exponentially as n increases
(i.e., a growing exponential).

� If |a|< 1, the magnitude of x(n) decreases exponentially as n increases
(i.e., a decaying exponential).

� If |a|= 1, the magnitude of x(n) is a constant, independent of n.

� If a > 0, x(n) has the same sign for all n.

� If a < 0, x(n) alternates in sign as n increases/decreases.
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Real Exponential Sequences (Continued 1)

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

· · ·
· · ·

|a|> 1, a > 0 [a = 5
4 ; c = 1]

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

· · ·
· · ·

|a|< 1, a > 0 [a = 4
5 ; c = 1]

−2−3 2 3

1

−1 10
n

4−4

x(n)

· · · · · ·

|a|= 1, a > 0 [a = 1; c = 1]
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Real Exponential Sequences (Continued 2)

−2 2

1

2

n
4−4

x(n)

3

1

2

3

−3 −1

· · ·
· · ·

1 3

|a|> 1, a < 0 [a =− 5
4 ; c = 1]

−2 2

1

2

n
4−4

x(n)

3

1

2

3

· · ·

· · ·
−3 1 3−1

|a|< 1, a < 0 [a =− 4
5 ; c = 1]

−2 2

1

n
4−4

x(n)

−1

1 3

· · ·· · ·
−3 −1

|a|= 1, a < 0 [a =−1; c = 1]
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Complex Sinusoidal Sequences

� A complex sinusoidal sequence is a special case of a complex exponential
x(n) = can, where c and a are complex and |a|= 1 (i.e., a is of the form
e jΩ where Ω is real).

� That is, a complex sinusoidal sequence is a sequence of the form

x(n) = ce jΩn,

where c is complex and Ω is real.
� Using Euler’s relation, we can rewrite x(n) as

x(n) = |c|cos(Ωn+ argc)︸ ︷︷ ︸
Re{x(n)}

+ j |c|sin(Ωn+ argc)︸ ︷︷ ︸
Im{x(n)}

.

� Thus, Re{x} and Im{x} are real sinusoids.

� A complex sinusoid is periodic if and only if Ω

2π
is a rational number, in

which case the fundamental period is the smallest integer of the form 2πk
|Ω|

where k is a positive integer.
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Complex Sinusoidal Sequences (Continued)

� For x(n) = e j(2π/7)n, the graphs of Re{x} and Im{x} are shown below.

Re{e j(2π/7)n}= cos
( 2π

7 n
)

1

−1

7−7
n

· · · · · ·

Im{e j(2π/7)n}= sin
( 2π

7 n
)

1

−1

7−7
n

· · · · · ·
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General Complex Exponential Sequences

� In the most general case of a complex exponential sequence x(n) = can,
c and a are both complex.

� Letting c = |c|e jθ and a = |a|e jΩ where θ and Ω are real, and using
Euler’s relation, we can rewrite x(n) as

x(n) = |c| |a|n cos(Ωn+θ)︸ ︷︷ ︸
Re{x(n)}

+ j |c| |a|n sin(Ωn+θ)︸ ︷︷ ︸
Im{x(n)}

.

� Thus, Re{x} and Im{x} are each the product of a real exponential and
real sinusoid.

� One of several distinct modes of behavior is exhibited by x, depending on
the value of a.

� If |a|= 1, Re{x} and Im{x} are real sinusoids.
� If |a|> 1, Re{x} and Im{x} are each the product of a real sinusoid and

a growing real exponential.
� If |a|< 1, Re{x} and Im{x} are each the product of a real sinusoid and

a decaying real exponential.
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General Complex Exponential Sequences (Continued)

� The various modes of behavior for Re{x} and Im{x} are illustrated
below.

|a|> 1 |a|< 1

|a|= 1
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Relationship Between Complex Exponentials and Real
Sinusoids

� From Euler’s relation, a complex sinusoid can be expressed as the sum of
two real sinusoids as

ce jΩn = ccosΩn+ jcsinΩn.

� Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities

ccos(Ωn+θ) =
c
2

[
e j(Ωn+θ)+ e− j(Ωn+θ)

]
and

csin(Ωn+θ) =
c

2 j

[
e j(Ωn+θ)− e− j(Ωn+θ)

]
.

� Note that, above, we are simply restating results from the (appendix)
material on complex analysis.
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Unit-Step Sequence

� The unit-step sequence, denoted u, is defined as

u(n) =

{
1 n≥ 0
0 otherwise.

� A plot of this sequence is shown below.

−2−3 2 3

1

n
−1

u(n)

1

· · ·
0

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 319



Unit Rectangular Pulses

� A unit rectangular pulse is a sequence of the form

p(n) =

{
1 a≤ n < b
0 otherwise

where a and b are integer constants satisfying a < b.

� Such a sequence can be expressed in terms of the unit-step sequence as

p(n) = u(n−a)−u(n−b).

� The graph of a unit rectangular pulse has the general form shown below.

a−2a−3 a+2 a+3a−1 a+1a

· · ·
n

1

p(n)

b+2b+1bb−1
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Unit-Impulse Sequence

� The unit-impulse sequence (also known as the delta sequence), denoted
δ, is defined as

δ(n) =

{
1 n = 0
0 otherwise.

� The first-order difference of u is δ. That is,

δ(n) = u(n)−u(n−1).

� The running sum of δ is u. That is,

u(n) =
n

∑
k=−∞

δ(k).

� A plot of δ is shown below.

−2−3 2 3

1

n
−1

δ(n)

10
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Properties of the Unit-Impulse Sequence

� For any sequence x and any integer constant n0, the following identity
holds:

x(n)δ(n−n0) = x(n0)δ(n−n0).

� For any sequence x and any integer constant n0, the following identity
holds:

∞

∑
n=−∞

x(n)δ(n−n0) = x(n0).

� Trivially, the sequence δ is also even.
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Section 8.4

Discrete-Time (DT) Systems
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DT Systems

� A system with input x and output y can be described by the equation

y =Hx,

where H denotes an operator (i.e., transformation).

� Note that the operator H maps a sequence to a sequence (not a number
to a number).

� Alternatively, we can express the above relationship using the notation

x H−→ y.

� If clear from the context, the operator H is often omitted, yielding the
abbreviated notation

x→ y.

� Note that the symbols “→” and “=” have very different meanings.

� The symbol “→” should be read as “produces” (not as “equals”).
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Remarks on Operator Notation for Systems

� For a system operator H and a sequence x, Hx is the sequence
produced as the output of the system H when the input is the sequence x.

� Brackets around the operand of an operator are usually omitted when not
required for grouping.

� For example, for an operator H, a sequence x, and an integer n, we would
normally prefer to write:

1 Hx instead of the equivalent expression H(x); and
2 Hx(n) instead of the equivalent expression H(x)(n).

� Also, note that Hx is a sequence and Hx(n) is a number (namely, the
value of the sequence Hx evaluated at the index n).

� In the expression H(x1 + x2), the brackets are needed for grouping, since
H(x1 + x2) 6≡Hx1 + x2 (where “6≡” means “not equivalent”).

� When multiple operators are applied, they group from right to left.
� For example, for the operators H1 and H2, and the sequence x, the

expression H2H1x means H2[H1(x)].
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Block Diagram Representations

� Often, a system defined by the operator H and having the input x and
output y is represented in the form of a block diagram as shown below.

System
H

x
Input Output

y
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Interconnection of Systems

� Two basic ways in which systems can be interconnected are shown below.

H1 H2
yx

Series
H2

H1 +
x y

Parallel
� A series (or cascade) connection ties the output of one system to the input

of the other.
� The overall series-connected system is described by the equation

y =H2H1x.

� A parallel connection ties the inputs of both systems together and sums
their outputs.

� The overall parallel-connected system is described by the equation

y =H1x+H2x.
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Section 8.5

Properties of (DT) Systems
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Memory

� A system H is said to be memoryless if, for every integer constant n0,
Hx(n0) does not depend on x(n) for some n 6= n0.

� In other words, a memoryless system is such that the value of its output at
any given point in time can depend on the value of its input at only the
same point in time.

� A system that is not memoryless is said to have memory.

� Although simple, a memoryless system is not very flexible, since its
current output value cannot rely on past or future values of the input.
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Causality

� A system H is said to be causal if, for every integer constant n0, Hx(n0)
does not depend on x(n) for some n > n0.

� In other words, a causal system is such that the value of its output at any
given point in time can depend on the value of its input at only the same or
earlier points in time (i.e., not later points in time).

� If the independent variable n represents time, a system must be causal in
order to be physically realizable.

� Noncausal systems can sometimes be useful in practice, however, since
the independent variable need not always represent time (e.g., the
independent variable might represent position).

� A memoryless system is always causal, although the converse is not
necessarily true.
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Invertibility

� The inverse of a system H is another system H−1 such that, for every
sequence x,

H−1Hx = x

(i.e., the system formed by the cascade interconnection of H followed by
H−1 is a system whose input and output are equal).

� A system is said to be invertible if it has a corresponding inverse system
(i.e., its inverse exists).

� Equivalently, a system is invertible if its input x can always be uniquely
determined from its output y.

� An invertible system will always produce distinct outputs from any two
distinct inputs.

� To show that a system is invertible, we simply find the inverse system.
� To show that a system is not invertible, we find two distinct inputs that

result in identical outputs.
� In practical terms, invertible systems are “nice” in the sense that their

effects can be undone.
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Invertibility (Continued)

� A system H−1 being the inverse of H means that the following two
systems are equivalent (i.e., H−1H is an identity):

x y
H−1H

System 1: y =H−1Hx

x y

System 2: y = x
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Bounded-Input Bounded-Output (BIBO) Stability

� A system H is BIBO stable if, for every bounded sequence x, Hx is
bounded (i.e., |x(n)|< ∞ for all n implies that |Hx(n)|< ∞ for all n).

� In other words, a BIBO stable system is such that it guarantees to always
produce a bounded output as long as its input is bounded.

� To show that a system is BIBO stable, we must show that every bounded
input leads to a bounded output.

� To show that a system is not BIBO stable, we need only find a single
bounded input that leads to an unbounded output.

� In practical terms, a BIBO stable system is well behaved in the sense that,
as long as the system input remains finite for all time, the output will also
remain finite for all time.

� Usually, a system that is not BIBO stable will have serious safety issues.

� For example, a portable music player with a battery input of 3.7 volts and
headset output of ∞ volts would result in one vaporized human (and likely
a big lawsuit as well).
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Time Invariance (TI)

� A system H is said to be time invariant (TI) if, for every sequence x and
every integer n0, the following condition holds:

Hx(n−n0) =Hx′(n) for all n, where x′(n) = x(n−n0)

(i.e., H commutes with time shifts).

� In other words, a system is time invariant if a time shift (i.e., advance or
delay) in the input always results only in an identical time shift in the
output.

� A system that is not time invariant is said to be time varying.

� In simple terms, a time invariant system is a system whose behavior does
not change with respect to time.

� Practically speaking, compared to time-varying systems, time-invariant
systems are much easier to design and analyze, since their behavior
does not change with respect to time.
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Time Invariance (Continued)

� Let Sn0 denote an operator that applies a time shift of n0 to a sequence
(i.e., Sn0x(n) = x(n−n0)).

� A system H is time invariant if and only if the following two systems are
equivalent (i.e., H commutes with Sn0 ):

HSn0

x y

System 1: y =HSn0 x[
y(n) =Hx′(n)

x′(n) = Sn0 x(n) = x(n−n0)

]
x y

Sn0H

System 2: y = Sn0Hx[
y(n) =Hx(n−n0)

]
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Additivity, Homogeneity, and Linearity
� A system H is said to be additive if, for all sequences x1 and x2, the

following condition holds:

H(x1 + x2) =Hx1 +Hx2

(i.e., H commutes with sums).
� A system H is said to be homogeneous if, for every sequence x and every

complex constant a, the following condition holds:

H(ax) = aHx

(i.e., H commutes with multiplication by a constant).
� A system that is both additive and homogeneous is said to be linear.
� In other words, a system H is linear, if for all sequences x1 and x2 and all

complex constants a1 and a2, the following condition holds:

H(a1x1 +a2x2) = a1Hx1 +a2Hx2

(i.e., H commutes with linear combinations).
� The linearity property is also referred to as the superposition property.
� Practically speaking, linear systems are much easier to design and

analyze than nonlinear systems.
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Additivity, Homogeneity, and Linearity (Continued 1)

� The system H is additive if and only if the following two systems are
equivalent (i.e., H commutes with addition):

+ H

x2

x1 y

System 1: y =H(x1 + x2)

+H

H

yx1

x2

System 2: y =Hx1 +Hx2

� The system H is homogeneous if and only if the following two systems
are equivalent (i.e., H commutes with scalar multiplication):

Ha
x y

System 1: y =H(ax)

aH
x y

System 2: y = aHx
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Additivity, Homogeneity, and Linearity (Continued 2)

� The system H is linear if and only if the following two systems are
equivalent (i.e., H commutes with linear combinations):

+ H
y

a1

a2

x1

x2

System 1: y =H(a1x1 +a2x2)

+a1

a2

x1

x2

y
H

H

System 2: y = a1Hx1 +a2Hx2
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Eigensequences of Systems

� A sequence x is said to be an eigensequence of the system H with the
eigenvalue λ if

Hx = λx,

where λ is a complex constant.

� In other words, the system H acts as an ideal amplifier for each of its
eigensequences x, where the amplifier gain is given by the corresponding
eigenvalue λ.

� Different systems have different eigensequences.

� Many of the mathematical tools developed for the study of DT systems
have eigensequences as their basis.
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Part 9

Discrete-Time Linear Time-Invariant (LTI) Systems
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Why Linear Time-Invariant (LTI) Systems?

� In engineering, linear time-invariant (LTI) systems play a very important
role.

� Very powerful mathematical tools have been developed for analyzing LTI
systems.

� LTI systems are much easier to analyze than systems that are not LTI.

� In practice, systems that are not LTI can be well approximated using LTI
models.

� So, even when dealing with systems that are not LTI, LTI systems still play
an important role.
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Section 9.1

Convolution
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DT Convolution

� The (DT) convolution of the sequences x and h, denoted x∗h, is defined
as the sequence

x∗h(n) =
∞

∑
k=−∞

x(k)h(n− k).

� The convolution x∗h evaluated at the point n is simply a weighted sum of
elements of x, where the weighting is given by h time reversed and shifted
by n.

� Herein, the asterisk symbol (i.e., “∗”) will always be used to denote
convolution, not multiplication.

� As we shall see, convolution is used extensively in the theory of (DT)
systems.

� In particular, convolution has a special significance in the context of (DT)
LTI systems.
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Practical Convolution Computation

� To compute the convolution

x∗h(n) =
∞

∑
k=−∞

x(k)h(n− k),

we proceed as follows:
1 Plot x(k) and h(n− k) as a function of k.
2 Initially, consider an arbitrarily large negative value for n. This will result in

h(n− k) being shifted very far to the left on the time axis.
3 Write the mathematical expression for x∗h(n).
4 Increase n gradually until the expression for x∗h(n) changes form. Record

the interval over which the expression for x∗h(n) was valid.
5 Repeat steps 3 and 4 until n is an arbitrarily large positive value. This

corresponds to h(n− k) being shifted very far to the right on the time axis.
6 The results for the various intervals can be combined in order to obtain an

expression for x∗h(n) for all n.
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Properties of Convolution

� The convolution operation is commutative. That is, for any two sequences
x and h,

x∗h = h∗ x.

� The convolution operation is associative. That is, for any sequences x, h1,
and h2,

(x∗h1)∗h2 = x∗ (h1 ∗h2).

� The convolution operation is distributive with respect to addition. That is,
for any sequences x, h1, and h2,

x∗ (h1 +h2) = x∗h1 + x∗h2.
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Representation of Sequences Using Impulses

� For any sequence x,

x(n) =
∞

∑
k=−∞

x(k)δ(n− k) = x∗δ(n).

� Thus, any sequence x can be written in terms of an expression involving δ.

� Moreover, δ is the convolutional identity. That is, for any sequence x,

x∗δ = x.
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Circular Convolution

� The convolution of two periodic sequences is usually not well defined.

� This motivates an alternative notion of convolution for periodic sequences
known as circular convolution.

� The circular convolution (also known as the DT periodic convolution) of
the N-periodic sequences x and h, denoted x~h, is defined as

x~h(n) = ∑
k=〈N〉

x(k)h(n− k) =
N−1

∑
k=0

x(k)h(mod(n− k,N)),

where mod(a,b) is the remainder after division when a is divided by b.

� The circular convolution and (linear) convolution of the N-periodic
sequences x and h are related as follows:

x~h(n) = x0 ∗h(n) where x(n) =
∞

∑
k=−∞

x0(n− kN)

(i.e., x0(n) equals x(n) over a single period of x and is zero elsewhere).
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Section 9.2

Convolution and LTI Systems
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Impulse Response

� The response h of a system H to the input δ is called the impulse
response of the system (i.e., h =Hδ).

� For any LTI system with input x, output y, and impulse response h, the
following relationship holds:

y = x∗h.

� In other words, a LTI system simply computes a convolution.

� Furthermore, a LTI system is completely characterized by its impulse
response.

� That is, if the impulse response of a LTI system is known, we can
determine the response of the system to any input.
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Step Response

� The response s of a system H to the input u is called the step response of
the system (i.e., s =Hu).

� The impulse response h and step response s of a system are related as

h(n) = s(n)− s(n−1).

� Therefore, the impulse response of a system can be determined from its
step response by (first-order) differencing.
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Block Diagram of LTI Systems

� Often, it is convenient to represent a (DT) LTI system in block diagram
form.

� Since such systems are completely characterized by their impulse
response, we often label a system with its impulse response.

� That is, we represent a system with input x, output y, and impulse
response h, as shown below.

h
x y
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Interconnection of LTI Systems

� The series interconnection of the LTI systems with impulse responses h1
and h2 is the LTI system with impulse response h = h1 ∗h2. That is, we
have the equivalences shown below.

h1 h2 ≡ x y
h1 ∗h2

yx

≡h1 h2 h2 h1
yx yx

� The parallel interconnection of the LTI systems with impulse responses
h1 and h2 is a LTI system with the impulse response h = h1 +h2. That is,
we have the equivalence shown below.

h1 +h2
yx

h1

h2

≡

+
x y
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Section 9.3

Properties of LTI Systems

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 353



Memory

� A LTI system with impulse response h is memoryless if and only if

h(n) = 0 for all n 6= 0.

� That is, a LTI system is memoryless if and only if its impulse response h is
of the form

h(n) = Kδ(n),

where K is a complex constant.

� Consequently, every memoryless LTI system with input x and output y is
characterized by an equation of the form

y = x∗ (Kδ) = Kx

(i.e., the system is an ideal amplifier).

� For a LTI system, the memoryless constraint is extremely restrictive (as
every memoryless LTI system is an ideal amplifier).
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Causality

� A LTI system with impulse response h is causal if and only if

h(n) = 0 for all n < 0

(i.e., h is a causal sequence).

� It is due to the above relationship that we call a sequence x, satisfying

x(n) = 0 for all n < 0,

a causal sequence.
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Invertibility

� The inverse of a LTI system, if such a system exists, is a LTI system.

� Let h and hinv denote the impulse responses of a LTI system and its (LTI)
inverse, respectively. Then,

h∗hinv = δ.

� Consequently, a LTI system with impulse response h is invertible if and
only if there exists a sequence hinv such that

h∗hinv = δ.

� Except in simple cases, the above condition is often quite difficult to test.
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BIBO Stability

� A LTI system with impulse response h is BIBO stable if and only if

∞

∑
n=−∞

|h(n)|< ∞

(i.e., h is absolutely summable).
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Eigensequences of LTI Systems

� As it turns out, every complex exponential is an eigensequence of all LTI
systems.

� For a LTI system H with impulse response h,

H{zn}(n) = H(z)zn,

where z is a complex constant and

H(z) =
∞

∑
n=−∞

h(n)z−n.

� That is, zn is an eigensequence of a LTI system and H(z) is the
corresponding eigenvalue.

� We refer to H as the system function (or transfer function) of the
system H.

� From above, we can see that the response of a LTI system to a complex
exponential is the same complex exponential multiplied by the complex
factor H(z).

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 358



Representation of Sequences Using Eigensequences

� Consider a LTI system with input x, output y, and system function H.

� Suppose that the input x can be expressed as the linear combination of
complex exponentials

x(n) = ∑
k

akzn
k ,

where the ak and zk are complex constants.

� Using the fact that complex exponentials are eigenfunctions of LTI
systems, we can conclude

y(n) = ∑
k

akH(zk)zn
k .

� Thus, if an input to a LTI system can be expressed as a linear combination
of complex exponentials, the output can also be expressed as linear
combination of the same complex exponentials.

� The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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Part 10

Discrete-Time Fourier Series (DTFS)
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Introduction

� The Fourier series is a representation for periodic sequences.

� With a Fourier series, a sequence is represented as a linear combination
of complex sinusoids.

� The use of complex sinusoids is desirable due to their numerous attractive
properties.

� Perhaps, most importantly, complex sinusoids are eigensequences of (DT)
LTI systems.
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Section 10.1

Fourier Series
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Harmonically-Related Complex Sinusoids

� A set of periodic complex sinusoids is said to be harmonically related if
there exists some constant 2π/N such that the fundamental frequency of
each complex sinusoid is an integer multiple of 2π/N.

� Consider the set of harmonically-related complex sinusoids given by

φk(n) = e j(2π/N)kn for all integer k.

� In the above set {φk}, only N elements are distinct, since

φk = φk+N for all integer k.

� Since the fundamental frequency of each of the harmonically-related
complex sinusoids is an integer multiple of 2π

N , a linear combination of
these complex sinusoids must be N-periodic.
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DT Fourier Series (DTFS)
� A periodic complex-valued sequence x with fundamental period N can be

represented as a linear combination of harmonically-related complex
sinusoids as

x(n) = ∑
k=〈N〉

ake j(2π/N)kn,

where ∑k=〈N〉 denotes summation over any N consecutive integers (e.g.,
0,1, . . . ,N−1). (The summation can be taken over any N consecutive
integers, due to the N-periodic nature of x and e j(2π/N)kn.)

� The above representation of x is known as the (DT) Fourier series and
the ak are called Fourier series coefficients.

� The above formula for x is often called the Fourier series synthesis
equation.

� The terms in the summation for k = K and k =−K are called the Kth
harmonic components, and have the fundamental frequency K(2π/N).

� To denote that the sequence x has the Fourier series coefficient sequence
a, we write

x(n) DTFS←→ ak.
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DT Fourier Series (DTFS) (Continued)

� A periodic sequence x with fundamental period N has the Fourier series
coefficient sequence a given by

ak =
1
N ∑

n=〈N〉
x(n)e− j(2π/N)kn.

(The summation can be taken over any N consecutive integers due to the
N-periodic nature of x and e− j(2π/N)kn.)

� The above equation for ak is often referred to as the Fourier series
analysis equation.

� Due to the N-periodic nature of x and e− j(2π/N)kn, the sequence a is also
N-periodic.
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Trigonometric Form of a Fourier Series

� Consider the N-periodic sequence x with Fourier series coefficient
sequence a.

� If x is real, then its Fourier series can be rewritten in trigonometric form as
shown below.

� The trigonometric form of a Fourier series has the appearance

x(n) =



α0 +
N/2−1

∑
k=1

[
αk cos

(2πkn
N

)
+βk sin

(2πkn
N

)]
+

αN/2 cosπn N even

α0 +
(N−1)/2

∑
k=1

[
αk cos

(2πkn
N

)
+βk sin

(2πkn
N

)]
N odd,

where α0 = a0, αN/2 = aN/2, αk = 2Reak, and βk =−2Imak.

� Note that the above trigonometric form contains only real quantities.
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Prelude to the Discrete Fourier Transform (DFT)

� Letting a′k = Nak, we can rewrite the Fourier series synthesis and analysis
equations, respectively, as

x(n) = 1
N

N−1

∑
k=0

a′ke j(2π/N)kn and a′k =
N−1

∑
n=0

x(n)e− j(2π/N)kn.

� Since x and a′ are both N-periodic, each of these sequences is
completely characterized by its N samples over a single period.

� If we only consider the behavior of x and a′ over a single period, this leads
to the equations

x(n) = 1
N

N−1

∑
k=0

a′ke j(2π/N)kn for n = 0,1, . . . ,N−1 and

a′k =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k = 0,1, . . . ,N−1.

� As it turns out, the above two equations define what is known as the
discrete Fourier transform (DFT).
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Discrete Fourier Transform (DFT)

� The discrete Fourier transform (DFT) X of the sequence x is defined as

X(k) =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k = 0,1, . . .N−1.

� The preceding equation is known as the DFT analysis equation.

� The inverse DFT x of the sequence X is given by

x(n) = 1
N

N−1

∑
k=0

X(k)e j(2π/N)kn for n = 0,1, . . .N−1.

� The preceding equation is known as the DFT synthesis equation.

� The DFT maps a finite-length sequence of N samples to another
finite-length sequence of N samples.

� The DFT will be considered in more detail later.
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Convergence of Fourier Series

� Since the analysis and synthesis equations for (DT) Fourier series involve
only finite sums (as opposed to infinite series), convergence is not a
significant issue of concern.

� If an N-periodic sequence is bounded (i.e., is finite in value), its Fourier
series coefficient sequence will exist and be bounded and the Fourier
series analysis and synthesis equations must converge.
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Section 10.2

Properties of Fourier Series
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Properties of (DT) Fourier Series

x(n) DTFS←→ ak and y(n) DTFS←→ bk

Property Time Domain Fourier Domain

Linearity αx(n)+βy(n) αak +βbk

Translation x(n−n0) e− jk(2π/N)n0ak

Modulation e j(2π/N)k0nx(n) ak−k0

Reflection x(−n) a−k

Conjugation x∗(n) a∗−k
Duality an

1
N x(−k)

Periodic Convolution x~ y(n) Nakbk

Multiplication x(n)y(n) a~bk

Property

Parseval’s Relation 1
N ∑n=〈N〉 |x(n)|2 = ∑k=〈N〉 |ak|2

Even Symmetry x is even⇔ a is even
Odd Symmetry x is odd⇔ a is odd
Real / Conjugate Symmetry x is real⇔ a is conjugate symmetric
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Linearity

� Let x and y be N-periodic sequences. If x(n) DTFS←→ ak and y(n) DTFS←→ bk,
then

αx(n)+βy(n) DTFS←→ αak +βbk,

where α and β are complex constants.

� That is, a linear combination of sequences produces the same linear
combination of their Fourier series coefficients.
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Translation (Time Shifting)

� Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

x(n−n0)
DTFS←→ e− jk(2π/N)n0ck,

where n0 is an integer constant.

� In other words, time shifting a periodic sequence changes the argument
(but not magnitude) of its Fourier series coefficients.
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Modulation (Frequency Shifting)

� Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

e j(2π/N)k0nx(n) DTFS←→ ck−k0 ,

where k0 is an integer constant.

� That is, multiplying a sequence by a complex sinusoid whose frequency is
an integer multiple of 2π/N results in a translation of the corresponding
Fourier series coefficient sequence.
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Reflection (Time Reversal)

� Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

x(−n) DTFS←→ c−k.

� That is, time reversing a sequence results in a time reversal of the
corresponding Fourier series coefficient sequence.
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Conjugation

� Let x denote a periodic sequence with period N. If x(n) DTFS←→ ck, then

x∗(n) DTFS←→ c∗−k.

� In other words, conjugating a sequence has the effect of time reversing
and conjugating the corresponding Fourier series coefficient sequence.
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Duality

� Let x denote a periodic sequence with period N. If x(n) DTFS←→ a(k), then

a(n) DTFS←→ 1
N x(−k).

� This is known as the duality property of Fourier series.

� This property follows from the high degree of symmetry in the analysis
and synthesis Fourier-series equations, which are respectively given by

x(m) = ∑
`=〈N〉

a(`)e j(2π/N)`m and a(m) = 1
N ∑

`=〈N〉
x(`)e− j(2π/N)m`.

� That is, the analysis and synthesis equations are identical except for a
factor of N and different sign in the parameter for the exponential
function.
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Periodic Convolution

� Let x and y be N-periodic sequences. If x(n) DTFS←→ ak and y(n) DTFS←→ bk,
then

x~ y(n) DTFS←→ Nakbk.

� That is, periodic convolution of two sequences multiplies their
corresponding Fourier series coefficient sequences (up to a scale factor).
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Multiplication

� Let x and y be N-periodic sequences. If x(n) DTFS←→ ak and y(n) DTFS←→ bk,
then

x(n)y(n) DTFS←→ a~b(k).

� That is, multiplying two sequences results in a circular convolution of their
corresponding Fourier series coefficient sequences.
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Parseval’s Relation

� A sequence x and its Fourier series coefficient sequence a satisfy the
following relationship:

1
N ∑

n=〈N〉
|x(n)|2 = ∑

k=〈N〉
|ak|2 .

� The above relationship is simply stating that the amount of energy in a
single period of x and the amount of energy in a single period of a are
equal up to a scale factor.

� In other words, the transformation between a sequence and its Fourier
series coefficient sequence preserves energy (up to a scale factor).
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Even/Odd Symmetry

� For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:

x is even⇔ a is even; and

x is odd⇔ a is odd.

� In other words, the even/odd symmetry properties of x and a always
match.
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Real Sequences

� A sequence x is real if and only if its Fourier series coefficient sequence a
satisfies

ak = a∗−k for all k

(i.e., a is conjugate symmetric).

� From properties of complex numbers, one can show that ak = a∗−k is
equivalent to

|ak|= |a−k| and argak =−arga−k

(i.e., |ak| is even and argak is odd).

� Note that x being real does not necessarily imply that a is real.
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Other Properties of Fourier Series

� For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:

1 a0 is the average value of x over a single period;
2 x is real and even⇔ a is real and even; and
3 x is real and odd⇔ a is purely imaginary and odd.
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Section 10.3

Fourier Series and Frequency Spectra
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A New Perspective on Sequences: The Frequency Domain

� The Fourier series provides us with an entirely new way to view
sequences.

� Instead of viewing a sequence as having information distributed with
respect to time (i.e., a function whose domain is time), we view a
sequence as having information distributed with respect to frequency (i.e.,
a function whose domain is frequency).

� This so called frequency-domain perspective is of fundamental
importance in engineering.

� Many engineering problems can be solved much more easily using the
frequency domain than the time domain.

� The Fourier series coefficients of a sequence x provide a means to
quantify how much information x has at different frequencies.

� The distribution of information in a sequence over different frequencies is
referred to as the frequency spectrum of the sequence.
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Fourier Series and Frequency Spectra

� To gain further insight into the role played by the Fourier series
coefficients ak in the context of the frequency spectrum of the N-periodic
sequence x, it is helpful to write the Fourier series with the ak expressed in
polar form as

x(n) =
N−1

∑
k=0

ake jΩ0kn =
N−1

∑
k=0
|ak|e j(Ω0kn+argak),

where Ω0 =
2π

N .
� Clearly, the kth term in the summation corresponds to a complex sinusoid

with fundamental frequency kΩ0 that has been amplitude scaled by a
factor of |ak| and time-shifted by an amount that depends on argak.

� For a given k, the larger |ak| is, the larger is the amplitude of its
corresponding complex sinusoid e jkΩ0n, and therefore the larger the
contribution the kth term (which is associated with frequency kΩ0) will
make to the overall summation.

� In this way, we can use |ak| as a measure of how much information a
sequence x has at the frequency kΩ0.
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Fourier Series and Frequency Spectra (Continued 1)

� The Fourier series coefficients ak of the sequence x are referred to as the
frequency spectrum of x.

� The magnitudes |ak| of the Fourier series coefficients ak are referred to as
the magnitude spectrum of x.

� The arguments argak of the Fourier series coefficients ak are referred to
as the phase spectrum of x.

� The frequency spectrum ak of an N-periodic sequence is N-periodic in the
coefficient index k and 2π-periodic in the frequency Ω = kΩ0.

� The range of frequencies between −π and π are referred to as the
baseband.

� Often, the spectrum of a sequence is plotted against frequency Ω = kΩ0
(over the single 2π period of the baseband) instead of the Fourier series
coefficient index k.
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Fourier Series and Frequency Spectra (Continued 2)

� Since the Fourier series only has frequency components at integer
multiples of the fundamental frequency, the frequency spectrum is
discrete in the independent variable (i.e., frequency).

� Due to the general appearance of frequency-spectrum plot (i.e., a number
of vertical lines at various frequencies), we refer to such spectra as line
spectra.
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Section 10.4

Fourier Series and LTI Systems
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Frequency Response

� Recall that a LTI system H with impulse response h is such that
H{zn}(n) = H(z)zn, where H(z) = ∑

∞
n=−∞ h(n)z−n. (That is, complex

exponentials are eigensequences of LTI systems.)
� Since a complex sinusoid is a special case of a complex exponential, we

can reuse the above result for the special case of complex sinusoids.
� For a LTI system H with impulse response h,

H
{

e jΩn}(n) = H(e jΩ)e jΩn,

where Ω is real and

H(e jΩ) =
∞

∑
n=−∞

h(n)e− jΩn.

� That is, e jΩn is an eigensequence of a LTI system and H(e jΩ) is the
corresponding eigenvalue.

� The function H(e jΩ) is 2π-periodic, since e jΩ is 2π-periodic.
� We refer to H(e jΩ) as the frequency response of the system H.
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Fourier Series and LTI Systems

� Consider a LTI system with input x, output y, and frequency response
H(e jΩ).

� Suppose that the N-periodic input x is expressed as the Fourier series

x(n) =
N−1

∑
k=0

ake jkΩ0n, where Ω0 =
2π

N .

� Using our knowledge about the eigensequences of LTI systems, we can
conclude

y(n) =
N−1

∑
k=0

akH(e jkΩ0)e jkΩ0n.

� Thus, if the input x to a LTI system is a Fourier series, the output y is also
a Fourier series. More specifically, if x(n) DTFS←→ ak then
y(n) DTFS←→ H(e jkΩ0)ak.

� The above formula can be used to determine the output of a LTI system
from its input in a way that does not require convolution.
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Filtering

� In many applications, we want to modify the spectrum of a sequence by
either amplifying or attenuating certain frequency components.

� This process of modifying the frequency spectrum of a sequence is called
filtering.

� A system that performs a filtering operation is called a filter.

� Many types of filters exist.

� Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

� Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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Ideal Lowpass Filter

� An ideal lowpass filter eliminates all baseband frequency components
with a frequency whose magnitude is greater than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

� Such a filter has a frequency response of the form

H(e jΩ) =

{
1 |Ω| ≤Ωc

0 Ωc < |Ω| ≤ π,

where Ωc is the cutoff frequency.
� A plot of this frequency response is given below.

Passband

−π π
Ω

1

H(e jΩ)

−Ωc Ωc

Stopband Stopband
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Ideal Highpass Filter

� An ideal highpass filter eliminates all baseband frequency components
with a frequency whose magnitude is less than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

� Such a filter has a frequency response of the form

H(e jΩ) =

{
1 Ωc < |Ω| ≤ π

0 |Ω| ≤Ωc,

where Ωc is the cutoff frequency.
� A plot of this frequency response is given below.

Stopband

1

H(e jΩ)

−π π

Passband Passband

−Ωc Ωc
Ω
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Ideal Bandpass Filter

� An ideal bandpass filter eliminates all baseband frequency components
with a frequency whose magnitude does not lie in a particular range, while
leaving the remaining baseband frequency components unaffected.

� Such a filter has a frequency response of the form

H(e jΩ) =

{
1 Ωc1 ≤ |Ω| ≤Ωc2

0 |Ω|< Ωc1 or Ωc2 < |Ω|< π,

where the limits of the passband are Ωc1 and Ωc2.
� A plot of this frequency response is given below.

Stopband

1

H(e jΩ)

−π
Ω

Stopband Passband

π−Ωc2 −Ωc1 Ωc1 Ωc2

Passband Stopband
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Part 11

Discrete-Time Fourier Transform (DTFT)
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Motivation for the Fourier Transform

� The (DT) Fourier series provide an extremely useful representation for
periodic sequences.

� Often, however, we need to deal with sequences that are not periodic.

� A more general tool than the Fourier series is needed in this case.

� The Fourier transform can be used to represent both periodic and
aperiodic sequences.

� Since the (DT) Fourier transform is essentially derived from (DT) Fourier
series through a limiting process, the Fourier transform has many
similarities with Fourier series.
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Section 11.1

Fourier Transform
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Development of the Fourier Transform

� The (DT) Fourier series is an extremely useful signal representation.

� Unfortunately, this signal representation can only be used for periodic
sequences, since a Fourier series is inherently periodic.

� Many sequences are not periodic, however.

� Rather than abandoning Fourier series, one might wonder if we can
somehow use Fourier series to develop a representation that can also be
applied to aperiodic sequences.

� By viewing an aperiodic sequence as the limiting case of an N-periodic
sequence where N→ ∞, we can use the Fourier series to develop a more
general signal representation that can be used for both aperiodic and
periodic sequences.

� This more general signal representation is called the (DT) Fourier
transform.
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Development of the Fourier Transform (Continued)

� Recall that the Fourier series representation of a N-periodic sequence x is
given by

x(n) = ∑
k=〈N〉

(
1
N ∑

`=〈N〉
x(`)e− j(2π/N)k`

)
︸ ︷︷ ︸

ck

e j(2π/N)kn.

� In the above representation, if we take the limit as N→ ∞, we obtain

x(n) = 1
2π

∫
2π

(
∞

∑
n=−∞

x(n)e− jΩn

)
︸ ︷︷ ︸

X(Ω)

e jΩndΩ

(i.e., as N→ ∞, the two finite summations become an integral and infinite
summation).

� This more general function representation is known as the Fourier
transform representation.
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DT Fourier Transform (DTFT)

� The Fourier transform of the sequence x, denoted Fx or X , is given by

Fx(Ω) = X(Ω) =
∞

∑
n=−∞

x(n)e− jΩn.

� The preceding equation is sometimes referred to as Fourier transform
analysis equation (or forward Fourier transform equation).

� The inverse Fourier transform of X , denoted F−1X or x, is given by

F−1X(n) = x(n) = 1
2π

∫
2π

X(Ω)e jΩndΩ.

� The preceding equation is sometimes referred to as the Fourier
transform synthesis equation (or inverse Fourier transform equation).

� As a matter of notation, to denote that a sequence x has the Fourier
transform X , we write x(n) DTFT←→ X(Ω).

� A sequence x and its Fourier transform X constitute what is called a
Fourier transform pair.
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Section 11.2

Convergence Properties of the Fourier Transform
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Convergence of the Fourier Transform

� For a sequence x, the Fourier transform analysis equation (i.e.,
X(Ω) = ∑

∞
−∞ x(n)e− jΩn) converges uniformly if

∞

∑
k=−∞

|x(k)|< ∞

(i.e., x is absolutely summable).

� For a sequence x, the Fourier transform analysis equation (i.e.,
X(Ω) = ∑

∞
−∞ x(n)e− jΩn) converges in the MSE sense if

∞

∑
k=−∞

|x(k)|2 < ∞

(i.e., x is square summable).

� For a bounded Fourier transform X , the Fourier transform synthesis
equation (i.e., x(n) = 1

2π

∫
2π

X(Ω)e jΩndΩ) will always converge, since the
integration interval is finite.
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Section 11.3

Properties of the Fourier Transform
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Properties of the (DT) Fourier Transform

Property Time Domain Frequency Domain

Linearity a1x1(n)+a2x2(n) a1X1(Ω)+a2X2(Ω)

Translation x(n−n0) e− jΩn0X(Ω)

Modulation e jΩ0nx(n) X(Ω−Ω0)

Conjugation x∗(n) X∗(−Ω)

Time Reversal x(−n) X(−Ω)

Upsampling (↑M)x(n) X(MΩ)

Downsampling (↓M)x(n) 1
M ∑

M−1
k=0 X

(
Ω−2πk

M

)
Convolution x1 ∗ x2(n) X1(Ω)X2(Ω)

Multiplication x1(n)x2(n) 1
2π

∫
2π

X1(θ)X2(Ω−θ)dθ

Freq.-Domain Diff. nx(n) j d
dΩ

X(Ω)

Differencing x(n)− x(n−1)
(
1− e− jΩ

)
X(Ω)

Accumulation ∑
n
k=−∞

x(k) e jΩ

e jΩ−1 X(Ω)+πX(0)∑
∞
k=−∞

δ(Ω−2πk)
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Properties of the (DT) Fourier Transform (Continued)

Property

Periodicity X(Ω) = X(Ω+2π)

Parseval’s Relation ∑
∞
n=−∞ |x(n)|

2 = 1
2π

∫
2π
|X(Ω)|2 dΩ

Even Symmetry x is even⇔ X is even

Odd Symmetry x is odd⇔ X is odd

Real / Conjugate Symmetry x is real⇔ X is conjugate symmetric
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(DT) Fourier Transform Pairs

Pair x(n) X(Ω)

1 δ(n) 1

2 1 2π∑
∞
k=−∞ δ(Ω−2πk)

3 u(n) e jΩ

e jΩ−1 +∑
∞
k=−∞ πδ(Ω−2πk)

4 anu(n), |a|< 1 e jΩ

e jΩ−a

5 −anu(−n−1), |a|> 1 e jΩ

e jΩ−a

6 a|n|, |a|< 1 1−a2

1−2acosΩ+a2

7 cosΩ0n π∑
∞
k=−∞ [δ(Ω−Ω0−2πk)+δ(Ω+Ω0−2πk)]

8 sinΩ0n jπ∑
∞
k=−∞ [δ(Ω+Ω0−2πk)−δ(Ω−Ω0−2πk)]

9 (cosΩ0n)u(n) e j2Ω−e jΩ cosΩ0
e j2Ω−2e jΩ cosΩ0+1 +

π

2 ∑
∞
k=−∞ [δ(Ω−2πk−Ω0)+δ(Ω−2πk+Ω0)]

10 (sinΩ0n)u(n) e jΩ sinΩ0
e j2Ω−2e jΩ cosΩ0+1 +

π

2 j ∑
∞
k=−∞ [δ(Ω−2πk−Ω0)−δ(Ω−2πk+Ω0)]

11 B
π

sincBn,0 < B < π ∑
∞
k=−∞ rect

(
Ω−2πk

2B

)
12 u(n)−u(n−M) e− jΩ(M−1)/2

(
sin(MΩ/2)
sin(Ω/2)

)
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Periodicity

� Recall the definition of the Fourier transform X of the sequence x:

X(Ω) =
∞

∑
n=−∞

x(n)e− jΩn.

� For all integer k, we have that

X(Ω+2πk) =
∞

∑
n=−∞

x(n)e− j(Ω+2πk)n

=
∞

∑
n=−∞

x(n)e− j(Ωn+2πkn)

=
∞

∑
n=−∞

x(n)e− jΩn

= X(Ω).

� Thus, the Fourier transform X of the sequence x is always 2π-periodic.
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Linearity

� If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

a1x1(n)+a2x2(n)
DTFT←→ a1X1(Ω)+a2X2(Ω),

where a1 and a2 are arbitrary complex constants.

� This is known as the linearity property of the Fourier transform.
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Translation

� If x(n) DTFT←→ X(Ω), then

x(n−n0)
DTFT←→ e− jΩn0X(Ω),

where n0 is an arbitrary integer.

� This is known as the translation (or time-domain shifting) property of
the Fourier transform.
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Modulation

� If x(n) DTFT←→ X(Ω), then

e jΩ0nx(n) DTFT←→ X(Ω−Ω0),

where Ω0 is an arbitrary real constant.

� This is known as the modulation (or frequency-domain shifting)
property of the Fourier transform.
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Conjugation

� If x(n) DTFT←→ X(Ω), then

x∗(n) DTFT←→ X∗(−Ω).

� This is known as the conjugation property of the Fourier transform.
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Time Reversal

� If x(n) DTFT←→ X(Ω), then

x(−n) DTFT←→ X(−Ω).

� This is known as the time-reversal property of the Fourier transform.
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Upsampling

� If x(n) DTFT←→ X(Ω), then

(↑M)x(n) DTFT←→ X(MΩ).

� This is known as the upsampling property of the Fourier transform.
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Downsampling

� If x(n) DTFT←→ X(Ω), then

(↓M)x(n) DTFT←→ 1
M

M−1

∑
k=0

X
(

Ω−2πk
M

)
.

� This is known as the downsampling property of the Fourier transform.
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Convolution

� If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

x1 ∗ x2(n)
DTFT←→ X1(Ω)X2(Ω).

� This is known as the convolution (or time-domain convolution)
property of the Fourier transform.

� In other words, a convolution in the time domain becomes a multiplication
in the frequency domain.

� This suggests that the Fourier transform can be used to avoid having to
deal with convolution operations.
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Multiplication

� If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

x1(n)x2(n)
DTFT←→ 1

2π

∫
2π

X1(θ)X2(Ω−θ)dθ.

� This is known as the multiplication (or time-domain multiplication)
property of the Fourier transform.

� Do not forget the factor of 1
2π

in the above formula!

� This property of the Fourier transform is often tedious to apply (in the
forward direction) as it turns a multiplication into a convolution.
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Frequency-Domain Differentiation

� If x(n) DTFT←→ X(Ω), then

nx(n) DTFT←→ j d
dΩ

X(Ω).

� This is known as the frequency-domain differentiation property of the
Fourier transform.
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Differencing

� If x(n) DTFT←→ X(Ω), then

x(n)− x(n−1) DTFT←→
(
1− e− jΩ)X(Ω).

� This is known as the differencing property of the Fourier transform.

� Note that this property follows quite trivially from the linearity and
translation properties of the Fourier transform.
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Accumulation

� If x(n) DTFT←→ X(Ω), then

n

∑
k=−∞

x(k) DTFT←→ e jΩ

e jΩ−1
X(Ω)+πX(0)

∞

∑
k=−∞

δ(Ω−2πk).

� This is known as the accumulation property of the Fourier transform.
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Parseval’s Relation

� If x(n) DTFT←→ X(Ω), then

∞

∑
n=−∞

|x(n)|2 = 1
2π

∫
2π

|X(Ω)|2 dΩ

(i.e., the energy of x and energy of X are equal up to a factor of 2π).

� This is known as Parseval’s relation.

� Since energy is often a quantity of great significance in engineering
applications, it is extremely helpful to know that the Fourier transform
preserves energy (up to a scale factor).
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Even and Odd Symmetry

� For a sequence x with Fourier transform X , the following assertions hold:
1 x is even⇔ X is even; and
2 x is odd⇔ X is odd.

� In other words, the forward and inverse Fourier transforms preserve
even/odd symmetry.
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Real Sequences

� A sequence x is real if and only if its Fourier transform X satisfies

X(Ω) = X∗(−Ω) for all Ω

(i.e., X is conjugate symmetric).

� Thus, for a real-valued sequence, the portion of the graph of a Fourier
transform for negative values of frequency Ω is redundant, as it is
completely determined by symmetry.

� From properties of complex numbers, one can show that
X(Ω) = X∗(−Ω) is equivalent to

|X(Ω)|= |X(−Ω)| and argX(Ω) =−argX(−Ω)

(i.e., |X(Ω)| is even and argX(Ω) is odd).

� Note that x being real does not necessarily imply that X is real.
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Duality Between DTFT and CTFS
� The DTFT analysis and synthesis equations are, respectively, given by

X(Ω) =
∞

∑
k=−∞

x(k)e− jkΩ and x(n) = 1
2π

∫
2π

X(Ω)e jnΩdΩ.

� The CTFS synthesis and analysis equations are, respectively, given by

xc(t) =
∞

∑
k=−∞

a(k)e jk(2π/T )t and a(n) = 1
T

∫
T

xc(t)e− jn(2π/T )tdt,

which can be rewritten, respectively, as

xc(t) =
∞

∑
k=−∞

a(−k)e− jk(2π/T )t and a(−n) = 1
T

∫
T

xc(t)e jn(2π/T )tdt.

� The CTFS synthesis equation with T = 2π corresponds to the DTFT
analysis equation with X = xc, Ω = t, and x(n) = a(−n).

� The CTFS analysis equation with T = 2π corresponds to the DTFT
synthesis equation with X = xc and x(n) = a(−n).

� Consequently, the DTFT X of the sequence x can be viewed as a CTFS
representation of the 2π-periodic spectrum X .
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Fourier Transform of Periodic Sequences

� The Fourier transform can be generalized to also handle periodic
sequences.

� Consider an N-periodic sequence x.
� Define the sequence xN as

xN(n) =

{
x(n) 0≤ n < N
0 otherwise.

(i.e., xN(n) is equal to x(n) over a single period and zero elsewhere).
� Let a denote the Fourier series coefficient sequence of x.
� Let X and XN denote the Fourier transforms of x and xN , respectively.
� The following relationships can be shown to hold:

X(Ω) = 2π

N

∞

∑
k=−∞

XN
(2πk

N

)
δ
(
Ω− 2πk

N

)
,

ak =
1
N XN

(2πk
N

)
, and X(Ω) = 2π

∞

∑
k=−∞

akδ
(
Ω− 2πk

N

)
.
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Fourier Transform of Periodic Sequences (Continued)

� The Fourier series coefficient sequence a is produced by sampling XN at
integer multiples of the fundamental frequency 2π

N and scaling the
resulting sequence by 1

N .

� The Fourier transform of a periodic sequence can only be nonzero at
integer multiples of the fundamental frequency.
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Section 11.4

Fourier Transform and Frequency Spectra of Sequences
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Frequency Spectra of Sequences

� Like Fourier series, the Fourier transform also provides us with a
frequency-domain perspective on sequences.

� That is, instead of viewing a sequence as having information distributed
with respect to time (i.e., a function whose domain is time), we view a
sequence as having information distributed with respect to frequency (i.e.,
a function whose domain is frequency).

� The Fourier transform X of a sequence x provides a means to quantify
how much information x has at different frequencies.

� The distribution of information in a sequence over different frequencies is
referred to as the frequency spectrum of the sequence.
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Fourier Transform and Frequency Spectra

� To gain further insight into the role played by the Fourier transform X in
the context of the frequency spectrum of x, it is helpful to write the Fourier
transform representation of x with X(Ω) expressed in polar form as
follows:

x(n) = 1
2π

∫
2π

X(Ω)e jΩndΩ = 1
2π

∫
2π

|X(Ω)|e j[Ωn+argX(Ω)]dΩ.

� In effect, the quantity |X(Ω)| is a weight that determines how much the
complex sinusoid at frequency Ω contributes to the integration result x(n).

� Perhaps, this can be more easily seen if we express the above integral as
the limit of a sum, derived from an approximation of the integral using the
area of rectangles, as shown on the next slide. [Recall that∫ b

a f (x)dx = limn→∞ ∑
n
k=1 f (xk)∆x where ∆x = b−a

n and xk = a+ k∆x.]
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Fourier Transform and Frequency Spectra (Continued 1)

� Expressing the integral (from the previous slide) as the limit of a sum, we
obtain

x(n) = lim
`→∞

1
2π

`

∑
k=1

∆Ω
∣∣X(Ω′)

∣∣e j[Ω′n+argX(Ω′)],

where ∆Ω = 2π

` and Ω′ = k∆Ω.
� In the above equation, the kth term in the summation corresponds to a

complex sinusoid with fundamental frequency Ω′ = k∆Ω that has had its
amplitude scaled by a factor of |X(Ω′)| and has been time shifted by an
amount that depends on argX(Ω′).

� For a given Ω′ = k∆Ω (which is associated with the kth term in the
summation), the larger |X(Ω′)| is, the larger the amplitude of its
corresponding complex sinusoid e jΩ′n will be, and therefore the larger the
contribution the kth term will make to the overall summation.

� In this way, we can use |X(Ω′)| as a measure of how much information a
sequence x has at the frequency Ω′.
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Fourier Transform and Frequency Spectra (Continued 2)

� The Fourier transform X of the sequence x is referred to as the frequency
spectrum of x.

� The magnitude |X(Ω)| of the Fourier transform X is referred to as the
magnitude spectrum of x.

� The argument argX(Ω) of the Fourier transform X is referred to as the
phase spectrum of x.

� Since the Fourier transform is a function of a real variable, a sequence
can potentially have information at any real frequency.

� Earlier, we saw that for periodic sequences, the Fourier transform can only
be nonzero at integer multiples of the fundamental frequency.

� So, the Fourier transform and Fourier series give a consistent picture in
terms of frequency spectra.

� Since the frequency spectrum is complex (in the general case), it is
usually represented using two plots, one showing the magnitude
spectrum and one showing the phase spectrum.
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Frequency Spectra of Real Sequences

� Recall that, for a real sequence x, the Fourier transform X of x satisfies

X(Ω) = X∗(−Ω)

(i.e., X is conjugate symmetric), which is equivalent to

|X(Ω)|= |X(−Ω)| and argX(Ω) =−argX(−Ω).

� Since |X(Ω)|= |X(−Ω)|, the magnitude spectrum of a real sequence is
always even.

� Similarly, since argX(Ω) =−argX(−Ω), the phase spectrum of a real
sequence is always odd.

� Due to the symmetry in the frequency spectra of real sequences, we
typically ignore negative frequencies when dealing with such sequences.

� In the case of sequences that are complex but not real, frequency spectra
do not possess the above symmetry, and negative frequencies become
important.
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Bandwidth

� A sequence x with Fourier transform X is said to be bandlimited if, for
some nonnegative real constant B,

X(Ω) = 0 for all Ω satisfying |Ω|> B.

� In the context of real sequences, we usually refer to B as the bandwidth
of the sequence x.

� The (real) sequence with the Fourier transform X shown below has
bandwidth B.

−B B

X(Ω)

Ω

� One can show that a sequence cannot be both time limited and
bandlimited. (This follows from the time/frequency scaling property of the
Fourier transform.)
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Section 11.5

Fourier Transform and LTI Systems
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Frequency Response of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

� Since y(n) = x∗h(n), we have that

Y (Ω) = X(Ω)H(Ω).

� The function H is called the frequency response of the system.

� A LTI system is completely characterized by its frequency response H.

� The above equation provides an alternative way of viewing the behavior of
a LTI system. That is, we can view the system as operating in the
frequency domain on the Fourier transforms of the input and output
signals.

� The frequency spectrum of the output is the product of the frequency
spectrum of the input and the frequency response of the system.
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Frequency Response of LTI Systems (Continued 1)

� In the general case, the frequency response H is a complex-valued
function.

� Often, we represent H(Ω) in terms of its magnitude |H(Ω)| and argument
argH(Ω).

� The quantity |H(Ω)| is called the magnitude response of the system.

� The quantity argH(Ω) is called the phase response of the system.

� Since Y (Ω) = X(Ω)H(Ω), we trivially have that

|Y (Ω)|= |X(Ω)| |H(Ω)| and argY (Ω) = argX(Ω)+ argH(Ω).

� The magnitude spectrum of the output equals the magnitude spectrum of
the input times the magnitude response of the system.

� The phase spectrum of the output equals the phase spectrum of the input
plus the phase response of the system.
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Frequency Response of LTI Systems (Continued 2)

� Since the frequency response H is simply the frequency spectrum of the
impulse response h, if h is real, then

|H(Ω)|= |H(−Ω)| and argH(Ω) =−argH(−Ω)

(i.e., the magnitude response |H(Ω)| is even and the phase response
argH(Ω) is odd).
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Block Diagram Representations of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

� Often, it is convenient to represent such a system in block diagram form in
the frequency domain as shown below.

H
X Y

� Since a LTI system is completely characterized by its frequency response,
we typically label the system with this quantity.
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Interconnection of LTI Systems

� The series interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with frequency response H1H2. That is, we
have the equivalences shown below.

H1 H2 ≡
X Y

H1H2
YX

≡H1 H2 H2 H1
YX YX

� The parallel interconnection of the LTI systems with frequency responses
H1 and H2 is the LTI system with the frequency response H1 +H2. That
is, we have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 439



LTI Systems and Difference Equations

� Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients.

� Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bky(n− k) =
M

∑
k=0

akx(n− k).

� Let h denote the impulse response of the system, and let X , Y , and H
denote the Fourier transforms of x, y, and h, respectively.

� One can show that H(Ω) is given by

H(Ω) =
Y (Ω)

X(Ω)
=

∑
M
k=0 ak(e jΩ)−k

∑
N
k=0 bk(e jΩ)−k

=
∑

M
k=0 ake− jkΩ

∑
N
k=0 bke− jkΩ

.

� Each of the numerator and denominator of H is a polynomial in e− jΩ.

� Thus, H is a rational function in the variable e− jΩ.
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Section 11.6

Application: Filtering
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Filtering

� In many applications, we want to modify the spectrum of a signal by
either amplifying or attenuating certain frequency components.

� This process of modifying the frequency spectrum of a signal is called
filtering.

� A system that performs a filtering operation is called a filter.

� Many types of filters exist.

� Frequency selective filters pass some frequencies with little or no
distortion, while significantly attenuating other frequencies.

� Several basic types of frequency-selective filters include: lowpass,
highpass, and bandpass.
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Ideal Lowpass Filter

� An ideal lowpass filter eliminates all baseband frequency components
with a frequency whose magnitude is greater than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

� Such a filter has a frequency response H of the form

H(Ω) =

{
1 |Ω| ≤Ωc

0 Ωc < |Ω| ≤ π,

where Ωc is the cutoff frequency.
� A plot of this frequency response is given below.

Passband

−π π
Ω

1

H(Ω)

−Ωc Ωc

Stopband Stopband
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Ideal Highpass Filter

� An ideal highpass filter eliminates all baseband frequency components
with a frequency whose magnitude is less than some cutoff frequency,
while leaving the remaining baseband frequency components unaffected.

� Such a filter has a frequency response H of the form

H(Ω) =

{
1 Ωc < |Ω| ≤ π

0 |Ω| ≤Ωc,

where Ωc is the cutoff frequency.
� A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π π

Passband Passband

−Ωc Ωc
Ω
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Ideal Bandpass Filter

� An ideal bandpass filter eliminates all baseband frequency components
with a frequency whose magnitude does not lie in a particular range, while
leaving the remaining baseband frequency components unaffected.

� Such a filter has a frequency response H of the form

H(Ω) =

{
1 Ωc1 ≤ |Ω| ≤Ωc2

0 |Ω|< Ωc1 or Ωc2 < |Ω|< π,

where the limits of the passband are Ωc1 and Ωc2.
� A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π
Ω

Stopband Passband

π−Ωc2 −Ωc1 Ωc1 Ωc2

Passband Stopband
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Part 12

Z Transform (ZT)
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Motivation Behind the Z Transform

� Another important mathematical tool in the study of signals and systems
is known as the z transform.

� The z transform can be viewed as a generalization of the Fourier
transform.

� Due to its more general nature, the z transform has a number of
advantages over the Fourier transform.

� First, the z transform representation exists for some sequences that do
not have Fourier transform representations. So, we can handle a larger
class of sequences with the z transform.

� Second, since the z transform is a more general tool, it can provide
additional insights beyond those facilitated by the Fourier transform.
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Motivation Behind the Z Transform (Continued)

� Earlier, we saw that complex exponentials are eigensequences of LTI
systems.

� In particular, for a LTI system H with impulse response h, we have that

H{zn}(n) = H(z)zn where H(z) =
∞

∑
n=−∞

h(n)z−n.

� Previously, we referred to H as the system function.

� As it turns out, H is the z transform of h.

� Since the z transform has already appeared earlier in the context of LTI
systems, it is clearly a useful tool.

� Furthermore, as we will see, the z transform has many additional uses.
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Section 12.1

Z Transform
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(Bilateral) Z Transform

� The (bilateral) z transform of the sequence x, denoted Zx or X , is
defined as

Zx(z) = X(z) =
∞

∑
n=−∞

x(n)z−n.

� The inverse z transform of X , denoted Z−1X or x, is then given by

Z−1X(n) = x(n) = 1
2π j

∮
Γ

X(z)zn−1dz,

where Γ is a counterclockwise closed circular contour centered at the
origin and with radius r such that Γ is in the ROC of X .

� We refer to x and X as a z transform pair and denote this relationship as

x(n) ZT←→ X(z).

� In practice, we do not usually compute the inverse z transform by directly
using the formula from above. Instead, we resort to other means (to be
discussed later).
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Bilateral and Unilateral Z Transform

� Two different versions of the z transform are commonly used:
1 the bilateral (or two-sided) z transform; and
2 the unilateral (or one-sided) z transform.

� The unilateral z transform is most frequently used to solve systems of
linear difference equations with nonzero initial conditions.

� As it turns out, the only difference between the definitions of the bilateral
and unilateral z transforms is in the lower limit of summation.

� In the bilateral case, the lower limit is −∞, whereas in the unilateral case,
the lower limit is 0.

� For the most part, we will focus our attention primarily on the bilateral z
transform.

� We will, however, briefly introduce the unilateral z transform as a tool for
solving difference equations.

� Unless otherwise noted, all subsequent references to the z transform
should be understood to mean bilateral z transform.
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Relationship Between Z and Fourier Transforms

� Let X and XF denote the z and (DT) Fourier transforms of x, respectively.
� The function X(z) evaluated at z = e jΩ (where Ω is real) yields XF(Ω).

That is,

X(e jΩ) = XF(Ω).

� Due to the preceding relationship, the Fourier transform of x is sometimes
written as X(e jΩ).

� The function X(z) evaluated at an arbitrary complex value z = re jΩ (where
r = |z| and Ω = argz) can also be expressed in terms of a Fourier
transform involving x. In particular, we have

X(re jΩ) = X ′F(Ω),

where X ′F is the (DT) Fourier transform of x′(n) = r−nx(n).
� So, in general, the z transform of x is the Fourier transform of an

exponentially-weighted version of x.
� Due to this weighting, the z transform of a sequence may exist when the

Fourier transform of the same sequence does not.
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Z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 12.2

Region of Convergence (ROC)
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Disc

� A disc with center 0 and radius r is the set of all complex numbers z
satisfying

|z|< r,

where r is a real constant and r > 0.

Im

Re
r
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Annulus

� An annulus with center 0, inner radius r0, and outer radius r1 is the set of
all complex numbers z satisfying

r0 < |z|< r1,

where r0 and r1 are real constants and 0 < r0 < r1.

Im

Re

r1

r0
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Circle Exterior

� The exterior of a circle with center 0 and radius r is the set of all complex
numbers z satisfying

|z|> r,

where r is a real constant and r > 0.

Im

r
Re
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Example: Set Intersection

3/4

includes ∞

Re

Im

R1

5/4

Re

Im

R2

3/4 5/4

Re

Im

R1∩R2
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Example: Scalar Multiple of a Set

1 2
Re

Im

R

2 4
Re

Im

2R

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 459



Example: Reciprocal of a Set

3/4

includes ∞

Re

Im

R

4/3

Re

Im

R−1
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Region of Convergence (ROC)

� As we saw earlier, for a sequence x, the complete specification of its z
transform X requires not only an algebraic expression for X , but also the
ROC associated with X .

� Two very different sequences can have the same algebraic expressions
for X .

� Now, we examine some of the constraints on the ROC (of the z transform)
for various classes of sequences.
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Properties of the ROC

1 The ROC consists of concentric circles centered at 0 in the complex
plane.

2 If the sequence x has a rational z transform, then the ROC does not
contain any poles, and the ROC is bounded by poles or extends to ∞.

3 If the sequence x is finite duration, then the ROC is the entire complex
plane, except possibly 0 and/or ∞.

4 If the sequence x is right sided but not left sided and the circle |z|= r0 is
in the ROC, then all (finite) values of z for which |z|> r0 will also be in the
ROC (i.e., the ROC is the exterior of a circle, possibly excluding ∞).

5 If the sequence x is left sided but not right sided and the circle |z|= r0 is
in the ROC, then all values of z for which 0 < |z|< r0 will also be in the
ROC (i.e., the ROC is a disc, possibly excluding 0).

6 If the sequence x is two sided and the circle |z|= r0 is in the ROC, then
the ROC will consist of a ring that includes this circle (i.e., the ROC is an
annulus).
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Properties of the ROC (Continued)

7 If the z transform X of x is rational and x is right sided, then the ROC is
the region outside the circle of radius equal to the largest magnitude of the
poles of X (i.e., outside the outermost pole).

8 If the z transform X of x is rational and x is left sided, then the ROC is the
region inside the circle of radius equal to the smallest magnitude of the
nonzero poles of X and extending inward to, and possibly including, 0
(i.e., inside the innermost nonzero pole).

� Some of the preceding properties are redundant (e.g., properties 1, 2, and
4 imply property 7).

� The ROC must always be of the form of one of the following:
1 a disc centered at 0, possibly excluding the origin
2 an annulus centered 0
3 the exterior of a circle centered at 0, possibly excluding ∞

4 the entire complex plane, possibly excluding 0 and/or ∞
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Section 12.3

Properties of the Z Transform
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Properties of the Z Transform

Property Time Domain Z Domain ROC

Linearity a1x1(n)+a2x2(n) a1X1(z)+a2X2(z) At least R1∩R2

Translation x(n−n0) z−n0X(z) R except possible addition/deletion of 0

Modulation anx(n) X(a−1z) |a|R
Time Reversal x(−n) X(1/z) R−1

Upsampling (↑M)x(n) X(zM) R1/M

Downsampling (↓M)x(n) 1
M ∑

M−1
k=0 X

(
e− j2πk/Mz1/M

)
RM

Conjugation x∗(n) X∗(z∗) R
Convolution x1 ∗ x2(n) X1(z)X2(z) At least R1∩R2

Z-Domain Diff. nx(n) −z d
dz X(z) R

Differencing x(n)− x(n−1) (1− z−1)X(z) At least R∩|z|> 0
Accumulation ∑

n
k=−∞

x(k) z
z−1 X(z) At least R∩|z|> 1

Property

Initial Value Theorem x(0) = lim
z→∞

X(z)

Final Value Theorem lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)]
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Z Transform Pairs

Pair x(n) X(z) ROC

1 δ(n) 1 All z

2 u(n) z
z−1 |z|> 1

3 −u(−n−1) z
z−1 |z|< 1

4 nu(n) z
(z−1)2 |z|> 1

5 −nu(−n−1) z
(z−1)2 |z|< 1

6 anu(n) z
z−a |z|> |a|

7 −anu(−n−1) z
z−a |z|< |a|

8 nanu(n) az
(z−a)2 |z|> |a|

9 −nanu(−n−1) az
(z−a)2 |z|< |a|

10 (cosΩ0n)u(n) z(z−cosΩ0)
z2−2zcosΩ0+1 |z|> 1

11 (sinΩ0n)u(n) zsinΩ0
z2−2zcosΩ0+1 |z|> 1

12 (an cosΩ0n)u(n) z(z−acosΩ0)
z2−2azcosΩ0+a2 |z|> |a|

13 (an sinΩ0n)u(n) azsinΩ0
z2−2azcosΩ0+a2 |z|> |a|
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Linearity

� If x1(n)
ZT←→ X1(z) with ROC R1 and x2(n)

ZT←→ X2(z) with ROC R2, then

a1x1(n)+a2x2(n)
ZT←→ a1X1(z)+a2X2(z) with ROC R containing R1∩R2,

where a1 and a2 are arbitrary complex constants.

� This is known as the linearity property of the z transform.

� The ROC always contains the intersection but could be larger (in the case
that pole-zero cancellation occurs).
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Translation (Time Shifting)

� If x(n) ZT←→ X(z) with ROC R, then

x(n−n0)
ZT←→ z−n0X(z) with ROC R′,

where n0 is an integer constant and R′ is the same as R except for the
possible addition or deletion of zero or infinity.

� This is known as the translation (or time-shifting) property of the z
transform.
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Z-Domain Scaling

� If x(n) ZT←→ X(z) with ROC R, then

anx(n) ZT←→ X(z/a) with ROC |a|R,

where a is a nonzero constant.

� This is known as the z-domain scaling property of the z transform.

� As illustrated below, the ROC R is scaled by |a|.
Im

Re
r0 r1

R

Im

Re
|a|r0 |a|r1

|a|R
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Time Reversal

� If x(n) ZT←→ X(z) with ROC R, then

x(−n) ZT←→ X(1/z) with ROC 1/R.

� This is known as the time-reversal property of the z transform.

� As illustrated below, the ROC R is reciprocated.

Im

Re
r0 r1

R

Im

Re1
r1

1
r0

1/R
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Upsampling

� Define (↑M)x(n) as

(↑M)x(n) =

{
x(n/M) n/M is an integer

0 otherwise.

� If x(n) ZT←→ X(z) with ROC R, then

(↑M)x(n) ZT←→ X(zM) with ROC R1/M.

� This is known as the upsampling (or time-expansion) property of the z
transform.
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Downsampling

� If x(n) ZT←→ X(z) with ROC R, then

(↓M)x(n) ZT←→ 1
M

M−1

∑
k=0

X
(

e− j2πk/Mz1/M
)

with ROC RM.

� This is known as the downsampling property of the z transform.
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Conjugation

� If x(n) ZT←→ X(z) with ROC R, then

x∗(n) ZT←→ X∗(z∗) with ROC R.

� This is known as the conjugation property of the z transform.
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Convolution

� If x1(n)
ZT←→ X1(z) with ROC R1 and x2(n)

ZT←→ X2(z) with ROC R2, then

x1 ∗ x2(n)
ZT←→ X1(z)X2(z) with ROC containing R1∩R2.

� This is known that the convolution (or time-domain convolution)
property of the z transform.

� The ROC always contains the intersection but can be larger than the
intersection (if pole-zero cancellation occurs).

� Convolution in the time domain becomes multiplication in the z domain.

� This can make dealing with LTI systems much easier in the z domain than
in the time domain.
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Z-Domain Differentiation

� If x(n) ZT←→ X(z) with ROC R, then

nx(n) ZT←→−z d
dz X(z) with ROC R.

� This is known as the z-domain differentiation property of the z
transform.
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Differencing

� If x(n) ZT←→ X(z) with ROC R, then

x(n)− x(n−1) ZT←→ (1− z−1)X(z) for ROC containing R∩|z|> 0.

� This is known as the differencing property of the z transform.

� Differencing in the time domain becomes multiplication by 1− z−1 in the z
domain.

� This can make dealing with difference equations much easier in the z
domain than in the time domain.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 476



Accumulation

� If x(n) ZT←→ X(z) with ROC R, then

n

∑
k=−∞

x(k) ZT←→ z
z−1

X(z) for ROC containing R∩|z|> 1.

� This is known as the accumulation property of the z transform.
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Initial Value Theorem

� For a sequence x with z transform X , if x is causal, then

x(0) = lim
z→∞

X(z).

� This result is known as the initial-value theorem.
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Final Value Theorem

� For a sequence x with z transform X , if x is causal and limn→∞ x(n) exists,
then

lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)].

� This result is known as the final-value theorem.
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More Z Transform Examples
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Section 12.4

Determination of Inverse Z Transform
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Finding the Inverse Z Transform

� Recall that the inverse z transform x of X is given by

x(n) = 1
2π j

∮
Γ

X(z)zn−1dz,

where Γ is a counterclockwise closed circular contour centered at the
origin and with radius r such that Γ is in the ROC of X .

� Unfortunately, the above contour integration can often be quite tedious to
compute.

� Consequently, we do not usually compute the inverse z transform directly
using the above equation.

� For rational functions, the inverse z transform can be more easily
computed using partial fraction expansions.

� Using a partial fraction expansion, we can express a rational function as a
sum of lower-order rational functions whose inverse z transforms can
typically be found in tables.
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Section 12.5

Z Transform and LTI Systems

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 483



System Function of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the z transforms of x, y, and h, respectively.

� Since y(n) = x∗h(n), the system is characterized in the z domain by

Y (z) = X(z)H(z).

� As a matter of terminology, we refer to H as the system function (or
transfer function) of the system (i.e., the system function is the z
transform of the impulse response).

� When viewed in the z domain, a LTI system forms its output by multiplying
its input with its system function.

� A LTI system is completely characterized by its system function H.

� If the ROC of H includes the unit circle |z|= 1, then H(e jΩ) is the
frequency response of the LTI system.
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Block Diagram Representation of LTI Systems

� Consider a LTI system with input x, output y, and impulse response h, and
let X , Y , and H denote the z transforms of x, y, and h, respectively.

� Often, it is convenient to represent such a system in block diagram form in
the z domain as shown below.

H
X Y

� Since a LTI system is completely characterized by its system function, we
typically label the system with this quantity.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 485



Interconnection of LTI Systems

� The series interconnection of the LTI systems with system functions H1
and H2 is the LTI system with system function H = H1H2. That is, we
have the equivalences shown below.

H1 H2 ≡
X Y

H1H2
YX

≡H1 H2 H2 H1
YX YX

� The parallel interconnection of the LTI systems with impulse responses
H1 and H2 is a LTI system with the system function H = H1 +H2. That is,
we have the equivalence shown below.

H1

H2

≡ H1 +H2
YX

+
X Y
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Causality

� If a LTI system is causal, its impulse response is causal, and therefore
right sided. From this, we have the result below.

� Theorem. A LTI system is causal if and only if the ROC of the system
function includes ∞, which corresponds to the ROC being: 1) the exterior
of a circle including ∞, or 2) the entire complex plane, including ∞ and
possibly excluding 0.

� Theorem. A LTI system with a rational system function H is causal if and
only if

1 the ROC is the exterior of a circle outside the outermost pole; and
2 with H(z) expressed as a ratio of polynomials in z the order of the

numerator polynomial does not exceed the order of the denominator
polynomial.
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BIBO Stability

� Whether or not a system is BIBO stable depends on the ROC of its
system function.

� Theorem. A LTI system is BIBO stable if and only if the ROC of its
system function includes the (entire) unit circle (i.e., |z|= 1).

� Theorem. A causal LTI system with a rational system function H is BIBO
stable if and only if all of the poles of H lie inside the unit circle (i.e., each
of the poles has a magnitude less than one).
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Invertibility

� A LTI system H with system function H is invertible if and only if there
exists another LTI system with system function Hinv such that

H(z)Hinv(z) = 1,

in which case Hinv is the system function of H−1 and

Hinv(z) =
1

H(z)
.

� Since distinct systems can have identical system functions (but with
differing ROCs), the inverse of a LTI system is not necessarily unique.

� In practice, however, we often desire a stable and/or causal system. So,
although multiple inverse systems may exist, we are frequently only
interested in one specific choice of inverse system (due to these
additional constraints of stability and/or causality).
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LTI Systems and Difference Equations

� Many LTI systems of practical interest can be represented using an
Nth-order linear difference equation with constant coefficients.

� Consider a system with input x and output y that is characterized by an
equation of the form

N

∑
k=0

bky(n− k) =
M

∑
k=0

akx(n− k) where M ≤ N.

� Let h denote the impulse response of the system, and let X , Y , and H
denote the z transforms of x, y, and h, respectively.

� One can show that H(z) is given by

H(z) =
Y (z)
X(z)

=
∑

M
k=0 akz−k

∑
N
k=0 bkz−k

.

� Observe that, for a system of the form considered above, the system
function is always rational.
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Section 12.6

Application: Analysis of Control Systems
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Feedback Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback
Signal

� input: desired value of the quantity to be controlled

� output: actual value of the quantity to be controlled

� error: difference between the desired and actual values

� plant: system to be controlled

� sensor: device used to measure the actual output

� controller: device that monitors the error and changes the input of the
plant with the goal of forcing the error to zero
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Stability Analysis of Feedback Control Systems

� Often, we want to ensure that a system is BIBO stable.

� The BIBO stability property is more easily characterized in the z domain
than in the time domain.

� Therefore, the z domain is extremely useful for the stability analysis of
systems.
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Section 12.7

Unilateral Z Transform
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Unilateral Z Transform

� The unilateral z transform of the sequence x, denoted Zux or X , is
defined as

Zux(z) = X(z) =
∞

∑
n=0

x(n)z−n.

� The unilateral z transform is related to the bilateral z transform as follows:

Zux(z) =
∞

∑
n=0

x(n)z−n =
∞

∑
n=−∞

x(n)u(n)z−n = Z{xu}(z).

� In other words, the unilateral z transform of the sequence x is simply the
bilateral z transform of the sequence xu.

� Since Zux = Z{xu} and xu is always a right-sided sequence, the ROC
associated with Zux is always the exterior of a circle.

� For this reason, we often do not explicitly indicate the ROC when
working with the unilateral z transform.
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Unilateral Z Transform (Continued 1)

� With the unilateral z transform, the same inverse transform equation is
used as in the bilateral case.

� The unilateral z transform is only invertible for causal sequences. In
particular, we have

Z−1
u {Zu{x}}(n) = Z−1

u {Z{xu}}(n)
= Z−1{Z{xu}}(n)
= x(n)u(n)

=

{
x(n) n≥ 0
0 otherwise.

� For a noncausal sequence x, we can only recover x(n) for n≥ 0.
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Unilateral Z Transform (Continued 2)

� Due to the close relationship between the unilateral and bilateral z
transforms, these two transforms have some similarities in their properties.

� Since these two transforms are not identical, however, their properties
differ in some cases, often in subtle ways.
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Properties of the Unilateral Z Transform

Property Time Domain Z Domain

Linearity a1x1(n)+a2x2(n) a1X1(z)+a2X2(z)
Time Delay x(n−1) z−1X(z)+ x(−1)
Time Advance x(n+1) zX(z)− zx(0)
Modulation anx(n) X(a−1z)

e jΩ0nx(n) X(e− jΩ0z)
Upsampling (↑M)x(n) X(zM)

Conjugation x∗(n) X∗(z∗)
Convolution x1 ∗ x2(n), x1 and x2 are causal X1(z)X2(z)
Z-Domain Diff. nx(n) −z d

dz X(z)
Differencing x(n)− x(n−1) (1− z−1)X(z)− x(−1)
Accumulation ∑

n
k=0 x(k) 1

1−z−1 X(z)

Property

Initial Value Theorem x(0) = lim
z→∞

X(z)

Final Value Theorem lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)]
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Unilateral Z Transform Pairs

Pair x(n), n≥ 0 X(z)

1 δ(n) 1

2 1 z
z−1

3 n z
(z−1)2

4 an z
z−a

5 ann az
(z−a)2

6 cosΩ0n z(z−cosΩ0)
z2−2(cosΩ0)z+1

7 sinΩ0n zsinΩ0
z2−2(cosΩ0)z+1

8 |a|n cosΩ0n z(z−|a|cosΩ0)

z2−2|a|(cosΩ0)z+|a|2

9 |a|n sinΩ0n z|a|sinΩ0

z2−2|a|(cosΩ0)z+|a|2
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Solving Difference Equations Using the Unilateral Z
Transform

� Many systems of interest in engineering applications can be characterized
by constant-coefficient linear difference equations.

� One common use of the unilateral z transform is in solving
constant-coefficient linear difference equations with nonzero initial
conditions.
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Part 13

Complex Analysis
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Complex Numbers

� A complex number is a number of the form z = x+ jy where x and y are
real numbers and j is the constant defined by j2 =−1 (i.e., j =

√
−1).

� The Cartesian form of the complex number z expresses z in the form

z = x+ jy,

where x and y are real numbers. The quantities x and y are called the real
part and imaginary part of z, and are denoted as Rez and Imz,
respectively.

� The polar form of the complex number z expresses z in the form

z = r(cosθ+ j sinθ) or equivalently z = re jθ,

where r and θ are real numbers and r ≥ 0. The quantities r and θ are
called the magnitude and argument of z, and are denoted as |z| and
argz, respectively. [Note: e jθ = cosθ+ j sinθ.]
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Complex Numbers (Continued)

� Since e jθ = e j(θ+2πk) for all real θ and all integer k, the argument of a
complex number is only uniquely determined to within an additive multiple
of 2π.

� The principal argument of a complex number z, denoted Argz, is the
particular value θ of argz that satisfies −π < θ≤ π.

� The principal argument of a complex number (excluding zero) is unique.
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Geometric Interpretation of Cartesian and Polar Forms

Im

Re
x

y z

Cartesian form:
z = x+ jy

where x = Rez and y = Imz

Im

Re

z

r

θ

Polar form:
z = r(cosθ+ j sinθ) = re jθ

where r = |z| and θ = argz
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The arctan Function

� The range of the arctan function is −π/2 (exclusive) to π/2 (exclusive).

� Consequently, the arctan function always yields an angle in either the first
or fourth quadrant.

Im

Re
arctan( 1

1 )

(1,1)

−1

1

−1 1

Im

Re

(−1,−1)

π+ arctan(−1
−1 ) arctan(−1

−1 )

1

−1

1−1
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The atan2 Function

� The angle θ that a vector from the origin to the point (x,y) makes with the
positive x axis is given by θ = atan2(y,x), where

atan2(y,x),



arctan(y/x) x > 0
π/2 x = 0 and y > 0
−π/2 x = 0 and y < 0
arctan(y/x)+π x < 0 and y≥ 0
arctan(y/x)−π x < 0 and y < 0.

� The range of the atan2 function is from −π (exclusive) to π (inclusive).
� For the complex number z expressed in Cartesian form x+ jy,

Argz = atan2(y,x).
� Although the atan2 function is quite useful for computing the principal

argument (or argument) of a complex number, it is not advisable to
memorize the definition of this function. It is better to simply understand
what this function is doing (namely, intelligently applying the arctan
function).

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 506



Conversion Between Cartesian and Polar Form

� Let z be a complex number with the Cartesian and polar form
representations given respectively by

z = x+ jy and z = re jθ.

� To convert from polar to Cartesian form, we use the following identities:

x = r cosθ and y = r sinθ.

� To convert from Cartesian to polar form, we use the following identities:

r =
√

x2 + y2 and θ = atan2(y,x)+2πk,

where k is an arbitrary integer.

� Since the atan2 function simply amounts to the intelligent application of
the arctan function, instead of memorizing the definition of the atan2
function, one should simply understand how to use the arctan function to
achieve the same result.
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Properties of Complex Numbers

� For complex numbers, addition and multiplication are commutative. That
is, for any two complex numbers z1 and z2,

z1 + z2 = z2 + z1 and

z1z2 = z2z1.

� For complex numbers, addition and multiplication are associative. That is,
for any three complex numbers z1, z2, and z3,

(z1 + z2)+ z3 = z1 +(z2 + z3) and

(z1z2)z3 = z1(z2z3).

� For complex numbers, the distributive property holds. That is, for any
three complex numbers z1, z2, and z3,

z1(z2 + z3) = z1z2 + z1z3.
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Conjugation

� The conjugate of the complex number z = x+ jy is denoted as z∗ and
defined as

z∗ = x− jy.

� Geometrically, the conjugation operation reflects a point in the complex
plane about the real axis.

� The geometric interpretation of the conjugate is illustrated below.

Im

Re

z = x+ jy

z∗ = x− jy
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Properties of Conjugation

� For every complex number z, the following identities hold:

|z∗|= |z| ,
argz∗ =−argz,

zz∗ = |z|2 ,
Rez = 1

2(z+ z∗), and

Imz = 1
2 j (z− z∗).

� For all complex numbers z1 and z2, the following identities hold:

(z1 + z2)
∗ = z∗1 + z∗2,

(z1z2)
∗ = z∗1z∗2, and

(z1/z2)
∗ = z∗1/z∗2.
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Addition

� Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1 + z2 = (x1 + jy1)+(x2 + jy2)

= (x1 + x2)+ j(y1 + y2).

� That is, to add complex numbers expressed in Cartesian form, we simply
add their real parts and add their imaginary parts.

� Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1 + z2 = r1e jθ1 + r2e jθ2

= (r1 cosθ1 + jr1 sinθ1)+(r2 cosθ2 + jr2 sinθ2)

= (r1 cosθ1 + r2 cosθ2)+ j(r1 sinθ1 + r2 sinθ2).

� That is, to add complex numbers expressed in polar form, we first rewrite
them in Cartesian form, and then add their real parts and add their
imaginary parts.

� For the purposes of addition, it is easier to work with complex numbers
expressed in Cartesian form.
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Multiplication

� Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1z2 = (x1 + jy1)(x2 + jy2)

= x1x2 + jx1y2 + jx2y1− y1y2

= (x1x2− y1y2)+ j(x1y2 + x2y1).

� That is, to multiply two complex numbers expressed in Cartesian form, we
use the distributive law along with the fact that j2 =−1.

� Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1z2 =
(

r1e jθ1
)(

r2e jθ2
)
= r1r2e j(θ1+θ2).

� That is, to multiply two complex numbers expressed in polar form, we use
exponent rules.

� For the purposes of multiplication, it is easier to work with complex
numbers expressed in polar form.
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Division

� Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1

z2
=

z1z∗2
z2z∗2

=
z1z∗2
|z2|2

=
(x1 + jy1)(x2− jy2)

x2
2 + y2

2

=
x1x2− jx1y2 + jx2y1 + y1y2

x2
2 + y2

2
=

x1x2 + y1y2 + j(x2y1− x1y2)

x2
2 + y2

2
.

� That is, to compute the quotient of two complex numbers expressed in
Cartesian form, we convert the problem into one of division by a real
number.

� Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1

z2
=

r1e jθ1

r2e jθ2
=

r1

r2
e j(θ1−θ2).

� That is, to compute the quotient of two complex numbers expressed in
polar form, we use exponent rules.

� For the purposes of division, it is easier to work with complex numbers
expressed in polar form.
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Properties of the Magnitude and Argument

� For any complex numbers z1 and z2, the following identities hold:

|z1z2|= |z1| |z2| ,∣∣∣∣z1

z2

∣∣∣∣= |z1|
|z2|

for z2 6= 0,

argz1z2 = argz1 + argz2, and

arg
(

z1

z2

)
= argz1− argz2 for z2 6= 0.

� The above properties trivially follow from the polar representation of
complex numbers.
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Euler’s Relation and De Moivre’s Theorem

� Euler’s relation. For all real θ,

e jθ = cosθ+ j sinθ.

� From Euler’s relation, we can deduce the following useful identities:

cosθ = 1
2(e

jθ + e− jθ) and

sinθ = 1
2 j (e

jθ− e− jθ).

� De Moivre’s theorem. For all real θ and all integer n,

e jnθ =
(

e jθ
)n

.

[Note: This relationship does not necessarily hold for real n.]
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Roots of Complex Numbers

� Every complex number z = re jθ (where r = |z| and θ = argz) has n
distinct nth roots given by

n
√

re j(θ+2πk)/n for k = 0,1, . . . ,n−1.

� For example, 1 has the two distinct square roots 1 and −1.
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Quadratic Formula

� Consider the equation

az2 +bz+ c = 0,

where a, b, and c are real, z is complex, and a 6= 0.

� The roots of this equation are given by

z =
−b±

√
b2−4ac

2a
.

� This formula is often useful in factoring quadratic polynomials.

� The quadratic az2 +bz+ c can be factored as a(z− z0)(z− z1), where

z0 =
−b−

√
b2−4ac

2a
and z1 =

−b+
√

b2−4ac
2a

.
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Complex Functions

� A complex function maps complex numbers to complex numbers. For
example, the function F(z) = z2 +2z+1, where z is complex, is a
complex function.

� A complex polynomial function is a mapping of the form

F(z) = a0 +a1z+a2z2 + · · ·+anzn,

where z, a0,a1, . . . ,an are complex.

� A complex rational function is a mapping of the form

F(z) =
a0 +a1z+a2z2 + . . .+anzn

b0 +b1z+b2z2 + . . .+bmzm ,

where a0,a1, . . . ,an,b0,b1, . . . ,bm and z are complex.

� Observe that a polynomial function is a special case of a rational function.

� Herein, we will mostly focus our attention on polynomial and rational
functions.
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Continuity

� A function F is said to be continuous at a point z0 if F(z0) is defined and
given by

F(z0) = lim
z→z0

F(z).

� A function that is continuous at every point in its domain is said to be
continuous.

� Polynomial functions are continuous everywhere.

� Rational functions are continuous everywhere except at points where the
denominator polynomial becomes zero.
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Differentiability

� A function F is said to be differentiable at a point z = z0 if the limit

F ′(z0) = limz→z0
F(z)−F(z0)

z−z0

exists. This limit is called the derivative of F at the point z = z0.
� A function is said to be differentiable if it is differentiable at every point in

its domain.
� The rules for differentiating sums, products, and quotients are the same

for complex functions as for real functions. If F ′(z0) and G′(z0) exist, then
1 (aF)′(z0) = aF ′(z0) for any complex constant a;
2 (F +G)′(z0) = F ′(z0)+G′(z0);
3 (FG)′(z0) = F ′(z0)G(z0)+F(z0)G′(z0);
4 (F/G)′(z0) =

G(z0)F ′(z0)−F(z0)G′(z0)
G(z0)2 ; and

5 if z0 = G(w0) and G′(w0) exists, then the derivative of F(G(z)) at w0 is
F ′(z0)G′(w0) (i.e., the chain rule).

� A polynomial function is differentiable everywhere.
� A rational function is differentiable everywhere except at the points where

its denominator polynomial becomes zero.
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Open Disks

� An open disk in the complex plane with center z0 and radius r is the set of
complex numbers z satisfying

|z− z0|< r,

where r is a strictly positive real number.

� A plot of an open disk is shown below.

z0

r

Im

Re
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Analyticity

� A function is said to be analytic at a point z0 if it is differentiable at every
point in an open disk about z0.

� A function is said to be analytic if it is analytic at every point in its domain.

� A polynomial function is analytic everywhere.

� A rational function is analytic everywhere, except at the points where its
denominator polynomial becomes zero.
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Zeros and Singularities

� If a function F is zero at the point z0 (i.e., F(z0) = 0), F is said to have a
zero at z0.

� If a function F is such that F(z0) = 0,F(1)(z0) = 0, . . . ,F(n−1)(z0) = 0
(where F(k) denotes the kth order derivative of F), F is said to have an
nth order zero at z0.

� A point at which a function fails to be analytic is called a singularity.

� Polynomials do not have singularities.

� Rational functions can have a type of singularity called a pole.

� If a function F is such that G(z) = 1/F(z) has an nth order zero at z0, F is
said to have an nth order pole at z0.

� A pole of first order is said to be simple, whereas a pole of order two or
greater is said to be repeated. A similar terminology can also be applied
to zeros (i.e., simple zero and repeated zero).
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Zeros and Poles of a Rational Function

� Given a rational function F , we can always express F in factored form as

F(z) =
K(z−a1)

α1(z−a2)
α2 · · ·(z−aM)αM

(z−b1)β1(z−b2)β2 · · ·(z−bN)βN
,

where K is complex, a1,a2, . . . ,aM,b1,b2, . . . ,bN are distinct complex
numbers, and α1,α2, . . . ,αM and β1,β2, . . . ,βN are strictly positive
integers.

� One can show that F has poles at b1,b2, . . . ,bN and zeros at
a1,a2, . . . ,aM.

� Furthermore, the kth pole (i.e., bk) is of order βk, and the kth zero (i.e., ak)
is of order αk.

� When plotting zeros and poles in the complex plane, the symbols “o” and
“x” are used to denote zeros and poles, respectively.
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Part 14

Partial Fraction Expansions (PFEs)
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Motivation for PFEs

� Sometimes it is beneficial to be able to express a rational function as a
sum of lower-order rational functions.

� This can be accomplished using a type of decomposition known as a
partial fraction expansion.

� Partial fraction expansions are often useful in the calculation of inverse
Laplace transforms, inverse z transforms, and inverse CT/DT Fourier
transforms.
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Strictly-Proper Rational Functions

� Consider a rational function

F(v) =
αmvm +αm−1vm−1 + . . .+α1v+α0

βnvn +βn−1vn−1 + . . .+β1v+β0
.

� The function F is said to be strictly proper if m < n (i.e., the order of the
numerator polynomial is strictly less than the order of the denominator
polynomial).

� Through polynomial long division, any rational function can be written as
the sum of a polynomial and a strictly-proper rational function.

� A strictly-proper rational function can be expressed as a sum of
lower-order rational functions, with such an expression being called a
partial fraction expansion.
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Section 14.1

PFEs for First Form of Rational Functions
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Partial Fraction Expansions (PFEs) [CT and DT Contexts]

� Any rational function can be expressed in the form of

F(v) =
amvm +am−1vm−1 + . . .+a0

vn +bn−1vn−1 + . . .+b0
.

� Furthermore, the denominator polynomial D(v) = vn +bn−1vn−1 + . . .+b0
in the above expression for F(v) can be factored to obtain

D(v) = (v− p1)
q1(v− p2)

q2 · · ·(v− pn)
qn ,

where the pk are distinct and the qk are integers.

� If F has only simple poles, q1 = q2 = · · ·= qn = 1.

� Suppose that F is strictly proper (i.e., m < n).
� In the determination of a partial fraction expansion of F , there are two

cases to consider:
1 F has only simple poles; and
2 F has at least one repeated pole.
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Simple-Pole Case [CT and DT Contexts]

� Suppose that the (rational) function F has only simple poles.

� Then, the denominator polynomial D for F is of the form

D(v) = (v− p1)(v− p2) · · ·(v− pn),

where the pk are distinct.

� In this case, F has a partial fraction expansion of the form

F(v) =
A1

v− p1
+

A2

v− p2
+ . . .+

An−1

v− pn−1
+

An

v− pn
,

where

Ak = (v− pk)F(v)|v=pk
.

� Note that the (simple) pole pk contributes a single term to the partial
fraction expansion.
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Repeated-Pole Case [CT and DT Contexts]

� Suppose that the (rational) function F has at least one repeated pole.

� One can show that, in this case, F has a partial fraction expansion of the
form

F(v) =
[

A1,1

v− p1
+

A1,2

(v− p1)2 + . . .+
A1,q1

(v− p1)q1

]
+

[
A2,1

v− p2
+ . . .+

A2,q2

(v− p2)q2

]
+ . . .+

[
AP,1

v− pP
+ . . .+

AP,qP

(v− pP)qP

]
,

where

Ak,` =
1

(qk− `)!

[[ d
dv

]qk−` [(v− pk)
qk F(v)]

]∣∣∣
v=pk

.

� Note that the qkth-order pole pk contributes qk terms to the partial fraction
expansion.

� Note that n! = (n)(n−1)(n−2) · · ·(1) and 0! = 1.
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Section 14.2

PFEs for Second Form of Rational Functions
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Partial Fraction Expansions (PFEs) [DT Context]

� Any rational function can be expressed in the form of

F(v) =
amvm +am−1vm−1 + . . .+a1v+a0

bnvn +bn−1vn−1 + . . .+b1v+1
.

� Furthermore, the denominator polynomial
D(v) = bnvn +bn−1vn−1 + . . .+b1v+1 in the above expression for F(v)
can be factored to obtain

D(v) = (1− p−1
1 v)q1(1− p−1

2 v)q2 · · ·(1− p−1
n v)qn ,

where the pk are distinct and the qk are integers.

� If F has only simple poles, q1 = q2 = · · ·= qn = 1.

� Suppose that F is strictly proper (i.e., m < n).
� In the determination of a partial fraction expansion of F , there are two

cases to consider:
1 F has only simple poles; and
2 F has at least one repeated pole.

Copyright c© 2013–2020 Michael D. Adams Lecture Slides Edition 2.0 533



Simple-Pole Case [DT Context]

� Suppose that the (rational) function F has only simple poles.

� Then, the denominator polynomial D for F is of the form

D(v) = (1− p−1
1 v)(1− p−1

2 v) · · ·(1− p−1
n v),

where the pk are distinct.

� In this case, F has a partial fraction expansion of the form

F(v) =
A1

1− p−1
1 v

+
A2

1− p−1
2 v

+ . . .+
An−1

1− p−1
n−1v

+
An

1− p−1
n v

,

where

Ak = (1− p−1
k v)F(v)

∣∣
v=pk

.

� Note that the (simple) pole pk contributes a single term to the partial
fraction expansion.
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Repeated-Pole Case [DT Context]

� Suppose that the (rational) function F has at least one repeated pole.
� One can show that, in this case, F has a partial fraction expansion of the

form

F(v) =

[
A1,1

1− p−1
1 v

+
A1,2

(1− p−1
1 v)2

+ . . .+
A1,q1

(1− p−1
1 v)q1

]

+

[
A2,1

1− p−1
2 v

+ . . .+
A2,q2

(1− p−1
2 v)q2

]

+ . . .+

[
AP,1

1− p−1
P v

+ . . .+
AP,qP

(1− p−1
P v)qP

]
,

where

Ak,` =
1

(qk− `)!
(−pk)

qk−`
[[ d

dv

]qk−` [(1− p−1
k v)qk F(v)]

]∣∣∣
v=pk

.

� Note that the qkth-order pole pk contributes qk terms to the partial fraction
expansion.

� Note that n! = (n)(n−1)(n−2) · · ·(1) and 0! = 1.
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Part 15

Miscellany
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Sum of Arithmetic and Geometric Sequences

� The sum of the arithmetic sequence a,a+d,a+2d, . . . ,a+(n−1)d is
given by

n−1

∑
k=0

(a+ kd) =
n[2a+d(n−1)]

2
.

� The sum of the geometric sequence a,ra,r2a, . . . ,rn−1a is given by

n−1

∑
k=0

rka = a
rn−1
r−1

for r 6= 1.

� The sum of the infinite geometric sequence a,ra,r2a, . . . is given by

∞

∑
k=0

rka =
a

1− r
for |r|< 1.
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Part 16

Epilogue
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Other Courses Offered by the Author of These Lecture
Slides

� If you did not suffer permanent emotional scarring as a result of using
these lecture slides and you happen to be a student at the University of
Victoria, you might wish to consider taking another one of the courses
developed by the author of these lecture slides:

2 ECE 486: Multiresolution Signal and Geometry Processing with C++
2 SENG 475: Advanced Programming Techniques for Robust Efficient

Computing
� For further information about the above courses (including the URLs for

web sites of these courses), please refer to the slides that follow.
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ECE 486/586:
Multiresolution Signal and Geometry Processing with C++

normally offered in Summer (May-August) term; only prerequisite
ECE 310
subdivision surfaces and subdivision wavelets

3D computer graphics, animation, gaming (Toy Story, Blender software)
geometric modelling, visualization, computer-aided design

multirate signal processing and wavelet systems
sampling rate conversion (audio processing, video transcoding)
signal compression (JPEG 2000, FBI fingerprint compression)
communication systems (transmultiplexers for CDMA, FDMA, TDMA)

C++ (classes, templates, standard library), OpenGL, GLUT, CGAL
software applications (using C++)
for more information, visit course web page:
http://www.ece.uvic.ca/˜mdadams/courses/wavelets
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SENG 475:
Advanced Programming Techniques for Robust Efficient

Computing (With C++)

� advanced programming techniques for robust efficient computing explored
in context of C++ programming language

� topics covered may include:
� concurrency, multithreading, transactional memory, parallelism,

vectorization; cache-efficient coding; compile-time versus run-time
computation; compile-time versus run-time polymorphism; generic
programming techniques; resource/memory management; copy and move
semantics; exception-safe coding

� applications areas considered may include:
� geometry processing, computer graphics, signal processing, and numerical

analysis
� open to any student with necessary prerequisites, which are:

� SENG 265 or CENG 255 or CSC 230 or CSC 349A or ECE 255 or
permission of Department

� for more information, see course web site:
http://www.ece.uvic.ca/˜mdadams/courses/cpp
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